An efficient integral equation technique for the analysis of arbitrarily shaped capacitive waveguide circuits
Compartir
Métricas
Estadísticas
Ver Estadísticas de usoMetadatos
Mostrar el registro completo del ítemAutor
Quesada Pereira, Fernando Daniel; Vera Castejón, Pedro; Gimeno Martínez, Benito; Boria Esbert, Vicente E.; Álvarez Melcón , AlejandroGrupo de investigación
Grupo de Electromagnetismo Aplicado a las Telecomunicaciones (GEAT)Área de conocimiento
Teoría de la Señal y las ComunicacionesPatrocinadores
Ministerio de Educación y Ciencia, Ref. TEC2007-67630-C03-02. Fundación Séneca, Ref. 08833/PI/08.Fecha de publicación
2010-11-01Editorial
Institute Electrical and Electronics Engineers (IEEE)Cita bibliográfica
QUESADA PEREIRA, Fernando Daniel et al. An efficient integral equation technique for the analysis of arbitrarily shaped capacitive waveguide circuits. En: European Microwave Conference (40ª: 2010: Paris). European Microwave Week 2010: Connecting the World. Conference Proceedings, 26 September - 1 October 2010 . Paris, France. 40th. European Microwave Conference. Pisctaway: IEEE. 2010. Pp. 236-239. ISBN 978-1-4244-7232-1Palabras clave
Lowpass filtersWaveguide filters
Capacitive waveguide circuits
Filtros de bajo paso
Filtros de guía de onda
Ecuaciones integrales
Circuitos de guía de onda
Integral equation (IE)
Resumen
In this paper a new and efficient integral equation
formulation is presented for the analysis of arbitrarily shaped
capacitive waveguide devices. The technique benefits from the
symmetry of the structure in order to reduce the dimensions of
the problem from three to two dimensions. For the first time,
this technique formulates the waveguide capacitive discontinuity
problem as a 2D scattering problem with oblique incidence, com-
bined with an efficient calculation of the parallel plate Green's
functions. Results for a capacitive impedance transformer are
successfully compared with measurements for validation of the
proposed theory.
Colecciones
El ítem tiene asociados los siguientes ficheros de licencia:
Redes sociales