Show simple item record

dc.contributor.authorGarcía Hernández, José Julio 
dc.date.accessioned2010-07-23T07:32:39Z
dc.date.available2010-07-23T07:32:39Z
dc.date.issued2010
dc.description.abstract[SPA] Desde la más remota antigüedad se ha intuido que el origen de algunas enfermedades, entre las que están la rinoconjuntivitis y el asma alérgico, reside en ciertas partículas presentes en la atmósfera que respiramos. En el siglo XIX, el Dr. Blackley pudo establecer que la causa de la denominada "fiebre del heno" era el grano polen de gramíneas, desde entonces hasta nuestros días se ha utilizado el Índice polínico como indicador de la carga alergénica del aire. El polen del olivo (Olea europaea), árbol perteneciente a la familia Oleaceae ha sido tradicionalmente descrito como uno de los principales responsables de alergias de tipo respiratorio, sobre todo en el área Mediterránea, asociadas a su cultivo y a su uso cada vez más frecuente como árbol ornamental. Según el informe Alergológica 2005 en la región de Murcia es donde se registra la mayor prevalencia de pacientes con rinitis alérgica de España siendo el polen de olivo el segundo en importancia. Posteriormente, se ha podido demostrar que, en algunas especies, las moléculas responsables de que individuos atópicos padezcan las afecciones típicas de una polinosis, son proteínas. El grano de polen es el transportador primario de estas moléculas, pero no el único. Además, en las últimas décadas se ha puesto de manifiesto la posibilidad de que estas moléculas puedan viajar en el aire en partículas de menor tamaño que el grano de polen. Todo ello unido a la falta de correlación entre los recuentos polínicos y los síntomas de los pacientes, señalados por algunos investigadores, ha llevado a plantear la necesidad de cuantificar la carga alergénica del aire como complemento a los recuentos aerobiológicos tradicionales. Los objetivos principales de este estudio se han centrado en: caracterizar en nuestra atmósfera el comportamiento aerobiológico de Olea, definir su Periodo Principal de Polinización (PPP) y la presencia en este periodo de otros pólenes de importancia alergénica que pudieran ser causa de reacciones cruzadas; y, detectar y cuantificar su alérgeno mayor Ole e 1, comparando los resultados obtenidos con los recuentos de polen de Olea tradicionales. Tras un paseo por toda la literatura existente en torno al polen y los alérgenos de Olea europaea, su origen, clasificación, estructura, escultura, propagación, etc,…, así como por las principales técnicas de captura, lectura, valoración y recuento de forma general y especifica, se da un repaso de las técnicas inmunológicas y un breve estudio de la polinosis, y se detallan los materiales empleados y los métodos seguidos para la obtención de los resultados presentados. En el estudio se han utilizado captadores aerobiológicos de bajo volumen. Para la caracterización aerobiológica clásica se ha utilizado un captador de impacto activo tipo Hirst, mientras que para la identificación y cuantificación de Ole e 1 se ha utilizado un captador ciclónico Burkard. Las muestras para los recuentos de Olea se han procesado siguiendo las instrucciones de la Red Española de Aerobiología; Ole e 1 se ha cuantificado por técnicas inmunoanalíticas tras la extracción de las muestras. En el capítulo siguiente se presentan los resultados obtenidos, procediendo a su discusión. Así, el estudio aerobiológico del tipo polínico Olea en Cartagena define su PPP dentro de la estación primaveral, con una duración que oscila entre los 60 y los 106 días. El polen de Olea representa el 13,35% del computo anual total, valor que pasa al 25,46% en el PPP, y sumado con el resto de taxones que comparten su PPP se recoge en ese periodo de tiempo el 50% del polen total anual. Comparten plenamente el PPP de Olea los tipos polínicos Palmae, Plantago, Poaceae, Quercus, Rumex y Zygophyllum, otros tipos polínicos que coinciden con Olea durante su PPP son Chenopodiaceae-Amaranthaceae y Urticaceae, aunque la primera presenta en Cartagena un pico más importante a finales de verano / principios de otoño y la segunda florece en nuestra área todo el año, aunque los mayores recuentos se dan en primavera. Se han definido para Olea en la ciudad de Cartagena los niveles umbrales, tanto en base a los datos aerobiológicos como a los datos publicados de prevalencia de la sensibilización a este tipo en la zona. Se ha puesto en marcha la metodología de muestreo y cuantificación de aeroalérgenos de Olea, Ole e 1 y Ole e 2. El aeroalérgeno Ole e 2 se encuentra por debajo del límite de detección de la técnica la mayor parte de los días de floración de Olea, mientras que Ole e 1 se cuantifica en todas las muestras dentro de la floración de Olea. Por lo que proponemos que los alérgenos seleccionados en estos estudios deben ser mayoritarios. Durante el periodo en el que se encuentra Olea presente en el aire, se han obtenido cuantificaciones de su alérgeno Ole e 1 que suministran una información similar a la aportada por los recuentos tradicionales, por ello consideramos que la cuantificación en el aerosol atmosférico de la carga alergénica transportada puede ser una buena aproximación desde la aerobiología al conocimiento de su reactividad y respuesta, constituyendo datos de interés en los estudios epidemiológicos. Asímismo, se han encontrado concentraciones normalizadas del alérgeno Ole e 1 que pueden ser iguales, menores o mayores a las concentraciones normalizadas de la concentración de Olea, sin que podamos precisar si ese comportamiento es debido a causas meteorológicas, como la presencia de lluvias, o a factores intrínsecos del grano depolen, o factores ambientales que pudieran estar influyendo en este comportamiento. Complementa la discusión el capítulo de conclusiones, en el que se recogen un total de nueve ideas básicas aportadas por el trabajo y se aportan las líneas de futuro en la investigación. La memoria finaliza con una extensa relación alfabética de toda la bibliografía que se ha utilizado para la realización del trabajo. [ENG] Since the most ancient times, it has been suspected that the origin of a number of illnesses, for instance hay fever and athsma, lays in a certain kind of airborne particles that we breathe. In the 19th century, Dr. Blackley was able to stablish that hay fever was caused by grass pollen grains and since then, the socalled “Pollen Index” has been used like an allergenic load quantifier barometer. Olive pollen (Olea europaea), a tree belonging to the Oleaceae family, has traditionally been described as one of the main species being responsible for respiratory allergy problems in the Mediterranean area, because of its farming and its increasing use as an ornamental tree. According to Alergologica 2005, Murcia is the Spanish region where the higher prevalence of patients suffering allergic rinithis has been recorded, setting olive pollen in the second place of importance. Subsequently, it has been possible to demonstrate that, in some species, proteins are the mollecules responsible for the fact that atopic human beings suffer from typical pollenosis conditions. The pollen grain is the primary transporter of this kind of mollecules, but not the only one. Moreover, since the last decades, it has been highlighted the possibility that these mollecules can travel in the air carried by other smaller particles different from the pollen grain. The abovementioned plus the lack of correlation between the pollen counts and the patient symptoms, indicated by some researchers, has driven to the need of using the air allergenic load as a complement to the usual aerobiological counts. The most important objectives in this study have been focused in: depicting the the aerobiological behaviour of Olea in our atmosphere, defining its Main Pollen Season (MPS) and the existence of other pollens with allergenic importance in this period, which could be the cause of cross reactions, and detecting and quantifying its main allergen, Ole e 1, comparing its results to the classical aerobiological counts. After a stroll through the present and past literature of the pollen and allergens of Olea europaea, its origin, clasification, structure, sculpture, propagation, etc…, as well as through a general and specific review of the main traps, sampling, reading, count and valuation techniques, a brief pollenosis study and a review of immunological techniques is given. Afterwards, materials used and methods followed in order to obtain the given results are detailed. In this study, two low volume aerobiological traps have been used. For clasical aerobiological characterization, a Hirst active impact trap has been used, whereas a Burkard ciclone trap has been utilized for identification and quantification of Ole e 1. The samples for Olea counts have been done following the directions of “Red Española de Aerobiología” and Ole e 1 has been quantified by means of immunological techniques after the sample extractions. The results are written in the next chapter, followed by its discussion. So, the aerobiological study of the Olea pollen type in Cartagena defines its MPS in the spring season, lasting between 60 and 106 days. Olea pollen rise to 13,35% of the annual total count, being 25,46% in its MPS and, if we add the rest of the taxons that share its MPS, 50% of total annual count is reached. Palmae, Plantago, Poaceae, Quercus, Rumex and Zygophyllum completely share Olea’s MPS. Chenopodiaceae-Amaranthaceae and Urticaceae are coincident with Olea through its MPS, but the former has a more important peak by the end of the summer / beginning of the autumm in Cartagena while the latter flourishs the whole year in our zone, although higher counts are given in spring. The threshold levels for Olea have been defined in Cartagena, taking the aerobiological data into account, as well as the published prevalence data of sensibilization to this type in our zone. Sampling and quantification methodology for Olea allergens, Ole e 1 and Ole e 2, has been started. Ole e 2 aeroallergen is under the detection limits of the method nearly the whole days of the Olea’s flowering, while Ole e 1 can be quantified in the whole samples through the Olea’s flowering. This is the reason why we propose that, in these kind of studies, the mayor allergens must be selected. Through the period that Olea is in the air, it has been recorded Ole e 1 quantifications which give us a similar information to that obtained from clasical counts, and because of that we consider that the quantification of allergenic load carried by atmospheric aerosol can be a good approximation from aerobiology to the knowledge of its reactivity and response, being data of interest in epidemiology. Likewise, standardized concentrations of Ole e 1 have been found which can be equal, lower or higher than standardized concentrations of Olea pollen, although we cannot precise whether this behaviour is because of the weather (rainfall), or because of intrinsic factors of the pollen grain or other environmental factors that could have an influence in this kind of behaviour. The discussion chapter is followed by the conclusions one, in which nine basic ideas and a future direction work have been given. This memory finishes with an alphabetical list of the whole bibliograpy used in this work.es
dc.description.abstract[ENG] Since the most ancient times, it has been suspected that the origin of a number of illnesses, for instance hay fever and athsma, lays in a certain kind of airborne particles that we breathe. In the 19th century, Dr. Blackley was able to stablish that hay fever was caused by grass pollen grains and since then, the socalled “Pollen Index” has been used like an allergenic load quantifier barometer. Olive pollen (Olea europaea), a tree belonging to the Oleaceae family, has traditionally been described as one of the main species being responsible for respiratory allergy problems in the Mediterranean area, because of its farming and its increasing use as an ornamental tree. According to Alergologica 2005, Murcia is the Spanish region where the higher prevalence of patients suffering allergic rinithis has been recorded, setting olive pollen in the second place of importance. Subsequently, it has been possible to demonstrate that, in some species, proteins are the mollecules responsible for the fact that atopic human beings suffer from typical pollenosis conditions. The pollen grain is the primary transporter of this kind of mollecules, but not the only one. Moreover, since the last decades, it has been highlighted the possibility that these mollecules can travel in the air carried by other smaller particles different from the pollen grain. The abovementioned plus the lack of correlation between the pollen counts and the patient symptoms, indicated by some researchers, has driven to the need of using the air allergenic load as a complement to the usual aerobiological counts. The most important objectives in this study have been focused in: depicting the the aerobiological behaviour of Olea in our atmosphere, defining its Main Pollen Season (MPS) and the existence of other pollens with allergenic importance in this period, which could be the cause of cross reactions, and detecting and quantifying its main allergen, Ole e 1, comparing its results to the classical aerobiological counts. After a stroll through the present and past literature of the pollen and allergens of Olea europaea, its origin, clasification, structure, sculpture, propagation, etc…, as well as through a general and specific review of the main traps, sampling, reading, count and valuation techniques, a brief pollenosis study and a review of immunological techniques is given. Afterwards, materials used and methods followed in order to obtain the given results are detailed. In this study, two low volume aerobiological traps have been used. For clasical aerobiological characterization, a Hirst active impact trap has been used, whereas a Burkard ciclone trap has been utilized for identification and quantification of Ole e 1. The samples for Olea counts have been done following the directions of “Red Española de Aerobiología” and Ole e 1 has been quantified by means of immunological techniques after the sample extractions. The results are written in the next chapter, followed by its discussion. So, the aerobiological study of the Olea pollen type in Cartagena defines its MPS in the spring season, lasting between 60 and 106 days. Olea pollen rise to 13,35% of the annual total count, being 25,46% in its MPS and, if we add the rest of the taxons that share its MPS, 50% of total annual count is reached. Palmae, Plantago, Poaceae, Quercus, Rumex and Zygophyllum completely share Olea’s MPS. Chenopodiaceae-Amaranthaceae and Urticaceae are coincident with Olea through its MPS, but the former has a more important peak by the end of the summer / beginning of the autumm in Cartagena while the latter flourishs the whole year in our zone, although higher counts are given in spring. The threshold levels for Olea have been defined in Cartagena, taking the aerobiological data into account, as well as the published prevalence data of sensibilization to this type in our zone. Sampling and quantification methodology for Olea allergens, Ole e 1 and Ole e 2, has been started. Ole e 2 aeroallergen is under the detection limits of the method nearly the whole days of the Olea’s flowering, while Ole e 1 can be quantified in the whole samples through the Olea’s flowering. This is the reason why we propose that, in these kind of studies, the mayor allergens must be selected. Through the period that Olea is in the air, it has been recorded Ole e 1 quantifications which give us a similar information to that obtained from clasical counts, and because of that we consider that the quantification of allergenic load carried by atmospheric aerosol can be a good approximation from aerobiology to the knowledge of its reactivity and response, being data of interest in epidemiology. Likewise, standardized concentrations of Ole e 1 have been found which can be equal, lower or higher than standardized concentrations of Olea pollen, although we cannot precise whether this behaviour is because of the weather (rainfall), or because of intrinsic factors of the pollen grain or other environmental factors that could have an influence in this kind of behaviour. The discussion chapter is followed by the conclusions one, in which nine basic ideas and a future direction work have been given. This memory finishes with an alphabetical list of the whole bibliograpy used in this work.es_ES
dc.formatapplication/pdf
dc.language.isospaes
dc.publisherJosé Julio García Hernándezes
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleDetección de los niveles de proteínas alergénicas en el aire de olea europaea (ole e 1) cuantificación por métodos inmunológicoses
dc.typeinfo:eu-repo/semantics/doctoralThesises
dc.contributor.advisorMoreno Grau, Stella 
dc.contributor.advisorElvira Rendueles, María Luisa Belén 
dc.date.submitted2010-06-18
dc.subjectAlergiaes
dc.subjectOlea europaeaes
dc.subjectOle e 1es
dc.subjectPolen de olivoes
dc.subjectAeroalérgenos de Oleaes
dc.subjectAirborne particleses
dc.subjectOlive pollenes
dc.subjectAllergenses
dc.identifier.urihttp://hdl.handle.net/10317/1315
dc.contributor.departmentIngeniería Química y Ambientales
dc.identifier.doi10.31428/10317/1315
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.description.universityUniversidad Politécnica de Cartagenaes_ES
dc.description.programadoctoradoPrograma de doctorado en Ingeniería Ambiental y de Procesos Químicos Industrialeses_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España