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Abstract

This paper describes a new approach for significant point identification on ves-

sel centerline. Significant points such as bifurcations and crossovers are able

to define and characterize the retinal vascular network. In particular, hit-or-

miss transformation is used to detect terminal, bifurcation and simple crossing

points but a post-processing stage is needed to identify complex intersections.

This stage focuses on the idea that the intersection of two vessels creates a

sort of close loop formed by the vessels and this effect can be used to differ-

entiate a bifurcation from a crossover. Experimental results show quantitative

improvements by increasing the number of true positives and reducing the false

positives and negatives in the significant point detection when the proposed

method is compared with another state-of-the-art work. A sensitivity equal to

1 and a predictive positive value of 0.908 was achieved in the analyzed cases.

Hit-or-miss transformation must be applied on a binary skeleton image. There-

fore, a method to extract the vessel skeleton in a direct way is also proposed.

Although the identification of the significant points of the retinal tree can be
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useful by itself for multiple applications such as biometrics and image registra-

tion, this paper presents an algorithm that makes use of the significant points

to measure the bifurcation angles of the retinal network which can be related

to cardiovascular risk determination.

Keywords: Retinal skeleton; vessel centerline; significant points; bifurcations;

crossings; bifurcation angles.

1. Introduction

Retinal structure characterization is a fundamental component of most auto-

matic retinal disease screening systems [1]. It is usually a prerequisite previous

to carrying out more complex tasks as identifying different pathologies. In gen-

eral, anatomical structures are segmented through fundus image processing and

then certain features are extracted from them to characterize each pathology.

One of the most important anatomical structures of the fundus is the vascular

network that corresponds to the retinal blood vessels. Morphological attributes

of retinal blood vessels, such as length, width, tortuosity and/or branching pat-

tern and angles can be used for diagnosis, screening, treatment, and evaluation

of various cardiovascular and ophthalmologic diseases [2].

In the vessel centerline there are three types of significant points: termi-

nal, bifurcation and crossing. The detection of significant points in the retinal

vascular tree increases the information about the vascular structure allowing

its use for medical diagnosis. In particular, the identification of the vascular

bifurcations and crossovers on the vascular network is helpful for predicting

cardiovascular diseases and can also be used as biometric features or for image

registration [3].

This paper focuses on the identification of the significant points as a means

of defining and characterizing the retinal vascular network. In general, the sig-

nificant points of the vascular network are detected on vessel centerline, also

called vessel skeleton. The centerline can be obtained after a skeletonization

process of the vessels previously segmented or through some method by which
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the skeleton is directly obtained. The main disadvantage of the first approach is

that an inaccurate vessel segmentation may result in errors in the skeletoniza-

tion. Motivated by that reason, this paper describes an approach to determine

the retinal skeleton in a direct way through stochastic watershed transforma-

tion. Then, a new method to distinguish the different types of significant points

on the retinal skeleton is presented. Finally, the proposed method is used as

a necessary step before measuring bifurcation angles through the orientation

vectors of each branch of the vascular tree.

In the literature there exist different attempts for significant point detection.

Some of them are only based on bifurcation location [4] or on detecting bifurca-

tions and the most simple intersections [5]. Other works take into consideration

more types of crossovers since it is the most challenging part and try to distin-

guish between them and bifurcations. The most common approach is to center

a fixed-size circular window on all bifurcations and check the number of inter-

sections between the vessel centerline and the circular window [6, 7]. However,

it causes that the large vessel crossovers are detected as two bifurcation points.

Bhuiyan et al. addressed this problem by considering the width of the junction

[3] and Calvo et al. by combining local and topological information [8].

Referring to vessel extraction techniques, they can be mainly divided into

four categories: edge detectors, matched filters, pattern recognition techniques

and morphological approaches. A more extensive classification can be found in

[1]. Most edge detection algorithms assess changes between pixels values by cal-

culating the image gradient magnitude and then it is thresholded to create a bi-

nary edge image [9, 10]. Matched filters are filters rotated in different directions

in order to identify the cross section of blood vessels [11, 12]. Pattern recog-

nition techniques can be divided into supervised and unsupervised approaches.

Supervised methods, such as artificial neural networks [13] or support vector

machines [14, 15], exploit some prior labelling information to decide whether

a pixel belongs to a vessel or not, while unsupervised algorithms perform the

vessel segmentation without any prior labelling knowledge [16]. Morphologi-

cal processing is based on vessels characteristics known a priori (line connected
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segments) and combines morphological operators to achieve the segmentation

[17, 18, 19]. Although most of the state-of-the-art methods look for detecting

all vessel pixels of the vascular tree, there are also some attempts based on

finding the vessel skeleton, e.g., those based on shortest path connection [20],

on matched filters [21], on ridge descriptors [22] or on the application of the

classical marker-controlled watershed [23, 24], which differs to the stochastic

watershed that is applied in this work.

The main contribution of this paper is the presentation of a complete method-

ology for significant point detection of the retinal vascular tree from a fundus

image. It includes the vessel centerline extraction and the differentiation be-

tween bifurcations and complex crossings, which is a challenging and key process

for a correct vessel tracking. In addition, despite the lack of public databases

with manual-detected points to be used as ground truth, quantitative quality

parameters were calculated.

The rest of the paper is organized as follows: Section 2 describes materials

and methods. Section 3 presents an approach for vessel centerline extraction

in retinal images. Section 4 addresses the algorithm to detect significant points

on the vessel centerline. That algorithm is used to select the bifurcation points

existing in the image and measure the bifurcation angles as explained in Section

5. Section 6 shows the results of the methods presented in Sections 3, 4 and 5.

Finally, Section 7 closes the paper with conclusions and future lines of work.

2. Materials and Methods

2.1. Material

In this work, three different public databases were used: DRIVE [25], STARE

[11] and VARIA [26]. DRIVE and STARE databases were used in the validation

of the method for vessel centerline detection and all of them in the validation

of significant point identification.

DRIVE database is composed of 40 retinal images (565 x 584 pixels) belong-

ing to diabetic subjects. For each image, a mask image that delineates the field
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of view is provided as well as manual segmentations of the blood vessels. STARE

database is a set of 20 images (700 x 605 pixels) along with two hand-labelled

vessel network provided by different experts. VARIA contains 233 images, from

139 different individuals, with a resolution of 768 x 584 pixels.

2.2. Morphological operators

Mathematical morphology is a non-linear image processing methodology

based on minimum and maximum operations, which can be used to extract

relevant structures of an image f [27]. This is achieved by probing the image

with another known shape B called structuring element (SE). The result of the

single operation also depends on the choice of B. The two basic morphological

operators are: dilation, δB(f), and erosion, εB(f). Their purpose is to expand

light or dark regions, respectively, according to the size and shape of the SE.

Those elementary operations can be combined to obtain a set of basic filters:

opening, γB(f), and closing, ϕB(f). Light or dark structures are respectively

filtered out from the image by these operators regarding the SE chosen.

The method proposed in this paper for vessel centerline detection applies

these basic filters directly, or uses them to derive more complex operators, such

as:

• Dual top-hat transformation, ρB(f) = ϕB(f) − f , is used to extract con-

trasted dark components with respect to the background.

• Close-hole operator fills all holes in an image f that do not touch a

boundary image. For a grey-scale image, it is considered a hole any

set of connected points surrounded by connected components of value

strictly greater than the hole values. This operator is defined as ψch(f) =

[γrec(f c, f∂)]c, where γrec(g, f) is the reconstruction by dilation of an im-

age f (marker) which is contained within an image g (reference), f c is the

complement image (i.e., the negative) and f∂ the image boundary.

• Reconstruction by dilation, γrec(g, f) = δ
(i)
g (f), is the successive geodesic

dilation of f regarding g up to idempotence, so that δ
(i)
g (f) represents the
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geodesic dilation and δ
(i)
g (f) = δ

(i+1)
g (f). The geodesic dilation, δ

(i)
g (f) =

δ
(1)
g δ

(i−1)
g (f), is the iterative unitary dilation of f regarding g, being

δ
(1)
g (f) = δB(f) ∧ g.

2.3. Stochastic watershed transformation

Watershed transformation is a segmentation technique for gray-scale images

[28]. This algorithm is a powerful segmentation tool whenever the minima of

the image represent the objects of interest and the maxima are the separation

boundaries between objects. Due to this fact, the input image of this method

is usually a gradient image %(f). However, one problem of this technique is the

over-segmentation, which is caused by the existence of numerous local minima

in the image normally due to the presence of noise. One solution to this problem

is using marker-controlled watershed, WS(%)fmrk , in which the markers fmrk

artificially impose the minima of the input image. Nevertheless the controversial

issue consists in determining fmrk for each region of interest. Note that the

use of a limited number of markers along with the complex morphology of the

retinal vascular network can also cause that some parts of it are not detected

(sub-segmentation). Therefore, the choice of the correct markers is crucial for

the effectiveness and robustness of the algorithm.

The stochastic watershed is used to solve the sub-segmentation conflict [29].

In this transformation, a given number M of marker-controlled-watershed re-

alizations are performed selecting N random markers to estimate a probability

density function (pdf) of image contours and filter out non significant fluctua-

tions. The results of the different realizations are averaged by Parzen window

method [30]. Obtaining a pdf of the contours of the watershed regions facilitates

the final segmentation, providing robustness and reliability since the arbitrari-

ness in choosing the markers is avoided. Afterwards, it is necessary to perform

a last marker-controlled watershed on the pdf obtained to obtain a final re-

sult. This type of watershed works better than other marker-based watershed

transformations used previously in the literature.
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2.4. Hit-or-miss transformation

Hit-or-miss transformation (HMT) is a morphological operator used for de-

tecting specific patterns in a binary image [31]. Therefore, it can be applied to

detect the significant points on a skeleton image. This is achieved by probing

the image with a specific set of known shape (structuring element or SE). The

structuring element employed in this operation is called composite structuring

element since it contains two basic SE. The first one, denoted by BFG, defines

the set of pixels that should match the foreground (positive pixel values) while

the second one, denoted by BBG, defines the set of pixels that should match the

background (zero pixel values). By definition, BFG and BBG share the same

origin and are disjoint sets, i.e., BFG ∩ BBG = 0. Depending on whether the

origin belongs to BFG or BBG the HMT extracts foreground or background

pixels [27]. Figure 1 depicts a composite structuring element B = (BFG, BBG)

where BFG is denoted by 1’s, BBG by 0’s and the rest of values are ignored. In

this example, the HMT would detect the pixels with a neighbor on the left but

that up, down and to the right did not have any. The value of the left diagonals

does not matter, it could be 0 or 1.

0 0

1 1 0

0 0

B

=

0 0 0

1 1 0

0 0 0

BFG

+

0 1 1

0 0 1

0 1 1

BBG

Figure 1: Example of a composite structuring element.

The HMT of a set X by a composite structuring element B = (BFG, BBG)

can be written in terms of an intersection of two morphological erosions [27]:

HTMB(X) = εBFG(X) ∩ εBBG(Xc), (1)

where Xc is the complement set of X (i.e., the negative).
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3. Skeleton extraction

In general, the detection of retinal vascular network is necessary before an-

alyzing vessel features. The most common approach in the literature is a first

stage of vessel segmentation, then the skeletonization of the detected vessels and

finally the analysis of different features on the vascular skeleton such as vessel

calibers, significant points or bifurcation angles. The major drawback of this

approach is the dependence of the different stages on the previous ones in addi-

tion to an increase of computational cost. Based on these facts, this section is

focused on obtaining the retinal skeleton in a direct way avoiding the segmenta-

tion stage. Its goal is to reduce the number of necessary steps in the processing

of the fundus image. As a consequence, this would also reduce the dependency

of previous stages. Specifically, the method proposed for this purpose is mainly

based on mathematical morphology along with curvature evaluation. Two main

steps are involved: in the first step, the principal curvature is calculated on the

retinal image. In the second step, the stochastic watershed transformation is

applied to extract the vascular skeleton. The main stages are included in the

flowchart shown in Figure 2.

Enhanced 
Green 

Component

Opening 
Operator

Dual Top-Hat 
Filtering

Principal 
Curvature

Stochastic 
Watershed

Frontier 
Extraction

Thresholding Pruning ProcessX

Figure 2: Flowchart for skeleton extraction.

Although fundus images are RGB format, the present work is drawn on

monochrome images obtained from the green component extraction because

this band provides improved visibility of the blood vessels. Moreover, this im-

age is enhanced such that 1% of data is saturated at low and high intensities

(Figure 3(a)). Then, a small opening, using a disc of radius 1 as SE (B1), is

performed on the enhanced green component image to fill in any gaps in vessels

that could provoke subsequent errors, for example due to brighter zones within
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arteries. Next, a dual top-hat, with a SE larger than the widest vessel (B2), is

applied with the goal of extracting all of them and eliminating structures with

high gradient that are not vessels, as occurs in the optic disc (Figure 3(b)). Af-

terwards, with the aim of highlighting the vessels on the background, principal

curvature is calculated as the maximum eigenvalue of the Hessian matrix H [9]:

H =

 ∂xxf ∂xyf

∂yxf ∂yyf

 , (2)

where ∂ijf represents the second directional derivatives of an image f(x, y). The

Hessian matrix is calculated at different scales (s = {0, 2, 8, 14}) by convolving

the original image f(x, y) with a Gaussian kernel G of variance s2,

fs(x, y; s) = f(x, y) ∗G(x, y; s) = f(x, y) ∗ 1

2πs2
e−

x2+y2

2s2 . (3)

The resulting image is shown in Figure 3(c).

If the principal curvature is directly calculated on the enhanced image, all

structures with high curvature are highlighted, not only the vessels. The optic

disk border has also high curvature but it should not be detected. This is a typi-

cal problem that occurs in most edge detection methods for vessel segmentation

that it is avoided with the previous dual top-hat filtering.

Then, the principal curvature fκ is obtained by normalizing each λmax by

2s and computing the local maxima over scales:

fκ = max
s

(
λmax(s)

2s

)
. (4)

Finally, stochastic watershed is applied to the curvature image. As explained

above, this transformation uses random markers to build a probability density

function (pdf ) of contours (Figure 3(d)). In particular, 10 marker-controlled-

watershed realizations were performed selecting 300 random markers in each

realization. Then, pdf is segmented by a last marker-controlled watershed.

The vascular skeleton is part of the frontiers of the resultant regions as can be

observed in Figure 3(e).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Skeleton extraction process: (a) Enhanced green component obtained from the

original fundus image, (b) Dual top-hat filtering, (c) Principal curvature, (d) Probability

density function (pdf) of contours obtained with 10 simulations and 300 random markers, (e)

Watershed frontiers, (f) Product between the principal curvature and the watershed frontiers,

(g) Thresholding (t = 0.05), (h) Pruning and (i) Final result. The images (b)-(h) have been

inverted for better visualization.

In that case, both for pdf computing and for last marker-controlled water-

shed, random markers are combined with some controlled markers. This is due

to the morphology of the vascular network which contains many of vessel cross-

ings. In addition to the random markers, it is forced that there is one marker at

least in the area delimited by the crossing of two vessels (controlled markers),
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so that the final markers are directly the union of both (random and controlled

markers). This methodology avoids that the vessels close to some crossing are

not detected by the watershed transformation. The crossing areas are deter-

mined by means of the residue of the close-hole operator on fκ and then one

or more markers are chosen randomly within these areas giving place to the

controlled markers. This problem is illustrated in Figure 4, where only a region

of interest is shown for better visualization.

(a) (b) (c)

(d) (e) (f)

Figure 4: Stochastic watershed on the crossing of two vessels: (a) Enhanced green component,

(b) Principal curvature (fκ), (c) Residue of close-hole operator, (d) Random (blue N) and two

controlled (green H) markers, (e) Result of the stochastic watershed using only the random

markers shown in blue and (f) Result of the stochastic watershed combining random and

controlled markers (blue and green).

In order to discriminate which frontiers are significant and which ones are

not and should be filtered out, the frontiers are multiplied by fκ (Figure 3(f))

and then are thresholded (Figure 3(g)) using a fixed threshold, experimentally

t = 0.05. Once the skeleton is obtained, a pruning process is applied to remove

possible spurs giving rise to the final result of the presented method (Figure

3(h) and 3(i)).

The implemented pruning process is characterized by removing spur branches

but without altering the main branches. Only the branches whose size is less

than a threshold (nmax = 10) are removed while the other are kept intact [32].

nmax value must be fixed based on image resolution. The pruning method is

11



based on defining a function Υ(S) which assigns to each point of the skeleton

S the number n of unitary erosions needed to remove it from S. The value of

the function Υ(S) is nmax + 1 for the points x ∈ S which are not removed after

nmax unitary erosions. Then, making use of the function Υ(S), it is possible to

differentiate between the secondary and the main skeleton branches. A branch

is considered as secondary if Υ(S(x1) − Υ(S(x2)) > 1, being x1 and x2 two

adjacent points of the skeleton branch. Afterwards, the secondary branches are

disconnected from the main branches and a reconstruction by dilation is applied

using this image, i.e. the skeleton with the secondary branches disconnected, as

reference and being the marker image that defined by Equation 5.

mrk =

 1 if Υ(S(x))) = nmax + 1

0 otherwise
(5)

This operation manages to reconstruct the original skeleton but without spur

branches. Figure 5 shows an example of the main pruning steps and the differ-

ence between the proposed pruning and the conventional.

Algorithm 1 summarizes the steps of the vessel centerline extraction method

and Algorithm 2 the steps of the pruning process.

4. Significant point determination

As mentioned before, in the vascular skeleton there are three types of sig-

nificant points: terminal, bifurcation and crossing points. All of them must be

detected due to their interest to characterize the relations between the differ-

ent branches of the skeleton, i.e., relations between the parent and daughter

branches.

4.1. Terminal and bifurcation points

The hit-or-miss transformation (HMT) can be directly applied to the vas-

cular skeleton to locate terminal and bifurcation points using the different SE

shown in Figure 6 and Figure 7. It must be remembered that BFG is denoted by

1’s and BBG by 0’s. Note that these SE must be used in all their orientations,
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(a) (b)

(c) (d)

Figure 5: Pruning process: (a) Original skeleton, (b) Skeleton with the secondary branches

disconnected, (c) Pruned skeleton by the proposed method and (d) Result of the conventional

pruning (marked in red the pixels that are removed by the conventional pruning and are

remained by the proposed pruning process). It can be observed that the main advantage of

the proposed pruning is that only the spur branches are removed while the rest are kept intact.

The conventional pruning removes a specific number of pixels for every branch (without taking

into account its relevance).

one each 90◦, so four hit-or-miss iterations are required for each SE, i.e., a total

of 8 and 16 SEs are used to detect terminal and bifurcation points, respectively.

0 0

1 1 0

0 0

B11

1 0 0

0 1 0

0 0 0

B12

Figure 6: Structuring elements used for detecting terminal points.

The choice of the SE shape is related to the topology of the point in question.

For example, on the one hand, any terminal point will have only one neighbor

and it will be rounded by background pixels and, on the other hand, a bifurcation

point will have three neighbors located in particular positions. This can be

appreciated clearly if the SE defined in Figure 7 are observed.
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Algorithm 1: Vessel centerline extraction

Data: Original RGB fundus image f = (fR, fG, fB), Scale vector

s = [0, 2, 8, 14], Gaussian kernel G

Result: Vessel centerline, fout

initialization: B1,B2 (as main text) ;

fin ← fG Green component selection ;

fenh ← Γ(fin) Image Enhancement ;

fop ← γB1
(fenh) Opening ;

fdth ← ρB2
(fop) Dual top-hat ;

Principal curvature:

for i← 1 to length(s) do

fsi ← fdth ⊗G(si) ;

Hsi ← H(fsi) ;

λmaxsi ← max{eig(Hsi)} ;

λ′maxsi
←

λmaxsi
2si

;

end

fκ ← maxs

(
λ′maxs

)
;

fws ←WS(fκ)fmrk Stochastic Watershed with random and controlled

markers ;

fth ← (fκ × fws) < t Thresholding ;

fout ← Υ(fth) Pruning ;

Retinal skeleton is an one-pixel-thick structure fully 8-connected. However,

when the significant points belonging to the skeleton are being looked for, it is

wanted to avoid the multiple paths that are inherent in this type of connectivity.

Therefore, before point detection, it is necessary to convert the skeleton from

8-connectivity to m-connectivity so that the multiple paths are removed [31].

A pixel p has four horizontal and vertical neighbors N4(p) and four diagonal

neighbors ND(p). All these neighbors are called the 8-neighbors of p, denoted
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Algorithm 2: Pruning process

Data: Image of the retinal skeleton with spur branches S

Result: Pruned skeleton S′

initialization: nmax = 10 (Size of the branches to be removed), B

(Unitary structuring element), N8 (8-neighborhood) ;

for x← 1 to length(S) do

if (x ∈ εB(n−1)(S(x)) & (x /∈ εB(n)(S(x))) with n ≤ nmax then

Υ(x) = n;

else if (x ∈ εB(nmax)(S(x))) then Υ(x) = nmax + 1 ;

else if (x /∈ (S(x))) then Υ(x) = 0 ;

end

R = S Reference image ;

for x← 1 to length(S) do

if Υ(x)−Υ(N8(x)N8∃S) > 1 then R(x) = 0 Disconnection of

secondary branches ;

if Υ(x) == (nmax + 1) then mrk(x) = 1 Marker image ;

else mrk(x) = 0;

end

S′ = γrec(R,mrk) Reconstruction by dilation ;

by N8(p). Two binary pixels p and q are 8-connected if q is in the set N8(p) but

they are m-connected if

1. q is in N4(p), or

2. q is in ND(p) and N4(p) ∩N4(q) = 0.

The difference between 8-connectivity and m-connectivity can be appreci-

ated in Figure 8. This conversion is necessary because the central pixel involves

that there is not only a possible path in the skeleton therefore the detection of

significant points and any tracking process performed later could be erroneous.

In the case of the 8-connectivity, the multiple paths are manifested in four
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1

1 1

1

B21

1

0 1

1 0 1

B22

1

1

1 0 1

B23

1

1 1

1

B24

Figure 7: Structuring elements used for detecting bifurcation points.

(a) (b)

Figure 8: 8-connectivity to m-connectivity conversion (a) 8-connected skeleton and (b) m-

connected skeleton.

basic patterns which are shown in Figure 9. It can be observed that the case

shown in Figure 8 corresponds to the patterns B32
and B33

.

0 1

1 1

0

B31

1 0

1 1

0

B32

0

1 1

1 0

B33

0

1 1

0 1

B34

Figure 9: Structuring elements used to convert an 8-connected skeleton to m-connectivity.

The HMT allows to detect all these patterns. Then, the central pixels must

be changed to 0 for eliminating the multiple paths. The conversion from 8 to

m-connectivity can be performed through a basic sequence of morphological

steps:

Θ1(X,B31
) = X −HMTB31

(X) = X ∩
[
HMTB31

(X)
]c

Θ2(Θ1,B32) = Θ1 −HMTB32
(Y1) = Y1 ∩

[
HMTB32

(Y1)
]c

Θ3(Θ2,B33) = Θ2 −HMTB33
(Y2) = Y2 ∩

[
HMTB33

(Y2)
]c

Θ4(Θ3,B34
) = Θ3 −HMTB34

(Y3) = Y3 ∩
[
HMTB34

(Y3)
]c

Θ(X,B3) = Θ4,

(6)

where X is the input image that contains the 8-connected skeleton and Θ the
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output image with the corresponding skeleton with m-connectivity.

4.2. Crossing points

Due to the fact that the intersections between different branches of the vas-

cular tree are formed, usually, by a set of pixels, most crossing points cannot

be detected by pattern recognition on the skeleton, i.e., through the hit-or-miss

transformation. It can only be applied in simple crossing point detection using

the SE shown in Figure 10.

0 1 0

1 1 1

0 1 0

B41

1 0 1

0 1 0

1 0 1

B42

Figure 10: Structuring elements used for detecting simple crossing points.

However, practically most crossing points, if not all, are not simple, or in

other words, the branches do not intersect in only one pixel and several points

can belong to the same intersection. This provokes that the extremes of the in-

tersection are considered as bifurcation because both of them have three neigh-

bors and accomplishes some of the characteristic patterns of the bifurcation

points. Figure 11 represents the different types of crossing points. The light

gray branch intersects with other two branches, drawn in dark gray, giving rise

to a simple (X) and a complex (O) crossing point marked in black.

Most works of the state-of-the-art consider that the vessel crossing points are

two bifurcation points very close to each other. So, a fixed-size circular window

is centered on the candidate bifurcations and if there exist four intersections

between the window and the skeleton, the point is marked as a crossing. The

problem of this approach is that the crossing point detection depends on a large

degree on the window size. If the size is too small, the crossings are not detected

and if the size is too big other vessels not belonging to this crossing can intersect

with the window. Moreover, it must be taken into account that the size of the

intersections varies from one case to another and it is also dependent on the

image resolution.
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o

o

x

o

Figure 11: Different types of crossing points: simple (X) and complex (O).

Retinal vessels have their origin in the optic disk head. From this center,

the vessels bifurcate and constitute the retinal vascular tree. It is common that

arteries and veins intersect in some occasion and generate the crossing points

under consideration (Figure 12(a)). This means that when they intersect, as the

vessels have a common origin, generate a sort of close loop which will be useful

to differentiate if one point is a crossing point or not (Figure 12(b)). Based on

this idea, a new algorithm is proposed to analyze all points detected initially as

a bifurcation in order to discriminate those that are really crossing points.

(a) (b)

Figure 12: Vessel intersection: (a) Intersection between two vessels and (b) Close loop formed

by an intersection.
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First, a bifurcation point is considered as candidate to be a crossing point if

when a circular window is centered on this point, there are four or more inter-

sections between the skeleton and this window (W ). The window radius is three

times the average diameter of the vessels. This size is established empirically.

Then, if the candidate point is part of a close loop generated by the skeleton

branches, the closest candidate to crossing point is looked for, and if it is di-

rectly connected with the previous point and is not part of the same loop, both

of them are established as crossing points. Figure 13 represents this process.

Terminal and bifurcation points detected by the HMT are marked in red and

green, respectively (Figure 13(a)). In Figure 13(b) the candidates to crossing

points are highlighted in yellow. The close loops that contain some candidate

point are drawn in Figure 13(c). Figure 13(d) shows the final result with the

crossing points detected in white. Note that the two points identified in green

at the bottom left of the Figure 13(d) are not crossing points but bifurcations

because they do not accomplish the condition of belonging to a different loop.

Both of them belong to the close loop marked in orange in Figure 13(c). To

be considered as crossing, two candidates should be connected and belong to a

different loop.

With this type of analysis, the more common intersection extremes are com-

pletely identified. In addition, it should be taken into account that the pixels

between these points are also part of the same intersection.

Algorithm 3 summarizes the complete process of the detection of the signif-

icant points on the retinal vascular skeleton. B1,B2,B3,B4 are the composite

structuring elements defined in Figures 6, 7, 9 and 10.

5. Use of the significant points: Measurement of bifurcation angles

The significant points of the retinal vascular tree can be used as biomet-

ric features, landmarks for registration or keypoints in tracking processes and

branching patterns. In particular, this section presents an algorithm that makes

use of the significant points detected as detailed in Section 4 to measure the bi-
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(a) (b)

(c) (d)

Figure 13: Automatic detection of common intersections: (a) Significant points detected by

means of HMT (terminal points in red and bifurcation points in green), (b) Crossing point

candidates, (c) Close loops formed by branches that contain some candidate point and (d)

Crossing points automatically detected (white).

furcation angles.

The algorithm proposed to carry out this measurement is based on the esti-

mation of the main orientations of the image gradient at each bifurcation point

previously detected. The estimation of the multiple main orientations is per-

formed as the flowchart depicted in Figure 14. This approach differs from [33],

where the multiple main orientations are estimated by analysing a block of the

image, whereas in this method the multiple orientations are estimated at each

pixel.

Let f(x) : E → R be a gray-level image, where the support space is E ⊂ Z2

and the pixel coordinates are x = (x, y). Let us define g(x) as the absolute

value of the gradient of f(x), i.e.,

g(x) = ‖∇f(x)‖ =

√(
∂f(x,y)
∂x

)2
+
(
∂f(x,y)
∂y

)2
. (7)

The directional opening of g(x) by a linear (symmetric) structuring element
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Algorithm 3: Significant point detection

Data: Image of the retinal skeleton f , Circular window W

Result: Binary image of the terminal points fTP , Binary image of the

bifurcation points fBP , Binary image of the crossing points fCP

initialization: B1,B2,B3,B4 (as main text) ;

fm ← ΘB3(f) m-connectivity conversion ;

fTP ← HMTB1(fm) terminal point detection ;

fBP ← HMTB2(fm) bifurcation point detection ;

fCP1
← HMTB4(fm) simple crossing point detection ;

complex crossing point detection:

for i← 1 to
∑

(fBP ) do

if
∑

(WBPi ∗ fm) ≥ 4 then

if fBPi ∈ close loop then

fBPj ← argmin(dist(fBPi , fBP )) ;

if (fBPi is connected with fBPj ) & (loop(fBPi) 6= loop(fBPj ))

then

fCP2i
= fBPi + fBPj ;

end

end

end

end

fCP = fCP1 + fCP2 crossing point detection ;

(SE) of length l and direction θ is defined as the directional erosion of g by Lθ,l

followed by the directional dilation with the same SE [34]:

γLθ,l(g)(x) = δLθ,l [εLθ,l(g)] (x), (8)
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Figure 14: Flowchart of the multiple orientation estimation method.

where the directional erosion and dilation are respectively

εLθ,l(f)(x) =
∧

h∈Lθ,l(x)

{f(x + h)} , (9)

δLθ,l(f)(x) =
∨

h∈Lθ,l(x)

{f(x− h)} . (10)

The proposed orientation model is based on a decomposition of the gradient

information by families of linear openings, {γLθi,l}i∈I , according to a particular

discretization of the orientation space {θi}i∈I .

In the next step of the proposed method, a filtering is performed at each

one of the directional openings (depicted as Hσ in Figure 14). The filtering

diffuses the orientation information and avoids angle mismatches due to noise.

The kernel Hσ is the sampling of the gaussian low-pass filter

Hσ(ω1, ω2) = e−
σ2(ω2

1+ω2
2)

2 , (11)

where σ is the spatial standard deviation of the filter. More details of the

method can be found in [35].

Once the directional openings have been filtered, the directional signature

at pixel x is defined as

sx;l(i) = g̃θi(x). (12)

Then, sx;l(i) is interpolated using cubic b-splines and its maxima correspond
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to the multiple orientations existing at pixel x. Finally, collecting all the orien-

tations estimated at all the pixels in the image provides the multidimensional

vector field ~θ(x), see Figure 15.

(a) (b)

Figure 15: Orientation vector field: (a) Green component of the original fundus image, (b)

close-up of the image with its estimated multiple orientation vector field.

The bifurcation angles are calculated by performing the difference between

the orientation vectors of each branch around the bifurcation points previously

detected. An interior point is chosen as representative of each branch, and its

orientation vector will define the orientation of the branch at this pixel. To

obtain the interior points, a circular window is placed at each bifurcation and

the intersection between the skeleton of the branch and the window is selected.

Note that the choice of this pixel is not critical since the orientation vector

field varies slowly inside the vessel. Due to the discretization of the orientation

space of the multiple orientation method, the orientation is estimated using

the ASGVF method [34] which achieves a higher angular resolution than the

approach introduced in [33]. Since the ASGVF method only estimates the

orientation and it is defined between −90◦ and 90◦ degrees, the direction of each

vector can be obtained taking into account the location of the representative

pixel of each branch in relation to the centre of the bifurcation. Considering

the quadrant of the representative pixel, the direction of the vector can be

obtained, providing a vector field which is defined between 0◦ and 360◦ degrees.

Finally, after the conversion of the orientation space, it is possible to calculate

the angular difference between the branches contained in the window and thus
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to obtain a measure of the bifurcation angle.

6. Results

6.1. Skeleton

The validation of the skeleton method was carried out on DRIVE [25] and

STARE [11] databases. Although, in both databases, manual segmentations

are included, these segmentations correspond to the complete vasculature not

to the vessel centerline which is the goal of this work. For that reason, the

homotopic skeleton [27] associated to the hand segmentations was obtained for

future comparisons. In Figure 16, the results on some representative images

from DRIVE and STARE databases can be observed.

(a) (b)

(c) (d)

Figure 16: Skeleton results of the proposed method: (a,c) DRIVE images (‘19 test’ and

‘23 training’) and (b,d) STARE images (‘im0255’ and ‘im0001’).

The proposed method was compared with other state-of-the-art methods in

two different ways. One approach is based on comparing the results of this work
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with methods that firstly segment the vessels and then perform a skeletization

process and the other comparison is performed with algorithms that obtain the

skeleton directly.

On the one hand, regarding the methods that require a previous segmen-

tation, the presented algorithm was compared with two methods previously

published. The first compared method, proposed by Martinez et al. [9], uses

the local maxima over scales of the magnitude of the gradient and the maximum

principal curvature of the Hessian tensor in a multiple pass region growing pro-

cedure. The other method analysed in the comparison is the work of Morales et

al. [7]. As the proposed method, it is based on mathematical morphology and

curvature evaluation although the morphological operations used are different

as well as the obtained result. In the same way as explained above, the homo-

topic skeleton was performed after the segmentation process in both cases. On

the other hand, as for the methods that obtain directly the retinal vessel center-

line, the analysis was focused on two approaches proposed by Walter and Klein

method [23] and Bessaid et al. method [24] which are based also on the water-

shed transformation. In Figures 17 and 18, the results of the proposed method

on two representative cases extracted from both databases are compared with

the results of the state-of-the-art methods mentioned previously.

Avoiding complete vessel segmentation supposes an improvement in the au-

tomatic fundus processing since the skeleton is not dependent of a previous stage

and the computational cost is reduced by decreasing the number of required

steps. Apart from this fact, it must be stressed that an important advantage

of the proposed method is its performance in pathological images or with large

changes in illumination, as observed in Figure 17 and 18. In those cases, the

algorithm presented in this paper works properly and reduces over-segmentation

problems which can be found in methods based on a previous segmentation as

[9, 7]. With regard to other methods that obtain the skeleton in a direct way and

use the watershed transformation instead of the stochastic watershed [23, 24],

the proposed work achieves a more robust detection and decreases the number

of spurs. Despite good results, it must be mentioned that the main disadvantage
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(a) (b) (c)

(d) (e) (f)

Figure 17: Comparison between different methods on DRIVE image (‘23 training’): (a)

Ground-truth skeleton, (b) Proposed method, (c) Martinez et al. method [9], (d) Morales

et al. method [7], (e) Bessaid et al. method [24] and (f) Walter and Klein method [23].

of the method is that some vessels can lose their continuity if some part of them

are not detected and it should be corrected in a post-processing stage.

6.2. Significant points

The validation of the method was carried out on a set of images randomly

extracted from VARIA [26], DRIVE [25] and STARE [11] databases. Our results

were compared with those provided by the method presented by Calvo et al.

[8]. To the best of the author’s knowledge, it was the state-of-the-art work

that provides the best results in this issue and overcames the problems of other

works of the literature. In Figure 19, the significant points detected on some

representative images of the database can be observed.

The performance of both methods was evaluated based on four concepts: sen-
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(a) (b) (c)

(d) (e) (f)

Figure 18: Comparison between different methods on STARE image (‘im0001’): (a) Ground-

truth skeleton, (b) Proposed method, (c) Martinez et al. method [9], (d) Morales et al.

method [7], (e) Bessaid et al. method [24] and (f) Walter and Klein method [23].

sitivity or true positive rate (TPR), precision or positive predictive value (PPV),

specificity or true negative rate (TNR) and negative predictive value (NPV).

Sensitivity and specificity measure the proportion of positives/negatives that are

correctly classified (TPR = TP
TP+FN ;TNR = TN

TN+FP ), PPV and NPV assess

the quality of the positive/negative results (PPV = TP
TP+FP ;NPV = TN

TN+FN ).

TP , FP , TN and FN are the true positives, false positives, true negatives and

false negatives, respectively. Table 1 and Table 2 detail the values of these pa-

rameters for the bifurcation and crossing point detection of the images shown

in Figure 19. Table 3 gathers the results of the same analysis but consider-

ing at the same time bifurcations and crossovers. Note that, in the validation,

only one crossing point is counted for each intersection although if the crossing

between two vessels is large enough, the start and end point of the intersec-

tion can be observed in the image. Table 4 summarizes the averaged results of

the previous tables. From a general point of view, the results of the proposed
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 19: Bifurcation and crossing point detection on images belonging to VARIA, DRIVE

and STARE databases: (a-h) Regions of interest of different images. Top row: results provided

by the proposed method. Bottom row: results provided by the method presented in [8].

Bifurcation points are marked in green and crossovers in red.
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method are better than the method of Calvo et al. achieving a TPR = 1.000

and a PPV = 0.908 for global point detection, i.e. considering bifurcations and

crossovers. To point out that the proposed method provides balanced results in

terms of TPR, PPV, TNR and NPV for bifurcation and crossing point detec-

tion. However, the method of Calvo et al. has high sensitivity (TPR) but low

specificity (TNR) for crossing detection and vice versa for bifurcations. This is

due to the fact that the method of Calvo et al. detects numerous false positives

and negatives in crossing and bifurcation detection, respectively.

Table 1: Results for bifurcation point detection: true positives (TP), true negative (TN),

false positives (FP), false negatives (FN), true positive rate (TPR), positive predictive value

(PPV), true negative rate (TNR) and negative predictive value (NPV).

Figure TP TN FN FP TPR PPV TNR NPV

P
r
o
p
o
s
e
d

m
e
t
h
o
d

19(a) 5 1 0 0 1.000 1.000 1.000 1.000

19(b) 4 1 0 0 1.000 1.000 1.000 1.000

19(c) 2 2 0 0 1.000 1.000 1.000 1.000

19(d) 3 0 0 1 1.000 0.750 0.000 -

19(e) 3 0 0 1 1.000 0.750 0.000 -

19(f) 2 1 2 0 0.500 1.000 1.000 0.333

19(g) 3 1 0 0 1.000 1.000 1.000 1.000

19(h) 4 1 0 0 1.000 1.000 1.000 1.000

19(i) 3 1 0 0 1.000 1.000 1.000 1.000

19(j) 3 0 0 0 1.000 1.000 - -

19(k) 5 2 0 0 1.000 1.000 1.000 1.000

19(l) 6 0 0 1 1.000 0.857 0.000 -

19(m) 3 1 0 1 1.000 0.750 0.500 1.000

19(n) 4 1 0 0 1.000 1.000 1.000 1.000

19(o) 4 3 2 0 0.667 1.000 1.000 0.600

19(p) 5 0 0 0 1.000 1.000 - -

C
a
lv

o
e
t
a
l.

[8
]

19(a) 1 1 4 0 0.200 1.000 1.000 0.200

19(b) 2 1 2 0 0.500 1.000 1.000 0.333

19(c) 0 2 2 0 0.000 - 1.000 0.500

19(d) 1 1 2 0 0.333 1.000 1.000 0.333

19(e) 1 1 2 0 0.333 1.000 1.000 0.333

19(f) 1 1 3 0 0.250 1.000 1.000 0.250

19(g) 1 1 2 0 0.333 1.000 1.000 0.333

19(h) 1 1 3 0 0.250 1.000 1.000 0.250

19(i) 1 1 2 0 0.333 1.000 1.000 0.333

19(j) 1 0 2 0 0.333 1.000 - 0.000

19(k) 1 2 4 0 1.000 1.000 1.000 0.333

19(l) 2 1 4 0 0.333 1.000 1.000 0.200

19(m) 2 2 1 0 0.667 1.000 1.000 0.667

19(n) 0 1 4 0 0.000 - 1.000 0.200

19(o) 0 3 6 0 0.000 - 1.000 0.333

19(p) 0 0 5 0 1.000 1.000 - 0.000
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Table 2: Results for crossing point detection: true positives (TP), true negative (TN), false

positives (FP), false negatives (FN), true positive rate (TPR), positive predictive value (PPV),

true negative rate (TNR) and negative predictive value (NPV).

Figure TP TN FN FP TPR PPV TNR NPV
P
r
o
p
o
s
e
d

m
e
t
h
o
d

19(a) 1 5 0 0 1.000 1.000 1.000 1.000

19(b) 1 4 0 0 1.000 1.000 1.000 1.000

19(c) 2 2 0 0 1.000 1.000 1.000 1.000

19(d) 0 3 1 0 0.000 - 1.000 0.750

19(e) 0 3 1 0 0.000 - 1.000 0.750

19(f) 1 2 0 2 1.000 0.333 0.500 1.000

19(g) 1 3 0 0 1.000 1.000 1.000 1.000

19(h) 1 4 0 0 1.000 1.000 1.000 1.000

19(i) 1 3 0 0 1.000 1.000 1.000 1.000

19(j) 0 3 0 0 - - 1.000 1.000

19(k) 2 5 0 0 1.000 1.000 1.000 1.000

19(l) 0 6 1 0 0.000 - 1.000 0.857

19(m) 1 3 1 0 0.500 1.000 1.000 0.750

19(n) 1 4 0 0 1.000 1.000 1.000 1.000

19(o) 3 4 0 2 1.000 0.600 0.667 1.000

19(p) 0 5 0 0 - - 1.000 1.000

C
a
lv

o
e
t
a
l.

[8
]

19(a) 1 2 0 3 1.000 0.250 0.400 1.000

19(b) 1 2 0 2 1.000 0.333 0.500 1.000

19(c) 2 0 0 2 1.000 0.500 0.000 -

19(d) 1 2 0 1 1.000 0.500 0.667 1.000

19(e) 1 3 0 0 1.000 1.000 1.000 1.000

19(f) 1 1 0 3 1.000 0.250 0.250 1.000

19(g) 1 1 0 2 1.000 0.333 0.333 1.000

19(h) 1 2 0 2 1.000 0.333 0.500 1.000

19(i) 1 1 0 2 1.000 0.333 0.333 1.000

19(j) 0 1 0 2 - 0.000 0.333 1.000

19(k) 2 1 0 4 1.000 0.333 0.200 1.000

19(l) 1 4 0 2 1.000 0.333 0.667 1.000

19(m) 2 2 0 1 1.000 0.667 0.667 1.000

19(n) 1 2 0 2 1.000 0.333 0.500 1.000

19(o) 3 1 0 5 1.000 0.375 0.167 1.000

19(p) 0 2 0 3 - - 0.400 1.000

6.3. Bifurcation angles

The performance of the method proposed for bifurcation angle computation

was evaluated on images belonging to DRIVE database [25]. In Figure 20, the

angles measured on two representative images of this database can be observed.

Only a region of interest of these images is shown for better visualization.
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Table 3: Results for global significant point detection: true positives (TP), false positives

(FP), false negatives (FN), true positive rate (TPR) and positive predictive value (PPV).

Figure TP FN FP TPR PPV

P
r
o
p
o
s
e
d

m
e
t
h
o
d

19(a) 6 0 0 1.000 1.000

19(b) 5 0 0 1.000 1.000

19(c) 4 0 0 1.000 1.000

19(d) 3 0 1 1.000 0.750

19(e) 3 0 1 1.000 0.750

19(f) 3 0 2 1.000 0.600

19(g) 4 0 0 1.000 1.000

19(h) 5 0 0 1.000 1.000

19(i) 4 0 0 1.000 1.000

19(j) 3 0 0 1.000 1.000

19(k) 7 0 0 1.000 1.000

19(l) 6 0 1 1.000 0.857

19(m) 4 0 1 1.000 0.800

19(n) 5 0 0 1.000 1.000

19(o) 7 0 2 1.000 0.778

19(p) 5 0 0 1.000 1.000

C
a
lv

o
e
t
a
l.

[8
]

19(a) 2 1 3 0.667 0.400

19(b) 3 0 2 1.000 0.600

19(c) 2 0 2 1.000 0.500

19(d) 2 1 1 0.667 0.667

19(e) 2 2 0 0.500 1.000

19(f) 2 0 3 1.000 0.400

19(g) 2 0 2 1.000 0.500

19(h) 2 1 2 0.667 0.500

19(i) 2 0 2 1.000 0.500

19(j) 1 0 2 1.000 0.333

19(k) 3 0 4 1.000 0.429

19(l) 3 2 2 0.600 0.600

19(m) 4 0 1 1.000 0.800

19(n) 1 2 2 0.333 0.333

19(o) 3 1 5 0.750 0.375

19(p) 0 2 3 0.000 0.000

Table 4: Averaged results for bifurcation, crossing and global point detection: true positive

rate (TPR), positive predictive value (PPV), true negative rate (TNR) and negative predictive

value (NPV).

Bifurcations Crossings Global

Method TPR PPV TNR NPV TPR PPV TNR NPV TPR PPV

Proposed 0.948 0.944 0.750 0.903 0.750 0.903 0.948 0.944 1.000 0.908

Calvo et al. [8] 0.367 1.000 1.000 0.288 1.000 0.392 0.432 1.000 0.761 0.496

The method was applied directly to the green component of the original

RGB image. The directional openings were performed using an oriented linear

structuring element of 7 pixels. This length comes from the trade-off between the

curvature of the vessels and the angular resolution of the structuring element (it
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(a) (b)

(c) (d) (e) (f) (g) (h)

Figure 20: Angles of the bifurcations with the ASGVF orientation vector field on two images

from DRIVE database. (a) A region of interest of the ‘19 test ’ image. (b) A region of interest

of the ‘40 training’ image. (c)-(e) Close up of selected bifurcations marked in red in (a).

(f)-(h) Close up of selected bifurcations marked in red in (b). The bright pixels inside the

vessels indicate at what points the value of the vector field were taken.

provides ∆θ = 15◦ and produces a filter bank with 12 branches). The low-pass

filtering of the directional openings is performed using σ=1. The parameters of

the orientation estimation were chosen to deal with the particular resolution of

DRIVE database (565× 584). However, the orientation estimation method can

be improved by considering a multiscale approach as described in [33]. There,

the estimation of the orientation properties is provided by directional openings

by line segments of variable length, which produce directional signatures for

various scales.

In this paper, two methods for the computation of bifurcation angles were

compared: the proposed method based on the orientation vector field and the

method described in [7]. The main difference is that [7] requires to fit the

branches of the skeleton by straight lines to measure the bifurcation angles.

Moreover, it needs to perform a tracking process of the branches that compose
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the retinal tree to distinguish between parent and daughter branches. After-

wards, the bifurcation angles are measured as the angles formed by the daugh-

ter branches of each bifurcation point. Specifically, the branches are fitted by

straight lines using least-squares in a circular window centred on these points.

The main drawback of this type of methods is its excessive dependence between

the skeleton pixels and the measured angle. Figure 21 shows the measured

angles provided by the method described in [7] on different expert hand-made

segmentations.

Comparing the results shown in Figure 21, it can be appreciated that the

measured angles can be quite different, reaching a maximum angle variation

on the same image of around 7% in the Figure 21(a) and around 6% in the

Figure 21(b). Note that the variation is due to the fact that the fitted line

of the branches depends directly on the skeleton pixels considered. Only the

change in one pixel of the skeleton can modify the fitted line and therefore the

calculated angle. The angles shown in the Figure 21(a) and 21(b) correspond

with the existing bifurcations within the red rectangles of the Figure 20(a) and

20(b) respectively. Since the method proposed in this paper is based on the

main orientations and avoids the linear fitting of the branches, the provided

measurements are much more accurate, stable and faithful to reality.

7. Conclusions

In this paper, a method for significant point detection of the retinal vascular

tree was presented. Bifurcation and crossover identification is a difficult task

due to the complexity of the vascular network. The most challenging part is the

correct identification of the crossing points. This work proposes the use of hit-or-

miss transformation (HTM) to detect terminal, bifurcation and simple crossing

points. However, this transformation does not allow to characterize complex

intersections, which are the most common in the vascular network. To deal

with this problem, a post-processing stage is carried out on the points detected

initially as bifurcations. The main idea to differentiate between a bifurcation
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(a) (b)

Figure 21: Bifurcation angles provided by the method described in [7] on the selected bifur-

cations of the Figure 20. This method is based on the skeletonization of a segmented (binary)

image. (a) Skeletonization of two different expert segmentations of the ‘19 test ’ image. (b)

Skeletonization of of two different expert segmentations of the ‘40 training’ image. Slight

differences in the skeleton cause large differences in the measured angles.

and a crossing point is that the crossing points belong to a sort of close loop

formed by the intersection of two vessels.

The significant points of the retinal network must be detected on the vessel

centerline. So, a method to determine the vascular skeleton on a fundus image

was also proposed. It is based on mathematical morphology and curvature eval-

uation and makes use of the stochastic watershed to extract the vessel centerline

in a direct way.

Then, the bifurcation points that were detected as the method presented

in the paper were used later to measure the bifurcation angles of the retinal

vascular tree through the multiple orientation vector field of each branch.

The performance of the method for significant retinal point detection was

compared with other work of the literature. Quantitative quality parameters in

point identification were calculated despite the difficulty in validation due to the

lack of public databases that include ground-truth points. The obtained results

demonstrate that our approach works properly for bifurcation and crossover de-

tection. Note that the method of Calvo et al. detected numerous false negatives
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and positives in the identification of the bifurcation and crossing points, respec-

tively. If the performance of the global significant point detection is considered,

our method detects more true positives and fewer false positives and negatives.

The algorithms presented for skeleton extraction and bifurcation angle mea-

surement were also validated achieving promising results.

As future work, a wider validation of the significant point method should

be performed. A ground truth of the significant points should be generated

to carried out this validation. If the ground truth was publicly available, the

comparison between methods would be facilitated.
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