UNIVERSIDAD POLITÉCNICA DE CARTAGENA

Escuela Técnica Superior de Ingeniería Industrial

Metodologías para el diseño óptimo de experimentos en tecnologías de seguridad alimentaria

TRABAJO FIN DE GRADO

GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Autor: Carmen María Ruiz Sáez
Director: María del Carmen Bueso Sánchez
Codirector: Alberto Garre Pérez
José Alberto Egea Larrosa

Cartagena, Septiembre 2018
Agradecimientos

En primer lugar quiero agradecer a José Alberto Egea Larrosa la oportunidad que me brindó, sin apenas dudarlo, para sacar a la luz este trabajo y por guíarme tan bien en los momentos de confusión. A Alberto Garre Pérez por la constante atención y paciencia conmigo programando y a Maria del Carmen Bueso Sánchez por aceptar ser mi directora de trabajo.

Agradecer también al Departamento de Ingeniería de los Alimentos y el Equipamiento Agrícola de la Escuela de Ingeniería de Agrónomos de la Universidad Politécnica de Cartagena por su colaboración en el proyecto.

En el terreno personal, quiero agradecer a mi familia el apoyo incondicional a lo largo de estos años. A mis padres, Pedro y Carmen, por permitirme alcanzar mis metas y por vivir conmigo cada paso hasta ellas. A mi hermana, Almudena, por la fuerza y los consejos que me ha dado en este largo camino, por enseñarme que si se quiere se puede. Y también a mi cuñado, Julio, por estar ahí cada vez que lo he necesitado.

Muchas gracias a todos
Índice
1. Introducción .. 4
 1.1. Modelos matemáticos y estimación de parámetros .. 4
 1.2. Modelización matemática en seguridad alimentaria 6
2. Objetivos ... 9
3. Materiales y métodos .. 10
 3.1. Diseño óptimo de experimentos ... 10
 3.2. Métodos de optimización ... 13
 3.3. Implementación en el lenguaje de programación ... 14
 3.4. Modelos de inactivación ... 15
 3.5. Microorganismo analizado ... 17
4. Resultados .. 20
 4.1. Cálculo y análisis de las funciones de sensibilidad local 20
 4.2. Diseño óptimo de experimentos .. 23
 4.3. Diseño óptimo con restricción .. 25
5. Conclusiones y trabajo futuro ... 29
6. Bibliografía .. 31
7. Anexos .. 34
 7.1. Código para el diseño de experimentos ... 34
 7.2. Estudio con ISRES .. 39

Metodologías para el DOE en seguridad alimentaria
Carmen María Ruiz Sáez
Índice de Figuras

Figura 1. Diagrama del proceso de aplicación de un método matemático 4
Figura 2. Interpretación geométrica de varios criterios de diseño óptimo 12
Figura 3. Distribución por año de los casos por L. monocytogenes. Sistema de Información Microbiológica. España, 2000-2016 ... 18
Figura 4. Distribución por grupo de edad y sexo de los casos por L. monocytogenes. Sistema de Información Microbiológica. España, 2016 ... 18
Figura 5. Representación gráfica de las funciones de sensibilidad a Tref =52,5ºC 21
Figura 6. Representación gráfica de las funciones de sensibilidad a Tref =57ºC 21
Figura 7. Representación gráfica de las funciones de sensibilidad a Tref =60ºC 22
Figura 8. Diseño de experimentos para las tres temperaturas de referencia 24
Figura 9. Diseño de experimentos óptimo para las tres temperaturas de referencia. La línea continua representa la región admisible. ... 26
Figura 10. Experimento uniforme ... 27
Figura 11. Diseño de experimentos ISRES Tref =52.5ºC; Maxeval=1E+5 (izquierda); Maxeval=5E+5 (derecha) ... 39
Figura 12. Diseño de experimentos ISRES Tref =57ºC; Maxeval=1E+5 (izquierda); Maxeval=5E+5 (derecha) ... 40
Figura 13. Diseño de experimentos ISRES Tref =60ºC; Maxeval=1E+5 (izquierda); Maxeval=5E+5 (derecha) ... 41
Índice de Tablas

Tabla 1. Condiciones de crecimiento de L. monocytogenes (FSAI, 2005) 17
Tabla 2. Parámetro característico del diseño de experimentos 24
Tabla 3. Comparación DOE y experimento uniforme .. 28
Tabla 4. Modificación diseño óptimo; n=6 .. 28
Tabla 5. Comparación MEIGO e ISRES: Tref =52.5°C .. 39
Tabla 6. Comparación MEIGO e ISRES: Tref =57°C ... 40
Tabla 7. Comparación MEIGO e ISRES: Tref =60°C ... 40
1. Introducción

1.1. Modelos matemáticos y estimación de parámetros

Una de las mayores motivaciones para el desarrollo científico es la comprensión de fenómenos del mundo real. Durante las últimas décadas hemos observado una explosión del conocimiento científico, que se ha visto reflejado en asombrosos avances (p.ej. avances en nanotecnología o ingeniería genética) (Harari, Yuval Noah, 2017). El desarrollo de modelos matemáticos ha sido clave para alcanzar estos logros.

Un modelo matemático es una simplificación de la realidad, una descripción en lenguaje matemático de un fenómeno real (objeto). La aplicación de un modelo matemático se puede dividir en tres fases.

- **Construcción del modelo.** En primer lugar se expresa el objeto estudiado en lenguaje matemático por medio de una serie de hipótesis.
- Una vez construido, tiene lugar el **análisis del modelo**. Esto permite entender mejor el sistema estudiado a partir de las propiedades del modelo matemático.
- Por último, el modelo, una vez validado, se puede utilizar para hacer **predicciones** de las variables estudiadas. Esto permite estimar sus valores para condiciones diferentes de las disponibles como datos experimentales.

Este proceso está representado en la Figura 1 (Fundacion Polar, n.d.).

Los modelos matemáticos se pueden clasificar en base a una serie de características dicotómicas:

- **Empíricos o teóricos.** Este carácter constituye la característica fundamental de un modelo. Un modelo teórico se basa en las leyes físicas que rigen los procesos, un modelo empírico se basa en análisis de datos.
- **Estáticos o dinámicos.** Se refiere a la forma en que se trata la variable “tiempo”. Los modelos estáticos dan resultados independientes del tiempo mientras que los modelos dinámicos describen/predicen variaciones del sistema a lo largo del tiempo.

![Figura 1. Diagrama del proceso de aplicación de un método matemático](image-url)
- **Agregados o distribuidos.** En el primer caso se considera que, desde el punto de vista del análisis, las propiedades del modelo no varían con respecto a la coordenada espacial. En un modelo de parámetros distribuidos, estas varían según la geometría.

- **Estocásticos o deterministas.** Los modelos estocásticos describen las variables y/o parámetros estudiados desde un punto de vista probabilista, empleando distribuciones de probabilidad y/o índices estadísticos. Por el contrario, un modelo determinista es aquel que no considera la variabilidad/incertidumbre de las variables y/o parámetros.

Los elementos básicos de un modelo matemático son las variables, los parámetros y las restricciones. Las variables describen propiedades del sistema o del entorno que pueden ser medidas. Algunas de ellas pueden ser manipuladas por el experimentador (variables independientes), mientras que otras no pueden ser (variables dependientes). Los parámetros del modelo describen propiedades del sistema que no se ven alteradas por el experimento. Las relaciones entre variables dependientes, independientes y parámetros se expresan por medio de ecuaciones (diferenciales). Una de las aplicaciones más interesantes de un modelo matemático es su habilidad para realizar predicciones.

Sin embargo, en muchos casos, los modelos matemáticos contienen parámetros cuyo valor exacto, en el momento, no puede determinarse analíticamente. Por lo tanto, la estimación de parámetros a partir de datos experimentales es fundamental para lograr las propiedades predictivas del modelo deseado (Garre et al., 2018).

La estimación de parámetros se puede considerar como un proceso iterativo. Partiendo de un modelo matemático, sus parámetros se pueden estimar a partir de unos datos experimentales. Debido a las diferentes fuentes de error, no se pueden realizar predicciones exactas, sino que éstas llevan asociadas un nivel de incertidumbre (Box et al., 2005). Si la incertidumbre de las predicciones es demasiado amplia, se pueden tomar más datos experimentales, que se utilizarán para obtener valores de los parámetros con mayor precisión, resultando en mayor predicción de las predicciones. Este ciclo se repetirá hasta que las predicciones tengan un nivel de incertidumbre aceptable.

Diversos estudios han demostrado que la precisión de los parámetros del modelo se ve afectada por el diseño experimental (Balsa-Canto et al., 2007; Tsiantis et al., 2018; van Derlinden et al., 2010; Vilas et al., 2018). Por ello, el diseño de experimentos estudia cómo variaciones en las condiciones experimentales afectan a la posibilidad de detectar cambios significativos en la respuesta. Dentro de esta rama de conocimiento, el Diseño Óptimo de Experimentos (DOE) se encarga de encontrar el diseño experimental más informativo dado una serie de restricciones (p.ej. número de mediciones). Por lo tanto, la aplicación del OED resulta en una optimización de los recursos, aumentando la precisión del modelo sin aumentar el coste experimental.
1.2. Modelización matemática en seguridad alimentaria

Pese a los esfuerzos empleados en garantizar la seguridad alimentaria, ésta sigue siendo una preocupación para la sociedad a nivel global (“The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016,” 2017; World Health Organization, 2015). Recientes brotes de *Salmonella* Agona (“Multi-country outbreak of Salmonella Agona infections possibly linked to ready-to-eat food,” 2018) y *Listeria monocytogenes* (“Multi-country outbreak of Listeria monocytogenes serogroup IVb, multi-locus sequence type 6, infections linked to frozen corn and possibly to other frozen vegetables – first update,” 2018) dentro de la Unión Europea ilustran que el establecimiento de la seguridad alimentaria sigue siendo un problema dentro de las sociedades desarrolladas. Estos se deben a que los alimentos son (generalmente) un medio rico en nutrientes que permite la supervivencia y/o crecimiento de microorganismos patógenos, que pueden potencialmente causar enfermedades en el consumidor final. Para evitar esto, las empresas alimentarias aplican tratamientos de inactivación a los alimentos, que destruyen o dañan las células microbianas (tratamientos de inactivación). Con esto se consigue evitar o inhibir el crecimiento microbiano, de manera que el producto sea inocuo cuando se consume.

El método más habitual en la industria alimentaria como tratamiento de inactivación es el uso de tratamientos térmicos. Estos consisten en la aplicación de altas temperaturas (usualmente entre 55 y 120°C), capaces de dañar o destruir las células microbianas (Peng et al., 2017). Si el objetivo es la completa destrucción de la flora patógena, se trata de un tratamiento de *esterilización*, mientras que si el objetivo es dañar los microorganismos el tratamiento se clasifica como *pasterización*. Sin embargo, el tratamiento térmico también puede afectar algunas propiedades fisicoquímicas del producto, reduciendo su calidad. Diversos estudios han demostrado que los tratamientos térmicos pueden afectar la calidad organoléptica (color, sabor, olor...), así como su calidad nutricional (p.ej. degradación de vitamina C). Por lo tanto, debido a la tendencia al alza en la demanda de productos mínimamente procesados (fresh-like), las empresas de alimentación se están viendo forzadas a reducir la intensidad de los tratamientos térmicos. Sin embargo, esto se debe realizar garantizando la seguridad alimentaria del consumidor. Esto sólo se puede conseguir diseñando los tratamientos en base a un sólido conocimiento científico de la respuesta microbiana a los tratamientos de inactivación.

Dentro de sus objetivos para el programa Horizonte 2020, la Agencia Europea para la Seguridad Alimentaria (EFSA) ha señalado el desarrollo de herramientas para el análisis de riesgos como una de sus prioridades (Kass et al., 2017). Los modelos matemáticos han demostrado su utilidad para este objetivo, ya que se pueden aplicar para describir la respuesta de las poblaciones microbianas a las condiciones ambientales que el producto encuentra durante su vida útil. Esto incluye el posible crecimiento microbiano durante el almacenamiento y el transporte, así como la inactivación durante el procesado del alimento en la industria. Por lo tanto, la modelización matemática es una herramienta esencial en la ciencia de alimentos moderna, ya que permite diseñar los procesos y
estimar la vida útil, asegurando unos estándares de calidad, nutrición y seguridad. La rama de la ciencia de alimentos que desarrolla estos modelos es la **microbiología predictiva** (McMeekin et al., 2007).

La microbiología predictiva desarrolla modelos matemáticos para describir un sistema de gran complejidad, donde la biología, termodinámica y estadística (entre otros) son relevantes. Debido a esto, la mayoría de los modelos empleados en este ámbito tienen una gran componente experimental, con parámetros que deben de ser estimados en base a datos experimentales. En el caso de los modelos de inactivación, estos parámetros describen, por ejemplo, la resistencia de un microorganismo a un tratamiento a temperatura constante, así como su sensibilidad a cambios en la temperatura. Estas propiedades dependen de diversos factores, tales como el tipo de microorganismo o el medio de cultivo empleados. Por lo tanto, la caracterización de la respuesta microbiana a los tratamientos de inactivación es actualmente un campo de investigación muy activo.

Tradicionalmente los experimentos de inactivación desarrollados para caracterizar microorganismos se han diseñado utilizando experimentos isotermos, con medidas equiespaciadas en tiempos de medición y temperaturas de tratamiento. Esta sigue siendo la tendencia generalizada, pese a que recientes trabajos han demostrado que experimentos dinámicos (a temperatura variable con el tiempo) pueden ser más informativos (Cattani et al., 2016).

Los experimentos necesarios para la estimación de parámetros requieren de personal altamente entrenado y equipamiento específico.

Como previamente se introdujo, el diseño experimental afecta la precisión de los parámetros del modelo. No es de extrañar, entonces, que varios artículos científicos han estudiado la aplicación del diseño óptimo de experimentos en este ámbito. Más en concreto, dentro de la inactivación microbiana, varios estudios han aplicado DOE para identificar los puntos más informativos de un tratamiento de inactivación dinámico. Sin embargo, ningún estudio ha sido publicado aplicando DOE para experimentos de inactivación isotermos. Esto puede deberse al hecho de que los experimentos isotermos, aunque más sencillos desde un punto de vista experimental, son más complejos desde el punto de vista del DOE. En primer lugar, las variables de decisión son bidimensionales, teniendo una componente temporal (el tiempo de la medición) y la temperatura. A esto se suma el hecho de que la duración máxima del experimento está limitada por el límite de detección (concentración microbiana mínima que se puede detectar en el laboratorio. Debido a que el ratio de inactivación microbiana crece con la temperatura, la duración máxima del experimento varía con la temperatura. Esto introduce una restricción en el problema que no es sencilla de incorporar en el problema de optimización.

En este trabajo se aplica la metodología del DOE para experimentos de inactivación isotermo. Este trabajo utiliza una metodología basada en la matriz de información de Fisher (FIM) que ya se utilizó con éxito para estudiar experimentos de inactivación
dinámicos en un estudio de este mismo grupo (Garre et al., 2018; Soto Peñalver, 2016), extendiéndola para las peculiaridades de los experimentos isotermos. Las herramientas requeridas se han desarrollado en el lenguaje de programación R y se han incorporado dentro del paquete bioOED, que se ha subido a CRAN poniéndolo a disposición de la comunidad en Open Access.
2. Objetivos
El principal objetivo de este trabajo es el desarrollo de una metodología para el Diseño Óptimo de Experimentos para experimentos de inactivación isoterma. Para ello, se han definido los siguientes hitos:

- Determinación analítica de las funciones de sensibilidad locales para el modelo de Bigelow.
- Planteamiento del Diseño Óptimo de Experimentos como un problema de optimización.
- Resolución del problema de optimización, evaluando la factibilidad del diseño experimental obtenido.
- Definición de restricciones en el problema, de manera que sea realizable en el laboratorio.
- Comparación teórica del diseño experimental propuesto con respecto al diseño “clásico” equiespaciado.
3. Materiales y métodos

3.1. Diseño óptimo de experimentos

En muchas ocasiones el conocimiento de la realidad es posible gracias a la realización de experimentos, de cuyas observaciones se extrae información. Interesa que las observaciones analizadas proporcionen una información suficiente y representativa del fenómeno estudiado. Se aprecia que dicha fiabilidad aumenta con el número de casos observados, pero en la práctica, este número se ve limitado por factores económicos y temporales, entre otros (Licesio J. Rodríguez Aragón, 2007).

Surge la necesidad de determinar el número de experimentos necesarios a realizar y las condiciones experimentales de su realización. Este punto nos lleva a la búsqueda del diseño óptimo de experimentos (DOE). Es decir, bajo una serie de restricciones (por ejemplo el número de observaciones) el DOE busca el diseño experimental que permite obtener la mayor información posible.

Existen diversas aproximaciones para el DOE. Una de las más utilizadas es la basada en las propiedades de la matriz de información de Fisher y en las funciones de sensibilidad locales (Ljung, 2001). En la teoría de estimación para modelos estadísticos con un solo parámetro, el recíproco de la varianza de un estimador se denomina información de Fisher para este estimador. Sin embargo, cuando el modelo tiene varios parámetros, la media del parámetro-estimador es un vector y su varianza es una matriz. La matriz inversa de la matriz de covarianza del error del estimador objetivo de varianza mínima se denomina matriz de información de Fisher (FIM). Es decir, la matriz de información de Fisher expresa la cantidad de información de los datos experimentales. En el caso de inactivación microbiana bajo condiciones isotermas se define de acuerdo a la Ecuación (1), donde \(y(t_i) \) es un vector N-dimensional de observaciones a tiempos \(t_i \) y temperaturas \(T_i \) (\(i=1,2,\ldots,N \)). Nótese que en el caso estudiado las mediciones están definidas por una combinación de temperatura y tiempo. \(Q \) es la matriz de pesos, que en este trabajo, es igual a la matriz de identidad.

\[
FIM = \sum_{i=1}^{N} (\frac{\partial y(t_i, T_i)}{\partial p})^T Q (\frac{\partial y(t_i, T_i)}{\partial p})
\]

(1)

Los términos \(\frac{\partial p}{\partial z} \) se denominan funciones de sensibilidad locales de la variable respuesta con respecto a \(p_j \) \((S_j) \). Estas funciones tienen una gran relevancia para la metodología de DOE aplicada en este estudio, ya que determinan los componentes de la FIM. Una representación gráfica de las funciones de sensibilidad se puede utilizar para analizar un diseño experimental desde un punto de vista cualitativo (Brun et al., 2001). Además, las correlaciones entre las funciones de sensibilidad con respecto a diferentes parámetros se pueden utilizar para detectar problemas de identificabilidad del modelo analizado (Dolan and Mishra, 2013).
Las propiedades de la FIM más interesantes desde el punto de vista del DOE son las siguientes:

- Es simétrica
- Es semidefinida positiva
- Es singular si el número de puntos distintos del diseño es inferior al número de parámetros

Además la región de confianza que proporciona una evaluación objetiva de la precisión de los parámetros estimados y de su identificabilidad puede ser definida como una función C de la matriz de covarianza de los parámetros de acuerdo a la Ecuación (2) (Ljung, 2001), donde N_p es el número de parámetros a ajustar y F el estadístico F de Snedecor.

\[
\{p: (p - \hat{p})^T C^{-1} (p - \hat{p}) \leq N_p F^{1-\alpha}_{N_p, N-N_p} \} \tag{2}
\]

En la mayoría de modelos no lineales, la matriz de covarianza, C, no se puede determinar. La inversa de la FIM se puede utilizar como un estimador de C a través de la inequialdad de Cramer-Rao (Ecuación 3), si se asume que el ruido de las medidas sigue una distribución normal con media cero y varianza constante (Ljung, 2001).

\[
C_j(\hat{p}) = FIM^{-1} \tag{3}
\]

Por lo tanto, la maximización de la FIM resulta en la minimización de los intervalos de confianza, es decir, de la incertidumbre de la estimación de los parámetros del modelo. Sin embargo, por ser la FIM una matriz, la optimización se puede realizar utilizando diferentes funciones escalares. Esto ha llevado a la definición de diferentes criterios (Rodríguez Fernández, 2006):

- **Criterio A**: minimizar la traza de la inversa de la FIM ($\text{tr}(FIM^{-1})$).

La finalidad de este criterio es minimizar la traza de la inversa de la matriz de información, es decir, minimizar la suma de los autovalores de la matriz de covarianza. Esto es equivalente a reducir el cuadrado de la longitud de los ejes de los elipsoides de confianza y por tanto, a minimizar la media aritmética de los errores de los parámetros.

- **Criterio A modificado**: maximizar la traza de la FIM ($\text{tr}(FIM)$).

La diferencia con respecto al anterior es que, en este caso, se maximiza la traza de la FIM con el fin de evitar los errores numéricos causados durante la inversión de la matriz. El problema que presenta este criterio es que en el máximo puede darse el caso de que la matriz sea singular porque uno de los autovalores sea cero, si alguno de los otros autovalores se ha vuelto lo suficientemente grande. Esto significaría que la región de confianza se va a infinito.
Criterio D: max det (FIM).

El criterio D es el más popular en el desarrollo de diseños óptimos. Busca maximizar el determinante de la FIM y de esta forma, minimizar el volumen de los elipsoides de confianza asintóticos y, por lo tanto, la media geométrica del error de los parámetros.

- Criterio E: max λ_{min} (FIM).

Este criterio maximiza el mínimo autovalor de la matriz de información. Considerando de nuevo los elipsoides de confianza, las raíces de los autovalores son proporcionales a los ejes de dichos elipsoides, por tanto, se minimiza el mayor de los ejes y con ello el mayor de los errores de los parámetros.

- Criterio E modificado: min abs $\left(\frac{\lambda_{\text{max}}(\text{FIM})}{\lambda_{\text{min}}(\text{FIM})} \right)$.

El objetivo de este criterio es la minimización del número de condición, relación entre el mayor y el menor autovalor, o lo que es lo mismo, trata de igualar el mayor y el menor de los ejes de los elipsoides.

La interpretación gráfica de algunos de estos criterios se ilustra en la Figura 2.

![Figura 2. Interpretación geométrica de varios criterios de diseño óptimo](image)

En el trabajo realizado previamente por nuestro grupo aplicando DOE para experimentos de inactivación microbiana en condiciones dinámicas (Garre et al., 2018, Soto Peñalver, 2016) el criterio D proporcionó los mejores resultados. Por lo tanto, en la presente memoria se ha aplicado el criterio D para realizar los cálculos.
3.2. Métodos de optimización

El proceso de optimización consiste en encontrar el valor que deben tomar las variables del problema para hacer óptima la función objetivo satisfaciendo el conjunto de restricciones.

Los métodos de optimización se pueden clasificar en: métodos clásicos y métodos metaheurísticos. Dentro de los métodos clásicos se encuentra la optimización lineal, lineal entera mixta, no lineal, dinámica, etc. Durante las últimas décadas, han ganado en popularidad los métodos metaheurísticos, especialmente debido a los avances en recursos computacionales. Estos métodos aparecieron ligados a la inteligencia artificial y imitan fenómenos sencillos observados en la naturaleza. Incluyen los algoritmos evolutivos, el método del recocido simulado, las búsquedas heurísticas o los sistemas multiagente (Ramos et al., 2010). Aunque la convergencia de la mayoría de los métodos heurísticos no se puede demostrar en la mayoría de los casos (al contrario que para los métodos clásicos), han demostrado su utilidad resolver problemas que, debido a su complejidad, no pueden ser resueltos por solucionadores de optimización global deterministas o donde el uso de un solucionador local converge sistemáticamente a soluciones locales.

En una segunda clasificación, los métodos de optimización se pueden etiquetar como deterministas, estocásticos o híbridos.

Los métodos deterministas suelen buscar la verificación de las condiciones de optimalidad, requiriendo en muchos casos, el cálculo del gradiente y del hessiano de la función objetivo. Dentro de esta clasificación se puede distinguir entre métodos locales y métodos globales. Los métodos locales buscan un vector \(\hat{p} \) de forma que la función objetivo en él sea la mejor alcanzada para todos los valores de \(p \) cercanos a \(\hat{p} \). Los métodos globales pretenden encontrar el valor de \(\hat{p} \) donde la función objetivo es la mejor de todos los posibles valores de \(p \).

En múltiples ocasiones, los algoritmos de optimización no son capaces de encontrar la solución global, solo alcanzan soluciones locales. Las soluciones globales son necesarias (o al menos, altamente deseables) en algunas aplicaciones, pero generalmente son difíciles de identificar y aún más de localizar. Un caso especialmente importante son los problemas convexos, donde todas las soluciones locales también son soluciones globales.

Los métodos de optimización estocásticos utilizan cuantificaciones de la incertidumbre para producir soluciones que optimizan el rendimiento esperado del modelo. Estos métodos calculan las direcciones de búsqueda empleando secuencias, sin hacer uso de información sobre la estructura del problema. Generalmente son de carácter global, aunque no se puede garantizar la convergencia al óptimo global con total certeza debido a su naturaleza aleatoria. Finalmente, los métodos híbridos combinan las estrategias de los métodos deterministas y estocásticos para superar las barreras de cada uno de ellos.
Los trabajos previos del grupo de investigación en esta dirección mostraron que la optimización de la FIM para experimentos de inactivación microbiana es un problema complejo que requiere de algoritmos estocásticos (Soto Peñalver, 2016). Por lo tanto, el problema se ha resuelto utilizando dos algoritmos estocásticos de optimización: Enhanced Scatter Search (eSSR) (Egea et al., 2010) e ISRES (Runarsson and Yao, 2005).

3.3. Implementación en el lenguaje de programación

Las herramientas requeridas para la elaboración de la presente memoria se han desarrollado en R 3.4.3 (R Core Team, 2016). R es un entorno de software libre para computación y gráficos estadísticos. Se trata de uno de los lenguajes más utilizados en investigación por la comunidad estadística debido en gran parte, a la posibilidad de cargar diferentes bibliotecas o paquetes con funcionalidades de cálculo y gráficas. De hecho, es considerado uno de los diez lenguajes de programación más populares en 2018, de acuerdo al ranking de IEEE Spectrum¹.

Es un lenguaje de programación interpretado, el usuario normalmente accede por líneas de comandos o consola, de distribución libre. Los programas R son portables, es decir, no se compilan para un sistema operativo en particular, sino que se ejecutan paso a paso por un programa que interpreta los comandos del lenguaje.

Aunque la mayoría de funciones de la distribución base de R están escritas en R, este programa permite la definición de funciones en lenguajes de bajo nivel, como C o Fortran. Actualmente existe un gran número de paquetes en CRAN (the Comprehensive Cran Archive Network) que implementan una amalgama de modelos estadísticos con una implementación eficiente desde el punto de vista computacional. Estos paquetes tienen licencia Open Access y pueden compartirse fácilmente entre diferentes desarrolladores, lo que ha contribuido enormemente a la popularidad de R. Otro repositorio que goza de gran popularidad, aunque es especialmente dirigido a investigadores en el cambio de la bioinformática, es Bioconductor².

Para el desarrollo de este trabajo se han utilizado los siguientes paquetes de R:

- **plot3D**³ (Karline Soetaert):

El paquete plot3D proporciona funciones para visualizar datos bidimensionales y tridimensionales, incluidos diagramas de perspectiva, de corte, de superficie, de dispersión, etc. Muchas de estas funciones se derivan de las funciones persp⁴ o image⁵ de R.

²https://www.bioconductor.org/
³https://cran.r-project.org/web/packages/plot3D/index.html
⁴https://www.rdocumentation.org/packages/graphics/versions/3.5.1/topics/persp
⁵https://www.rdocumentation.org/packages/gstat/versions/1.1-6/topics/image
- **tidyverse**\(^6\) (Hadley Wickham):

Este paquete es un conjunto de paquetes que funcionan en armonía porque comparten representaciones de datos comunes y diseño de API. Este paquete, diseñado para la ciencia de datos, permite instalar y cargar fácilmente múltiples paquetes en un solo paso, entre los que se pueden destacar ggplot2\(^7\), dplyr\(^8\) y tidyr\(^9\).

- **MEIGOR**\(^10\) (Jose Egea, David Henriques, Alexandre Fdez. Villaverde, Thomas Cokelaer, 2012):

Éste es un paquete de optimización programado en R que implementa metaheurísticas para resolver diferentes problemas de optimización no lineal en dominios continuos y enteros. Las dos metaheurísticas principales, que combinan los métodos estocásticos con solucionadores locales para mejorar la eficiencia, son (Egea et al., n.d.):

- El método mejorado de búsqueda de dispersión, eSSR. Se utiliza para problemas continuos y de enteros mixtos
- La metaheurística de búsqueda de vecindario variable, VNS, que se utiliza para problemas enteros.

- **nloptr**\(^11\) (Jelmer Ypma, con contribuciones de Hans W. Borchers y Dirk Eddelbuettel):

nloptr es una biblioteca gratuita, de código abierto para optimización no lineal. Incluye diversos problemas de optimización locales y globales, incluyendo el algoritmo ISRES.

3.4. Modelos de inactivación

En la microbiología predictiva se desarrollan ecuaciones que permiten obtener un detallado conocimiento del comportamiento de los microorganismos en los alimentos. Dependiendo de la respuesta microbiana, estos modelos se pueden dividir en modelos de crecimiento, modelos de inactivación y modelos de crecimiento/no crecimiento. Los modelos de inactivación describen la variación de la concentración de los microorganismos cuando son sometidos a métodos de inactivación, como son los tratamientos térmicos (McMeekin et al., 2002).

Los modelos de inactivación microbiana pueden ser deterministas o estocásticos/probabilistas. Los modelos deterministas son modelos matemáticos que no consideran la incertidumbre o la variabilidad dentro de la población microbiana, haciendo una estimación discreta de la evolución de la población en cada punto. Los modelos estocásticos sí tienen en cuenta la variabilidad y la incertidumbre que presenta

\(^6\) https://cran.r-project.org/web/packages/tidyverse/index.html
\(^7\) https://cran.r-project.org/web/packages/ggplot2/index.html
\(^8\) https://cran.r-project.org/web/packages/dplyr/index.html
\(^9\) https://cran.r-project.org/web/packages/tidyr/index.html
\(^10\) https://bioconductor.org/packages/devel/bioc/html/MEIGOR.html
\(^11\) https://cran.r-project.org/web/packages/nloptr/index.html
la población microbiana y predicen la distribución de probabilidad de la evolución del microorganismo en cada punto (Corradini et al., 2010).

 Debido a las limitaciones del equipo experimental, la caracterización de la respuesta microbiana a los tratamientos térmicos de inactivación se ha caracterizado en base a experimentos a temperatura constante. El desarrollo durante los últimos años de nuevos equipos experimentales (p.ej. el termoresistómetro Mastia (Conesa et al., 2009)) ha permitido la realización de experimentos no isotermos. Aunque algunos estudios han demostrado que éstos pueden ser más eficientes para caracterizar la respuesta microbiana (Cattani et al., 2016), su elaboración y su análisis es más complejo que el de los experimentos isotermos. Es por ello que la mayoría de estudios científicos se desarrollan utilizando isotermos.

 En el presente trabajo se ha utilizado el modelo de inactivación de Bigelow (Bigelow, 1921; Bigelow and Esty, 1920) para caracterizar el proceso de inactivación isotermo. Hay un amplio conjunto de modelos de inactivación usados comúnmente en la industria, los más populares son Bigelow, el de Peleg (Peleg and Cole, 1998), el de Mafart (Mafart et al., 2002) y el de Geeraerd (Geeraerd et al., 2000).

 El modelo de Bigelow describe la inactivación microbiana como una cinética de primer orden o logarítmica. Este modelo, que supone una relación lineal entre el logaritmo del número de microorganismos (N) y el tiempo (t), permite predecir la evolución de una población microbiana en función del número inicial de microorganismo (N_0), un parámetro que cuantifica su termorresistencia (k) y el tiempo de calentamiento (t).

 \[\log N = \log N_0 - \frac{1}{D(T)} \times t \]

(4)

 El parámetro D(T) representa el tiempo necesario para inactivar el 90% de la población microbiana a una temperatura constante T, cuya relación se describe mediante la siguiente ecuación.

 \[\log D(T) = \log D(T_{ref}) + \frac{T_{ref} - T}{z} \]

(5)

 Donde T_{ref} es una temperatura de referencia considerada para la estimación del parámetro D, que no puede determinarse por métodos analíticos y donde z indica la sensibilidad del microorganismo a las variaciones de temperatura (Stumbo, 1973). Por tanto, el modelo de Bigelow queda expresado mediante la ecuación (6):

 \[\log N = \log N_0 - \frac{1}{D(T_{ref}) \times 10^{-\frac{T-T_{ref}}{z}}} \times t \]

(6)
3.5. Microorganismo analizado

En este trabajo, la metodología para el DOE descrita en las secciones anteriores se ha aplicado para el diseño de experimentos de inactivación isotérmica de *Listeria monocytogenes*.

L. monocytogenes es la bacteria causante de la listeriosis, una de las enfermedades de transmisión alimentaria más graves, aunque relativamente rara (0,1 a 10 casos anuales por millón de personas, dependiendo del país y la región). Aunque el número de casos es pequeño, la alta tasa de mortalidad de esta infección (entre un 20 y 30%) la convierte en un importante problema de salud pública (“The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016,” 2017).

La *L. monocytogenes* es ubicua en la naturaleza y se encuentra tanto en el suelo y el agua, como en el tubo digestivo de los animales. Es capaz de sobrevivir en un amplio rango de temperatura (1°C a 45°C) y de crecer a temperaturas de refrigeración (4-10°C). La temperatura óptima de crecimiento del microorganismo está entre 30°C, temperatura a la cual presenta movilidad gracias a sus flagelos, y 37°C, temperatura de inmovilidad, los flagelos se inactivan. Tiene una alta capacidad de resistencia a condiciones adversas, como se muestra en la Tabla 1.

<table>
<thead>
<tr>
<th>Condiciones de crecimiento</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Óptimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (HCL como acidulante)</td>
<td>4,2 a 4,3</td>
<td>9,4 a 9,5</td>
<td>7,0</td>
</tr>
<tr>
<td>a<sub>w</sub> (NaCl como humectante)</td>
<td>0,90 a 0,93</td>
<td>>0,99</td>
<td>0,97</td>
</tr>
<tr>
<td>Concentración de sal (NaCl % en fase acuosa)</td>
<td><0,5</td>
<td>12 a 16</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 1. Condiciones de crecimiento de *L. monocytogenes* (FSAI, 2005)

La listeriosis generalmente es causada por el consumo de alimentos contaminados con *Listeria monocytogenes*. Los alimentos con mayor probabilidad de encontrar este microorganismo son productos crudos o curados de origen animal, alimentos sin lavar como vegetales o fruta, productos lácteos sin pasteurizar y alimentos preparados. Con menor frecuencia, la infección también puede llegar a transmitirse en humanos por contacto directo con animales infectados.

La población con mayor riesgo de contraer esta enfermedad son las mujeres embarazadas, recién nacidos, ancianos, personas con trasplantes de órganos y personas con el sistema inmunitario debilitado. La listeriosis durante el embarazo causa pérdida fetal en aproximadamente el 20% de los casos y muerte del recién nacido en alrededor del 3%.

En Europa esta enfermedad supone un 4% de las hospitalizaciones y un 28% de las muertes producidas por toxoinfecciones alimentarias. Las Figuras 3 y 4 muestran la distribución por año de los casos por *Listeria monocytogenes* registrados en España entre 2000 y 20016, y la distribución de estos por grupo de edad y sexo en 2016, respectivamente.

La Listeria se destruye con los procesos térmicos utilizados habitualmente en la industria alimentaria, como la pasterización y esterilización. La caracterización de la respuesta de este microorganismo a tales tratamientos es la base del presente trabajo, donde se aplica la metodología del DOE para experimentos de inactivación isoterma de la Listeria monocytogenes.

La metodología para el DOE aplicada en este trabajo requiere la definición de unos valores nominales para los parámetros del modelo. Los valores obtenidos por el Departamento de Ingeniería de los Alimentos y el Equipamiento Agrícola de la Universidad Politécnica de Cartagena para L. monocytogenes en medio de laboratorio (Garre et al., 2018) han sido utilizados como parámetros nominales en este estudio: $T_{ref,0} = 55^\circ C$, $D (T_{ref,0}) = 3.9 \text{ min}$, $z = 4.2^\circ C$.
4. Resultados

En esta sección se exponen los resultados obtenidos en el trabajo. El código de R desarrollado durante el trabajo se incluye en el anexo 7.1 En primer lugar, se calculan las funciones de sensibilidad locales del modelo de Bigelow (sección 4.1). Estas se analizan cualitativamente utilizando una representación gráfica y se comparan para diferentes valores de los parámetros del modelo. A continuación se realizan los diseños óptimos de experimentos para cada temperatura de referencia propuesta (sección 4.2), utilizando el criterio D para comparar la eficacia de cada experimento. Los diferentes diseños experimentales se comparan utilizando las propiedades de la FIM. Sin embargo, las soluciones “óptimas” obtenidas no son realizables debido a las limitaciones de los equipos con los que cuenta el Departamento de Ingeniería de los Alimentos y del Equipamiento Agrícola. Por ello, se han introducido restricciones al problema de optimización, de manera que el diseño experimental sea realizable en el laboratorio (sección 4.3).

Esta sección finaliza presentando las conclusiones obtenidas tras el diseño óptimo de experimentos.

4.1. Cálculo y análisis de las funciones de sensibilidad local

Las funciones de sensibilidad local cuantifican el efecto que variaciones en los parámetros del modelo tienen en la variable respuesta. Se definen como la derivada parcial de la variable respuesta con respecto a cada uno de los parámetros del modelo. En el caso del modelo de Bigelow, para condiciones isotermas, éstas se pueden calcular analíticamente. Las funciones de sensibilidad del modelo con respecto a los parámetros $D(T_{ref})$ y z quedan expresadas en las ecuaciones (7) y (8) respectivamente.

\[
S_1 = \frac{\partial \log N}{\partial D(T_{ref})} = \frac{10}{D(T_{ref})^2} \frac{T - T_{ref}}{z} * t
\]

\[
S_2 = \frac{\partial \log N}{\partial z} = \frac{10}{D(T_{ref})^2} \frac{T - T_{ref}}{z^2} * \ln(10) * t
\]

Nótese que el modelo de Bigelow tiene un parámetro adicional, T_{ref}, sin significación biológica pero que puede mejorar la identificabilidad del modelo. Es decir, este parámetro se fija a valores conocidos y no se ajusta en base a datos experimentales. Por ello, la función de sensibilidad local con respecto a este parámetro no se ha calculado. Sin embargo, sí se ha analizado cómo las funciones de sensibilidad S_1 y S_2 se ven afectadas por el parámetro T_{ref}. Además, este modelo depende de la concentración inicial de microorganismos, N_0. En el tipo de experimentos analizado en este estudio, el inóculo inicial es preparado independientemente bajo condiciones controladas. Por lo tanto, éste parámetro se conoce con una incertidumbre mucho menor que para el resto.
de parámetros y se suele fijar a la media de los valores medidos justo al comienzo del tratamiento de inactivación. Es por ello, que el análisis se ha centrado en el análisis de sensibilidad de los parámetros $D(T_{\text{ref}})$ y z.

Se han realizado los cálculos para tres valores diferentes de T_{ref} (52.5°C, 57°C y 60°C) ajustando el valor de $D(T_{\text{ref}})$ de acuerdo a la definición del modelo de Bigelow (Ecuación 6). Los resultados obtenidos se representan en las Figuras 5, 6 y 7 para las una temperatura de referencia de 52.5, 57 y 60°C, respectivamente.

Figura 5. Representación gráfica de las funciones de sensibilidad a T_{ref} =52.5°C

Figura 6. Representación gráfica de las funciones de sensibilidad a T_{ref} =57°C
Los resultados muestran que la función de sensibilidad S_1 tiene, por regla general, valores absolutos mayores que los de la función S_2 para las tres temperaturas de referencia analizadas. Esto quiere decir que el parámetro $D(T_{ref})$ es el que mayor influencia tiene en la variable respuesta. Para las tres temperaturas de referencia analizadas, se observa que la sensibilidad con respecto a este parámetro aumenta con el tiempo del experimento y con la temperatura. Esto tiene sentido dado el proceso biológico estudiado, ya que el ratio de inactivación aumenta con la temperatura y la inactivación es más alta al final del experimento. Consecuentemente, variaciones en $D(T_{ref})$ tendrán un mayor impacto en las mediciones al final del experimento.

La función de sensibilidad S_2 se ve afectada por la temperatura de referencia tanto en el rango de valores que toma como en su forma. Para temperaturas superiores a la temperatura de referencia, su proyección en el plano $t - T$ tiene una forma similar a la calculada para S_1, mientras que para temperaturas menores tiene una forma muy diferente. Esto implica que cuando la temperatura de referencia está próxima a la temperatura mínima de operación, ambas funciones de sensibilidad estarán altamente correladas (Figura 5), lo que conlleva problemas de identificabilidad de los parámetros (Vilas et al., 2018). Es, por lo tanto, recomendable que la temperatura de referencia sea superior o igual a la temperatura máxima de operación. Este resultado explica los resultados obtenidos por Datta (1993), que concluyó en base a resultados numéricos que una temperatura de referencia próxima a la temperatura máxima de los experimentos reducía la incertidumbre de los parámetros.
Es evidente en base a las Figuras 5-7 que no todos los puntos experimentales en el plano \(t - T \) proporcionan la misma información. Por lo tanto, existe potencial para la aplicación del DOE. Es de esperar, en base a la forma de las dos funciones, que DOE favorecerá la toma de medidas en las regiones de tiempos y temperaturas altas. Sin embargo, para determinar la posición óptima de estas mediciones, es necesario el planteamiento de un problema de optimización.

4.2. Diseño óptimo de experimentos

El diseño de experimentos se ha realizado en base al criterio D (la maximización del determinante de la FIM) con el objetivo de encontrar el diseño experimental (matriz de tiempos y temperaturas de tratamiento) más informativo. Se ha limitado el experimento a una matriz de diez puntos experimentales, es decir, una combinación de diez tiempos de medición y diez temperaturas. Por lo tanto, el vector de decisión tiene 20 elementos. La temperatura se ha fijado al intervalo \([52ºC, 60ºC]\) (habitual para la inactivación de \(L.\) monocytogenes) y el tiempo máximo de tratamiento a 50 min. El problema de optimización queda planteado tal y como se muestra en la Ecuación (9).

\[
\min_{t_i, T_i} - \det FIM(t_i, T_i; D(T_{ref}), z, T_{ref})
\]

\[0 \leq t_i \leq 50 \quad \forall i\]

\[52 \leq T_i \leq 60 \quad \forall i\]

(9)

Se ha resuelto el problema de optimización independientemente para las tres temperaturas de referencia analizadas anteriormente (52.5, 57 y 60ºC) utilizando los algoritmos eSSR (paquete MEIGO) e ISRES. Aunque ambos algoritmos han convergido a la misma solución, el algoritmo MEIGO ha demostrado una convergencia más rápida. Por ello, los resultados obtenidos con MEIGO se proporcionan en esta sección. En el anexo 7.2 se incluyen los resultados obtenidos con ISRES.

Para las tres temperaturas de referencia se ha obtenido prácticamente el mismo diseño óptimo, representado en la Figura 8. Los puntos tienden a colocarse en dos zonas concretas del espacio de diseño, al tiempo máximo de tratamiento (50 min) y dos temperaturas elevadas (58.1ºC y los 60ºC). Esto tiene sentido teniendo en cuenta las observaciones que se obtuvieron para las funciones de sensibilidad (sección 4.1).
La inversa del determinante de la FIM es un estimador de la matriz de covarianzas del modelo. Por lo tanto, la inversa de su determinante es un estimador del volumen de los elipsoides de confianza. Esta propiedad se puede utilizar para comparar la incertidumbre de los parámetros esperada para cada una de las temperaturas de referencia analizadas. La Tabla 2 compara la inversa del determinante de la FIM obtenida para el diseño óptimo con cada una de las temperaturas de referencia. Este varía en varios órdenes de magnitud, tomando valores menores para la temperatura de referencia más alta (60ºC), indicando que el uso de una temperatura de referencia próxima a la temperatura máxima del experimento minimiza el volumen de los elipsoides de confianza.

<table>
<thead>
<tr>
<th></th>
<th>$T_{\text{ref}} = 52.5 , ^\circ\text{C}$</th>
<th>$T_{\text{ref}} = 57 , ^\circ\text{C}$</th>
<th>$T_{\text{ref}} = 60 , ^\circ\text{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/\text{det(FIM)}$</td>
<td>7.87E-7</td>
<td>5.68E-9</td>
<td>2.11E-10</td>
</tr>
</tbody>
</table>

Tabla 2. Parámetro característico del diseño de experimentos

Este diseño, aunque óptimo desde el punto de vista del DOE, no es factible debido a que el ratio de inactivación microbiana crece con la temperatura y al aplicar el tratamiento térmico durante mucho tiempo y a temperatura elevada, la concentración microbiana alcanza un valor imposible de detectar en el laboratorio (por debajo del límite de detección). Surge la necesidad de introducir una restricción en el problema de optimización que penalice experimentos infactibles, resultando en experimentos realizables en el laboratorio.
4.3. Diseño óptimo con restricción

La sección anterior ha demostrado la necesidad de incluir una restricción en el problema de optimización para que los experimentos propuestos sean realizables en el laboratorio. La restricción debe considerar el número máximo de reducciones logarítmicas de la concentración microbiana que se pueden observar con el equipamiento disponible. En base a la información proporcionada por el personal del Departamento de Ingeniería de Alimentos y del Equipamiento Agrícola de la UPCT, éste valor se ha fijado en 6 reducciones logarítmicas, correspondiendo a una concentración inicial de 10^7 CFU/g y un límite de detección de 10 CFU/g. Los cálculos se han repetido para otros valores de este límite, obteniendo resultados similares desde un punto de vista cualitativo (no mostrados).

De acuerdo al modelo de Bigelow, el tiempo necesario para reducir la concentración microbiana en seis unidades logarítmicas (t_{lim}) durante un tratamiento isotermo a temperatura T puede calcularse como:

$$t_{\text{lim}} \leq -6 \frac{T-T_{\text{ref}}}{D_{\text{ref}}10^{-\frac{T-T_{\text{ref}}}{z}}}$$

Despejando, se obtiene el valor de t_{lim} en función de la temperatura y del resto de parámetros del modelo de Bigelow que define la región admisible dentro del espacio de diseño:

$$t_{\text{lim}} = 6 \cdot D_{\text{ref}}10^{-\frac{T-T_{\text{ref}}}{z}}$$

Esta relación se puede introducir como una restricción dentro del problema de optimización para el DOE. Es decir, la Ecuación (9) se modifica tal y como se muestra en la Ecuación (10).

$$\min_{t_i,t_i} - \det FIM(t_i,T_i;D(T_{\text{ref}}),z,T_{\text{ref}})$$

$$0 \leq t_i \leq 121 \quad \forall i$$

$$52 \leq T_i \leq 60 \quad \forall i$$

$$t \leq 6 \cdot D_{\text{ref}}10^{-\frac{T-T_{\text{ref}}}{z}}$$

Esta restricción no es sencilla de incorporar en el problema de optimización. El algoritmo eSSR fue incapaz de encontrar una solución de acuerdo a esta ecuación. Por ello, fue necesario “mapear” las soluciones infactibles convirtiéndolas en factibles. Esta metodología consiste en trasladar los valores de t fuera de la región admisible hasta t_{lim}. Esto es posible porque la propia restricción se puede analizar antes que la función objetivo al sólo depender explícitamente de la variable bidimensional “x” (solución del
problema de optimización). Esta medida es sólo posible debido al uso de un algoritmo evolutivo que sí puede manejar este cambio.

Por otro lado, el algoritmo ISRES fue capaz de calcular soluciones compatibles con todas las restricciones. Sin embargo, aunque ambos algoritmos proporcionaron los mismos resultados, ISRES tuvo un ratio de convergencia menor. Por lo tanto, aquí sólo se reportan los resultados obtenidos con eSSR. El anexo 7.2 presenta los resultados obtenidos con ISRES.

Al igual que en el caso anterior, se obtuvo una solución muy similar para las tres temperaturas de referencia analizadas (52.5, 57 y 60°C). Ésta se ilustra en la Figura 9, donde la restricción del límite de detección se muestra como una línea continua, por debajo de la cual encontramos la región factible.

La solución óptima que se obtiene consiste en tomar cinco mediciones a los 1.50 minutos con una temperatura igual a 60°C y las cinco restantes, a los 121 minutos a una temperatura de 52°C. Es decir, al tiempo máximo para las temperaturas máxima y mínima. Los cálculos se han repetido variando el rango de temperaturas, obteniendo este mismo patrón (resultados no mostrados). Por lo tanto, de acuerdo a los resultados

![Figura 9. Diseño de experimentos óptimo para las tres temperaturas de referencia. La línea continua representa la región admisible.](image-url)
obtenidos, los experimentos para la caracterización de inactivación microbiana bajo condiciones isotermas deberían de concentrar las mediciones al final de los experimentos a las temperaturas máxima y mínima.

Sin embargo, la información que se extrae del diseño es diferente dependiendo de la temperatura de referencia que se considere. Se vuelve a concluir que una temperatura de referencia elevada permite obtener mucha más información del modelo, aun teniendo el mismo diseño de experimentos que para temperaturas bajas. Con un aumento de T_{ref} se logra reducir el volumen de los elipsoides de confianza. Los valores numéricos calculados para la inversa de la FIM para el diseño óptimo calculado para cada temperatura de referencia se encuentran reflejados en la Tabla 3.

Con el objetivo de comprobar la eficacia del DOE con respecto a una metodología “clásica”, se plantea un experimento uniforme, con medidas equiespaciadas en tiempos de medición y temperaturas de tratamiento, tomando el doble de mediciones que en el diseño óptimo y situándolas en la zona factible para detectar la concentración microbiana. Este experimento se muestra en la Figura 10. La información extraída con este experimento se compara con el DOE utilizando de nuevo las propiedades de la FIM.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig10.png}
\caption{Experimento uniforme}
\end{figure}
En la Tabla 3 se compara el valor de la inversa del determinante de la FIM obtenido en cada uno de los casos expuestos. De nuevo, el uso de una temperatura de referencia próxima al límite superior del rango de temperaturas conlleva una reducción en la incertidumbre de los parámetros del modelo. Aplicar la solución obtenida mediante el diseño óptimo de experimentos conlleva una variación porcentual del volumen de los elipsoides de confianza con respecto al experimento uniforme del -82,6%. Es decir, se consigue reducir este volumen una cantidad bastante significativa. Se demuestra, por tanto, que el experimento proporcionado por el DOE es mucho mejor que el aplicado tradicionalmente.

Sin embargo, la solución óptima muestra una dificultad a la hora de ser aplicada en el laboratorio. Esta complicación consiste en la imposibilidad de tomar cinco mediciones en el mismo instante de tiempo en un mismo experimento. Es decir, sería necesario realizar diez experimentos para recoger todas las mediciones.

Debido a la gran mejora que el DOE representa con respecto al experimento uniforme, se ha estudiado la posibilidad de reducir el número de observaciones (y con ello, de experimentos) y aún así seguir mejorando los resultados obtenidos con el diseño uniforme (Tabla 3). Si tomamos solamente seis puntos (tres mediciones a los 1.50 minutos con T= 60°C y tres a los 121 minutos con T=52°C) conseguimos reducir la variación porcentual del volumen de los elipsoides de confianza un 51%. Ésta solución sigue mejorando bastante a la obtenida con el diseño uniforme. Queda por tanto demostrada la mejora que se obtiene aplicando la metodología del diseño óptimo de experimentos.

<table>
<thead>
<tr>
<th>1/det(FIM)</th>
<th>DOE (10 puntos)</th>
<th>Experimento uniforme (20 puntos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T$_{ref}$=52.5 °C</td>
<td>6.68E-3</td>
<td>3.83E-2</td>
</tr>
<tr>
<td>T$_{ref}$=57 °C</td>
<td>4.8E-5</td>
<td>2.76E-4</td>
</tr>
<tr>
<td>T$_{ref}$=60 °C</td>
<td>1.79E-6</td>
<td>1.03E-5</td>
</tr>
</tbody>
</table>

Tabla 3. Comparación DOE y experimento uniforme

<table>
<thead>
<tr>
<th>1/det(FIM)</th>
<th>Diseño (6 puntos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T$_{ref}$=52.5 °C</td>
<td>1.88E-2</td>
</tr>
<tr>
<td>T$_{ref}$=57 °C</td>
<td>1.35E-4</td>
</tr>
<tr>
<td>T$_{ref}$=60 °C</td>
<td>5.05E-6</td>
</tr>
</tbody>
</table>

Tabla 4. Modificación diseño óptimo; n=6
5. Conclusiones y trabajo futuro

En la actualidad, un método muy extendido para describir procesos reales es la modelización matemática. En ocasiones, estos modelos contienen parámetros que requieren su estimación a partir de datos experimentales. La toma de estos datos experimentales debe proporcionar la mayor información posible con el objetivo de minimizar la incertidumbre de los parámetros y poder proporcionar predicciones más fiables. El Diseño Óptimo de Experimentos se encarga de encontrar el diseño experimental más informativo dado una serie de restricciones.

En el presente trabajo se ha abordado el diseño óptimo de experimentos de un proceso de inactivación microbiológica aplicable a la industria alimentaria. En concreto, se ha aplicado esta metodología para diseñar un experimento para la caracterización de la inactivación de *L. monocytogenes* usando experimentos isotermos en base al modelo de Bigelow. Para ello, se ha aplicado una metodología para el diseño óptimo de experimentos basado en la maximización del determinante de la matriz de información de Fisher (criterio D). El análisis de las funciones de sensibilidad ha permitido conocer de forma cualitativa la influencia de cada parámetro en la variable respuesta y predecir el comportamiento de éste. Se ha observado una dependencia de la función de sensibilidad $S_2 \left(\frac{\partial \log N}{\partial z} \right)$ con respecto a la temperatura de referencia. En base a esta relación, se ha determinado que el uso de temperaturas de referencia próximas a la temperatura máxima de los experimentos resulta en una reducción de la incertidumbre de los parámetros del modelo. Esta recomendación es consistente con el resto de los resultados de este estudio.

Se realizó un DOE fijando el número máximo de observaciones en diez pares tiempo-temperatura. La solución óptima obtenida contenía puntos al final del experimento a temperaturas elevadas, con recuentos demasiado bajos para ser medidos en el laboratorio. Por lo tanto, ha sido necesario añadir al problema una restricción que representase el límite de detección. Esta restricción es difícil de implementar desde el punto de vista del algoritmo de optimización. Por ello, fue necesario “mapear” el espacio de diseño, lo que permitió calcular soluciones óptimas que cumplieran con la restricción.

El diseño obtenido se ha comparado con un diseño uniforme “clásico” utilizando las propiedades de la FIM. Los resultados han demostrado que el diseño propuesta a través de la aplicación del DOE reduce la incertidumbre en los parámetros del modelo con respecto al diseño uniforme tradicional, con un coste experimental menor. Por lo tanto, esta metodología es de gran interés para centros de investigación e industrias que se ven en la necesidad de caracterizar la respuesta microbiana en base a este tipo de experimentos.
Como trabajo futuro, una continuación del presente trabajo podría extenderse a:

- Uso de diferentes modelos de inactivación: Mafart, Peleg, etc…
- Aplicación a más microorganismos y/o medios de cultivo.
- Uso de otro criterio para DOE.
6. Bibliografía

FSAI, 2005. The control and management of. FSAI.

Metodologías para el DOE en seguridad alimentaria

Carmen María Ruiz Sáez

Multi-country outbreak of Listeria monocytogenes serogroup IVb, multi-locus sequence type 6, infections linked to frozen corn and possibly to other frozen vegetables – first update, 2018. . EFSA Support. Publ. 15, 1448E. https://doi.org/10.2903/sp.efsa.2018.EN-1448

Rodríguez Fernández, M., 2006. Modelado e Identificación de Bioprocessos.

7. Anexos

7.1. Código para el diseño de experimentos

```r
## Cargar librerías
library(plot3D)
library(tidyverse)
library(MEIGOR)

## Parámetros modelo de Bigelow

par_z <- 4.2
par_D0 <- 3.9
Tref0 <- 55

Tref <- 60
par_D <- par_D0 * 10^(-(Tref - Tref0)/par_z)
par_D

# Límite de detección
logS = logN - logN0 <- lim_det
lim_det <- (-6)

par(mfrow = c(1, 2))

## Función de sensibilidad S1

tt <- seq(0, 50, length = 20)  # Rango de t
TT <- seq(52.5, 60, length = 30)  # Rango de T

out <- matrix(NA, nrow = length(tt), ncol = length(TT))  # Inici alizamos

s1 <- function(t, Temp) {  # Función de sensibilidad S1

  10^((Temp-Tref)/par_z)*t/par_D^2
}

for (i in 1:length(tt)) {

  for (j in 1:length(TT)) {

    out[i, j] <- s1(tt[i], TT[j])
  }
}
```
Función de sensibilidad S1

```r
contour2D(out, y = TT, x = tt,
    ylab = "T(°C)", xlab = "t(min)"

title("FUNCION DE SENSIBILIDAD S1")
```

Función de sensibilidad S2

```r
contour2D(out2, y = TT, x = tt,
    ylab = "T(°C)", xlab = "t(min)"

title("FUNCION DE SENSIBILIDAD S2")
```

Matriz de información de Fisher, FIM

```r
FIM <- function(s1,s2,t,Temp){
    B <- matrix(c(s1(t,Temp), s2(t,Temp)),ncol=2);
    t(B)%%B
}
```

DOE

```r
detFIM <- function(x){
    design <- data.frame(x[1:10],x[11:20])
    f=-det(FIM(s1,s2,t=design[,1],Temp=design[,2]));
    return(f)
}
```

```r
problem <- list(f="detFIM", x_L=c(rep(0,10),rep(52,10)),x_U=c(rep(50,10),rep(60,10)))
opts <- list(maxeval=20000,local_finish="DHC")
Results <- MEIGO(problem, opts,algorithm="ESS")
Results$xbest
```
Results$f\text{best}
DisenoOptimo <- data.frame(t=Resultsx\text{best}[1:10], Temp=Resultsx\text{best}[11:20])
ggplot(data = DisenoOptimo) +
 geom_point(mapping = aes(t, Temp)) +
 coord_cartesian(xlim = c(0, 50), ylim=c(52.5, 60)) +
 labs(x="t (min)", y="Temp (ºC)"
View(DisenoOptimo)

DOE con restriccion limite de deteccion
detFIMrestr <- function(x){
 design <- data.frame(x[1:10], x[11:20])
 f=-det(FIM(s1,s2,t=design[,1],Temp=design[,2]))
 g <- rep(0,10)
 g[1:10] = x[1:10]+lim_det*par_D*10^(-(x[11:20]-Tref)/par_z)
 return(list(f=f, g=g))
}
problemrestr <- list(f="detFIMrestr",
 x_L=c(rep(0,10),rep(52,10)),
 x_U=c(rep(50,10),rep(60,10)),
 c_L=rep(-Inf,10), c_U=rep(0,10))
optsrestr <- list(maxeval=20000, local_finish="DHC")
Resultsrestr <- MEIGO(problemrestr, optsrestr, algorithm="ESS")

DOE mapeado
detFIMrestr <- function(x){
 g = x[1:10]+lim_det*par_D*10^(-(x[11:20]-Tref)/par_z)
 ind<-which(g>0)
 x[ind] <- -lim_det*par_D*10^(-(x[ind]+10]-Tref)/par_z)
 design <- data.frame(x[1:10], x[11:20])
 f=-det(FIM(s1,s2,t=design[,1],Temp=design[,2]))
 return(list(f=f))
}
problemrestr <- list(f="detFIMrestr",
 x_L=c(rep(0,10),rep(52,10)),
 x_U=c(rep(121,10),rep(60,10)))
optsrestr <- list(maxeval=20000, local_finish="DHC")
start_time <- Sys.time()
Resultsrestr <- MEIGO(problemrestr, optsrestr, algorithm="ESS")
end_time <- Sys.time()
end_time-start_time

Resultsrestr$fbest
1/Resultsrestr$fbest
Resultsrestr$xbest

Algunos >0 Infactibles!!! Mapea

xfinal<-Resultsrestr$xbest
g = xfinal[1:10]+lim_det*par_D*10^(-(xfinal[11:20]-Tref)/par_z)
ind<-which(g>0)
xfinal[ind]<- -lim_det*par_D*10^(-(xfinal[ind+10]-Tref)/par_z)
xfinal

matrix(xfinal, ncol = 2) %>%
 as.data.frame() %>%
 ggplot() +
 geom_point(aes(V1,V2)) +
 labs(x="t (min)", y="Temp (ºC)") +
 geom_line(aes(x, y), data = data_frame(y = seq(52, 60, length = 100),
 x = -lim_det*par_D*10^(-(y-Tref)/par_z)))

DOE con algoritmo ISRES

library(nloptr)
x0 <- c(seq(0, 40, length = 10), seq(54, 60, length = 10))
detFIM(x0)

my_hin <- function(x) {
c(x[1:10] +lim_det*par_D*10^(-(x[11:20]-Tref)/par_z))
}

-lim_det*par_D*10^(-(52-Tref)/par_z)

my_hin(x0)

start_time<- Sys.time()
aa <- nloptr(x0, eval_f = detFIM,
 lb = c(rep(0,10), rep(52,10)),
 ...
ub = c(rep(121,10),rep(60,10)),
eval_g_ineq = my_hin,
opts = list("algorithm" = "NLOPT_GN_ISRES",
 "maxeval" = 5e5))

end_time <- Sys.time()
end_time- start_time

my_hin(aa$solution)
detFIM(aa$solution)
1/detFIM(aa$solution)

matrix(aa$solution, ncol = 2)
 as.data.frame() +
ggplot() +
 geom_point(aes(V1, V2)) +
 geom_line(aes(x, y), data = data.frame(y = seq(52, 60, length = 100),
 x = -lim_det*par_D*10^(-y-Tref)/par_z)))

matrix(aa$solution, ncol=2)

DISEÑO UNIFORME 20 puntos (4 Temperaturas x 5 tiempos)
time <- c(seq(0, 121, length = 5), seq(0,40.4,length = 5),seq(0,1 3.5,length = 5),seq(0,4.5,length = 5))
Temp <- c(rep(52,5),rep(54,5),rep(56,5),rep(58,5))
diseno_unif <- data.frame(time,Temp)
View(diseno_unif)
ggplot(data = diseno_unif) +
 geom_point(aes(time,Temp)) +
 coord_cartesian(xlim = c(0, 121), ylim=c(52,60)) +
 labs(x="t (min)",y="Temp (ºC)") +
 geom_line(aes(x, y), data = data.frame(y = seq(52, 60, length = 100),
 x = -lim_det*par_D*10^(-y-Tref)/par_z)))

FIM(s1,s2,t=diseno_unif[,1],diseno_unif[,2])

Diseño óptimo modificado. 6 puntos
tiempo <- c(rep(121,3),rep(1.5,3))
Temperatu <- c(rep(52,3),rep(60,3))
diseno_opt_modif <- data.frame(tiempo,Temperatu)

FIM(s1,s2,t=diseno_opt_modif[,1],diseno_opt_modif[,2])
7.2. Estudio con ISRES

En esta sección se muestra la resolución del problema de optimización (Ecuación 10) mediante el algoritmo ISRES (The Improved Stochastic Ranking Evolution Strategy) del paquete “nloptr”. Se trata de un algoritmo evolutivo que acepta restricciones no-lineales.

Este algoritmo presenta la limitación de requerir un número excesivamente elevado de evaluaciones de la función objetivo (denotado como “maxeval”) para proporcionar soluciones válidas. Con ello, el tiempo para alcanzar una solución óptima también se ve incrementado. En las Tablas 5, 6, 7 se hace una comparación de los resultados obtenidos con ISRES, fijando dos valores distintos para las evaluaciones de la función, y lo homólogo con MEIGO.

<table>
<thead>
<tr>
<th>Maxeval</th>
<th>Tiempo</th>
<th>1/det(FIM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISRES:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E+5</td>
<td>1.44 (min)</td>
<td>2.83E-2</td>
</tr>
<tr>
<td>5E+5</td>
<td>5.26 (min)</td>
<td>1.11E-2</td>
</tr>
<tr>
<td>MEIGO:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2E+4</td>
<td>18.75(seg)</td>
<td>6.68E-3</td>
</tr>
</tbody>
</table>

Tabla 5. Comparación MEIGO e ISRES: $T_{ref} = 52.5^\circ C$

![Figura 11. Diseño de experimentos ISRES $T_{ref} = 52.5^\circ C$: Maxeval=1E+5 (izquierda); Maxeval=5E+5 (derecha)]](image)
Tabla 6. Comparación MEIGO e ISRES: Tref =57°C

<table>
<thead>
<tr>
<th></th>
<th>Maxeval</th>
<th>Tiempo</th>
<th>1/det(FIM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISRES</td>
<td>1E+5</td>
<td>1.68 (min)</td>
<td>8.09E-6</td>
</tr>
<tr>
<td></td>
<td>5E+5</td>
<td>8.76 (min)</td>
<td>2.32E-6</td>
</tr>
<tr>
<td>MEIGO</td>
<td>2E+4</td>
<td>17.48 (seg)</td>
<td>1.79E-6</td>
</tr>
</tbody>
</table>

Figura 12. Diseño de experimentos ISRES Tref =57°C; Maxeval=1E+5 (izquierda); Maxeval=5E+5 (derecha)

Tabla 7. Comparación MEIGO e ISRES: Tref =60°C
Con los datos presentados en las tablas comprobamos que, como se predijo anteriormente, el algoritmo ISRES requiere un tiempo de computación bastante mayor que el requerido con MEIGO. Para este último obtenemos soluciones óptimas en cuestión de segundos, mientras que ISRES necesita minutos para comenzar a dar soluciones válidas. Hay que destacar que, tras aumentar 25 veces el número de evaluaciones para ISRES con respecto a MEIGO, aún no ha sido capaz de proporcionar la misma solución, pero se aprecia claramente la tendencia que llevan los puntos. Es de esperar que si continuamos aumentando el número de evaluaciones de la función, alcanzaríamos la solución propuesta por MEIGO. Otro dato importante a comentar, es que el parámetro $1/det(FIM)$ que se obtiene del modelo es significativamente mayor utilizando ISRES y el objetivo era reducirlo. Por tanto, se puede concluir que este algoritmo no es el más efectivo para aplicar el DOE.

El código desarrollado en R para la realización de los cálculos implicados en esta sección aparece incorporado en el anexo 7.1.