Prototyping a requirements specification
through an automatically generated
concurrent logic program*

Patricio Letelier Pedro Sdnchez Isidro Ramos

Department of Information Systems and Computation
Valencia University of Technology, 46020 Valencia (Spain)
{letelier, ppalma, iramos}@dsic.upv.es

Abstract. OASIS is a formal approach for the specification of object
oriented conceptual models. In OASIS conceptual schemas of informa-
tion systems are represented as societies of interacting concurrent ob-
jects. Animating such models in order to validate the specification of
information systems is a topic of interest in requirements engineering.
Thus a basic execution model for OASIS specifications has been deve-
loped. Concurrent Logic Programming is a suitable paradigm for dis-
tributed computation allowing a natural representation of concurrence.
Using Concurrent Logic Programming, OASIS specifications are anima-
ted according to OASIS execution model. In this work, we show how
OASIS concepts are directly mapped into concurrent logic programming
concepts. To illustrate our ideas, an example of a bank account codified
in KL1 is given and parts of the program that animates its correspon-
ding OASIS specification are shown. This work has been developed in
the context of a CASE tool supporting the OASIS approach. Our aim
is to build a module for animation and validation of specifications. A
preliminary version of this module is presented.

1 Introduction

Conceptual models, representing the functional requirements of information sys-
tems, are a key factor when linking the problem and solution domains. Building
a conceptual model is a discovery process, not only for the analyst but also for
the stakeholders. The most suitable strategy in this situation is to build the
conceptual model in an iterative and incremental way, through analyst and sta-
keholder interaction. Conceptual modeling involve four activities: elicitation of
requirements, modeling or specification, verification of quality and consistency,
and eventually, validation.

Formal methods for conceptual modeling provide improvements in soundness
and precision for specifications, simplifying their verification. However, when
considering elicitation and requirements validation, prototyping techniques are
more used. Hence, it is interesting to obtain a combination of both approaches.

* This research is supported by the “Comisién Interministerial de Ciencia y Tecnolo-
gia” (CICYT) through the MENHIR proyect (grant no. TIC97-0593-C05-01).

This work uses OASIS [9,13] (Open and Active Specification of Information
Systems) as a formal approach for object-oriented conceptual specification of
information systems. This is a step forward in a growing research field where
validation of formal specifications through animation is being explored [18]. In
this sense, some other proposals close in nature to OASIS are [7] and [6]. The
differences, though, between these works and ours are basically determined by
features of the underlying formalisms and the offered expressiveness . According
to the presented results, the state of the art is similar and is characterized by
preliminary versions of animation environments.

expected Graphi'cal —
behavior scenarios
builder -
scenarios Repository
Graphical —> based on
\ ificati the OASIS
specification specification
elements environment [[J model
—
modlﬁcat}on & Graphical
extension L <:|
: = animation
of scenarios / .
environment

computed & @
behavior Prototype
(concurrent |({7| Translator
logic program
analysis
of results

Fig. 1. A framework for incremental specification of requirements

Fig.1 shows our framework for elicitation, modeling, verification and valida-
tion of requirements. Elicitation is achieved using scenarios [15]. The expected
behavior and elements of a given specification are extracted from scenarios. The
graphical scenario builder helps defining scenarios in a suitable way. Functional
requirements are modeled using a graphical specification module based on OA-
SIS. Conceptual models can be verified according to OASIS formal properties.
At each stage of the requirements specification process it would be possible to
validate the behavior of the associated prototype against the expected behavior.
This comparison could lead to updates or extensions of existing scenarios. This
cycle continues until the requirements are compliant with the proposed set of
scenarios.

Experiments have been carried out using Object Petri Nets [16] and Con-
current Logic Programming [8] as semantic domains for OASIS specifications.
These efforts have resulted in a basic execution model [10]. This model is used
to animate OASIS specifications implemented over concurrent programming en-
vironments.

In this context, we will present the mappings between OASIS concepts and
clauses in concurrent logic programming. Those mappings have been implemen-
ted in a translator program. The translator takes an OASIS specification sto-
red in the repository and generates automatically a concurrent logic program
that constitutes a prototype for the corresponding conceptual model. Further-
more, through a preliminary version of the graphical animation environment the
analyst can interact with the prototype in a suitable way. We have worked with
the concurrent logic languages Parlog [3] and KL1[2] which have similar features.
The implementation showed in this work is KL1 code.

2 OASIS

An OASIS specification is a presentation of a theory in the used formal system
and is expressed as a structured set of class definitions. Classes can be simple or
complex. A complex class is defined in terms of other classes (simple or complex).
Complex classes are defined by establishing relationships among classes. These
relationships can be aggregation or inheritance. A class has a name, one or more
identification mechanisms for its instances (objects) and a type or template that
is shared by every instance belonging to the class. We present next the basic
concepts of OASIS.

Definition 1. Template or type. A class template is represented by a tuple
(Attributes, Events, Formulae, Processes).

Attributes is the alphabet of attributes. For all att € Attributes exists the
function:

att : sort of names — sort of values

FEvents is the alphabet of events. For all e € Events is possible to get e= fe
being 6 a basic substitution of the parameters of the event. Formulae is a set of
formulae which are organized in sections and their underlying formalism depends
on the section where they are used. Processes is the set of process specifications,
classified in protocols and operations.

Definition 2. Service. A service is either an event or an operation. The former
is an instantaneous and atomic service. An operation is a non-atomic service
and, in general, has duration.

Definition 3. Action. An action is a tuple (Client,Server,Service). It repre-
sents the action in the client object, associated to requiring the service, as well
as the action in the server object, associated to providing the service.

For each class we assume the implicit existence of A, a set of actions obtai-
ned from the services that objects in the class can request (clients) or provide
(servers). For all a € A is possible to obtain a= fa, being 6 a basic substitution
of client, server and service.

Definition 4. Object state. An object state is a set of evaluated attributes. It
is expressed by well-formed formulae in First Order Logic.

Definition 5. Step. A step is a set of actions occurring simultaneously in an
object’s life.

Definition 6. Object life or trace. An object’s life or trace is a finite prefix
of object steps.

2.1 OASIS expressed in Dynamic Logic

In [11] Deontic Logic [1] is described as a variant of Dynamic Logic [5]. The
definition of deontic operators in Dynamic Logic is:

¥ — [a]false “the occurrence of a is forbidden
in states where) is satisfied”.
¥ — [—a]false “the occurrence of a is obligatory
in states where) is satisfied”.
¥ — [a]¢ “In states where 1) is satisfied, immediately
after of the a occurrence,
¢ must be satisfied”

where v is a well-formed formulae that characterizes an object’s state when
the action a occurs and —a represents the non-occurrence of the action a (i.e.,
only other actions different from a could occur). Furthermore, there is no state
satisfying the atom false. This represents a state of system violation. Thus, one
action is forbidden if its occurrence leads the system towards a violation state,
and one action is obligatory if its non-occurrence leads the system towards a vio-
lation state. The OASIS Formulae and Processes are mapped to the formulae
previously presented.

These formulae constitute a sublanguage of the language proposed and for-
malized in [20]. In [9] OASIS is presented as a specification language with a well
defined syntax. Here is an example of part of a simple bank system using the
OASIS syntax. This example will be used in the rest of the paper.

conceptual schema simple_banking_system

class account

identification

number : (number) ;
constant attributes
number:nat; name:string;
variable attributes
balance:nat(0); times:nat(0); pin:nat(0); rank:nat(0);
derived attributes
good_balance:bool;
derivations
good_balance:={balance>=100};
events
open new; close destroy;

deposit(Amount:nat) ;
withdraw(Pin:nat,Amount:nat);
pay_commission;
change_pin(Pin:nat,NewPin:nat);
change_rank (Rank:nat) ;
valuations
[deposit (Amount)] balance:=balance+Amount, times:=times+1;
[withdraw(Pin,Amount)] balance:=balance-Amount, times:=times+1;
[self:pay_commission] balance:=balance-1;
[::pay_commission] times:=0;
[change_pin(Pin,NewPin)] pin:=NewPin;
[change_rank (Rank)] rank:=Rank;
preconditions
withdraw(Pin,Amount) if (pin=Pin and balance>=Amount) or
(pin=Pin and balance<Amount and rank=2);
change_pin(Pin,NewPin) if (pin=Pin);
close if (balance=0);
triggers
self::pay_commission when
(times>=5 and good_balance=false and rank=0) ;
end class

class customer
identification
name: (name) ;
constant attributes
name:string;
events
add new; remove destroy;
end class

interface customer(someone) with account(someone)
services(deposit,withdraw,change_pin) ;
end interface

interface account(someone) with self
services(pay_commission) ;

end interface

end conceptual schema

In this example there are two classes: customer and account. The objects
in both classes are active. An account object is forced to self-trigger an action
with the event pay_commission whenever the trigger condition is satisfied. Alt-
hough customer objects do not have explicit triggers, they have an interface with
account objects enabling to require actions associated with the visible events.
Thus customer objects are active objects as well. Furthermore, by default, there
is always an object called root. This object will be responsible for activating the
events that do not have an explicit client in the specification. In the example, the
root object can require actions with the event add and remove to the customer.

2.2 An execution model for OASIS

Our execution model is an abstract animator for formulae of obligation, permis-
sion and change of state associated to an object. Next we briefly describe the
concepts included in the execution model proposed in [10].

The sequence of steps in an object’s life is sorted by time. We assume there is
a “clock object” sending special actions — called ticks — to every object in the
system. The received ticks by an object are correlative with natural numbers,
t1, t2, etc. Hence, being 4 and j natural numbers then ¢ < j <= t; < ;.

Definition 7. Mailbox. A mailboz is the set of actions that can be included in

a step executed by one object at one tick. The mailbox at instant t; is denoted by
Mbox;.

Definition 8. Object’s state at tick. An object’s state at tick is denoted by
State; and represents the object’s state in the interval [t;, t;11). That is, between
t; (included) and t;, 1 the state is considered constant.

The processing of the actions inside the mailbox implies their classification.
Next we present all possible actions that might be present in a mailbox. They
are characterized as subsets of Mbox; (that is at instant ¢;) .

— Obligated actions: these are actions associated to obligated service re-
quests (which have as a client the object itself) and have to occur. The set
of obligated actions is denoted by O Exzec;. These actions are determined by
obligation formulae, that is, their form is: ¢[—a]false.

— Non-obligated actions: these are actions corresponding to services reques-
ted by other objects (or itself) which could be provided or not depending
on prohibitions established over those actions and verified in State;. The set
of non-obligated actions is denoted by OFEzec;.

— Rejected actions: these are non-obligated actions whose occurrence is pro-
hibited in State;. The set of rejected actions is denoted by Reject;. These ac-
tions are determined by prohibition formulae, that is, their form is: ¢[a] false.

— Candidate actions: these are non-obligated actions whose occurrence is
permitted in State;. The set of candidate actions is denoted by Cand;.

— Executed actions: these are actions forming the step executed at t;. The
set of executed actions is denoted by Exec;. A step is composed by OFEzec;
joined with a subset of C'and,.

— Actions in conflict: These are a subset of Cand; formed by actions in
conflict! with some obligated or candidate action just selected. The set of
actions in conflict is denoted by Conf;.

A simple criterion is used in order to choose actions from Cand;: when two
actions are in conflict, the action which first arrived to the mailbox will be chosen.
The actions in conflict Conf; are “copied” to the next mailbox (Mbox;1).

! Two actions are in conflict if they could change the value of non-disjoint set of
attributes.

The object behavior is characterized by an algorithm (detailed in [10]) that
manipulates each mailbox (at each tick) obtaining the subsets previously defined
and producing the change of the object state.

3 Concurrent logic programming and OASIS

Concurrent logic languages arise as an attempt to improve the efficiency of logic
languages by exploiting the stream AND parallelism. Besides, they are high level
programming languages and very convenient for parallel and distributed systems.
A concurrent logic program is a set of Horn Clauses with Guards.

HHGl,...,GniBl,...,Bm n,m}O

A goal has the following form:

— My,..M, k>0

All M; are evaluated in parallel (AND parallelism), using the program clau-
ses for their reduction. For each M; the clauses that can reduce it are examined
in parallel (OR parallelism), selecting only one and avoiding backtracking. The
criterion of selection is that the M; unifies with the head of the clause, and the
conjunction of guards Gy, ..., G,, will be satisfied (evaluated also using AND pa-
rallelism, if they exist). If more than one clause could be chosen, then a sequential
search can be established in textual order from top to bottom.

The integration of Concurrent Logic Programming and the OO modeling
has generated a great deal of research. We are interested in modeling objects as
perpetual processes according to the OASIS execution model. Modeling objects
as perpetual processes is an approach initiate by Shapiro and Takeuchi [17],
in which an object is implemented as a tail-recursive process that passes the
update state of the object as arguments in the recursive call. The identity of
the object is the name of an input stream argument of the process. Works in
this direction are principally based on making OO extensions to concurrent logic
languages. Within this approach some proposals are: Polka [4], L2]|O2 [14] and
A’UM [19]. Although some implementation aspects are common, our motivation
is to generate automatically a concurrent logic program corresponding to an
OASIS conceptual model.

3.1 Objects and classes in concurrent logic programming

Now we will sketch the essential features that allow considering an OASIS spe-
cification as a KL1 program. Details of intermediate clauses and clause bodies
will be omitted to facilitate their reading. In Concurrent Logic Programming a

society of objects can be seen (at run time) as a goal to solve, where each ob-
ject is a subgoal. Each object is evaluated using AND parallelism (inter-object
concurrence).

«— objecty(Iny, Outy, Statey), ..., objecty, (Iny, Outy, Statey,) k>0

In Concurrent Logic Programming, the partial instantiation of logical varia-
bles enables to use them as communication channels. In; is the input channel
for receiving actions, it is a merger of the messages received from itself and from
other objects. Also, I'n; is used as the object oid, so anybody knowing the value
of oid could instantiate partially this variable, that is, send an action to that
object. Out; is the output channel for sending actions. State; is the list of terms
att(Attribute, value) for each attribute of the object.

In general, creation (and destruction) of objects at run time is required.
Subgoals that have the capacity of generating (in their reduction) a new instance
of an object should exist. These subgoals correspond in a natural form to the
notion of class. Thus, classes are implemented as other objects of the society. A
class has an attribute called Population, which is a list of pairs (In;, Key) for
each class instance. In; is the object Oid, Key is a list of constant attributes
that allows referring to the object. The predicate name of a class goal will be
the name of the corresponding class. For an object goal the predicate name will
be the name of its class with “o_” at the beginning.

FEzample 1. The class account in our bank system (at run time) is represented
as a goal in Concurrent Logic Programming. Classes are goals at the beginning
of the execution. Thus the class account appears as the following subgoal:

:= ...,account(In,Out, [att (population, [1)]1),...

3.2 Object behavior

Fach object attempts to reduce itself using the clauses that represent its speci-
fication. Each clause recognizes one action and is able to reduce the object to
a set of subgoals. Below an object goal and clauses with which this object goal
could be reduced are shown. Considering p,q,s,t > 0and r >0 :

i —.,0_class;(In*, Out*, State*), ...

o_class;([action;1|In], Out, State) : —
Gitroos Gy
Bil, "',Bit,
o_class;(In, NOut, N State).

o_class;([action;,|In], Out, State) : —
Gity Gyl
B’L‘l, "'7B'LS7
o_class;(In, NOut, N State).

In*, Out* and State* represent the logical variables In, Out and State at a
given moment in the reduction of the goal o_class;.

Object creation and destruction Classes are implemented as subgoals inside
the initial goal. We obtain the instances by means of reduction of class goals
whenever the action occurs with the event of creation. The creation of an object
implies that the following subgoals are generated during the class goal reduction:

NOut = {Out, ObjectOut},
o_class(0Oid, ObjectOut, Attributes),

Out is the output channel for the class goal. This channel is separated into
two new logical variables. NOut will be used as the new output channel for the
class goal. ObjectOut will be the output channel for the object created. Oid is
another new logical variable that will be used as object Oid and input channel.

Example 2. The clause to which the class account reduces when the action of
creation occurs (action with the open? event). In the body of that clause there
is the creation of a new object (goal) account.

account ([action(Client,s(account),e(open,Attributes))|RestActions],
Qut,State) :-
Out={NOut,0ObjectOut},
o_account (0id,0ObjectOut,Attributes),
get_attributes (Attributes, [att (number, Number)]),
NPopulation=[object (0id,Number) |Population],
update_state(State, [chg(population,NPopulation)],NState),

account (RestActions,NOut,NState) .

get_attributes is a predicate that extracts some attribute values from a list.
update_state modifies a list of attributes producing a new one. When the event
open(101, john,0,0,1234,0,false) is received the goal account becomes:

account (action(Client,c(account),
e(open, [101, john,0,0,1234,0,false]))|Rest],Out,State)

This goal is reduced in the following two subgoals, that is, a new object
account has been created.

2 An event of creation has implicitly the constants and variable attributes of the object
as arguments.

o_account (0id,0ObjectOut, [att (number,101) ,att (name, john),
att(balance,0) ,att(times,0) ,att(pin,1234),
att(rank,0),att(good_balance,false)]),

account (Rest,NOut,) , [att(population, [object (0id,101)1]).

The destruction of an object is obtained by the reduction carried out by
selecting a clause whose body does not contain the same object as subgoal.
Hence, the execution of the object ends.

Change of state We say that an object is implemented as a perpetual process
because among the subgoals in which an object is reduced the same object
appears. This produces the effect of continuity in the object life. Whenever the
object goal is thrown as subgoal in the reduction, some of its attributes may be
modified. Thus a change of state due to the occurrence of the associate action
is represented. The effect “to execute action” is obtained in the reduction when
the new input channel is used as the original one without considering the last
executed action. The formulae that define the change of state when the event is
executed are subgoals that assign new values to the attributes of the object.

Ezample 3. The execution of the action associated with the event deposit(10)
sent to the recently created object is represented as the reduction of the goal:

o_account([action(Client,s(account,id(number, [att (number,101)])),
e(deposit, [10]))|RestIn],Out, [att (number, 101) ,att (name, john),
att(balance,0) ,att(times,0) ,att(pin,1234) ,att(rank,0),
att(good_balance,false)])

This goal is reduced using the following clause:

o_account([action(Client,Server,e(deposit, [N]))|Rest],Out,State) :-
get_attributes(State, [att (balance,Balance),att(times,Times)]),
NBalance:= Balance+N,
NTimes:= Times+1,
LExpl:= NBalance,
RExpl:= 100,
test_condition([[c(ge,LExpl,RExp1)]],NGood_balance),
update_state(State, [chg(balance,NBalance) ,chg(times,NTimes),
chg(good_balance,NGood_balance)] ,NState)
o_account (Rest,Out,NState) .

test_condition is a predicate that evaluates a list of conjunctions repre-
senting a well-formed formulae in the specification. If all the conjunctions are
satisfied the second argument of test_condition is instantiated to true, other-
wise it is false. Thus, in this case, the goal is reduced to the following goal, in
this way, the object has changed its state.

o_account (Rest,Out, [att (number,101) ,att (name, john) ,att (balance,10),
att(times, 1) ,att(pin,1234),att(rank,0) ,att(good_balance,false)])

Prohibitions Action preconditions are implemented through intermediate pre-
dicates in the body of the object clauses.

Example 4. Here is the clause that verifies preconditions when the event with-
draw(1234,10) is attended.

check_one_o_account_condition(action(Client,This,e(withdraw, [P,N])),
State,Result,Msg) :-
utility:get_attributes(State, [att(balance,Balance),
att (rank,Rank) ,att (pin,Pin)1),
LExpl:= Balance, RExpl:= N,
LExp2:= Balance, RExp2:= N,
LExp3:= Rank, RExp3:= 2,
LExp4:= P, RExp4:= Pin,
test_condition([[c(eq,LExp4,RExp4),c(ge,LExpl,RExp1)],
[c(eq,LExp4,RExp4),c(1t,LExp2,RExp2) ,c(eq,LExp3,RExp3)]1],
Result),
Msg=not ([[c(eq,LExp4,RExp4) ,c(ge,LExpl,RExp1)],
[c(eq,LExp4,RExp4),c(1t,LExp2,RExp2) ,c(eq,LExp3,RExp3)1]) .

This time, the predicate test_condition is used to instantiate to true or

false the variable Result. When the precondition is not satisfied another action
is sent to the client including the message Msg.

3.3 Inter-object Communication

The communication mechanism offered by Concurrent Logic Programming is to
share variable among subgoals, interpreted as a communication channel among
objects. In order to allow many objects to communicate with a determined ob-
ject, the architecture showed in Fig.2 has been implemented.

action(CliemX,Servery,E\fent) action(CliemX,Servery,E\rent)

action(Clientx,Servery,E\fent)

Fig. 2. Communication between objects

In general, if a client object client, has to send an action to a server object (or
itself) server,, client, instantiates partially its variable Out. The Out variable
is merged with the rest of the output variables of objects and is used as input
variable for an additional goal called router. The router goal has as many output
variables as classes in the system. Whenever the goal router receives an action
in its input, it will put the action in the corresponding output channel according
to the server of the action.

The first goal in a KL1 program is the atom main. Thus, in the body of this
predicate the global schema of communication is established.

Example 5. The main predicate defined for our bank system.

main: -

take_active_actions(ExternActions),

UserActions=[action(c(tester),s(user),e(add, [att (userid,root)]))
|InUser],

user (InUser,OutUser, [att(population, [1)]),

customer (InCustomer,OutCustomer, [att(population, [1)]1),

account (InAccount,OutAccount, [att (population, [1)]),

generic:new(merge,{ExternActions,OutUser,OutCustomer,DutAccount},
Actions),

router (Actions, InUser, InCustomer, InAccount) .

take_active_actions is a predicate that takes the external actions during
the session of animation. There is always a class called user and an object of
this class whose attribute userid has the value root.

Obligations In OASIS the object communication is activated by obligations.
In this work we will focus on the fundamental communication mechanism, repre-
sented by triggers in the OASIS syntax. Triggers represent asynchronous com-
munication. Hence, triggers are implemented executing Out = [Action|NOut]
without waiting for an answer. Triggers are generated due to a change of state.
Thus, in the body of each clause that represents a change of state related with a
condition in the trigger, a goal that evaluates the condition and could shoot the
trigger will be added. This sentence will appear in the body of a selected clause
in the reduction of a client object. Out is the identifier of the shared variable
that constitutes the output channel of actions for the client object. This is a
term containing the client reference. NOut is the new variable for the output
channel of the client object.

Actions must first arrive to the router that sends the action to the correspon-
ding input channel of class. If the action server is a class instance, the associated
class searches in its Population attribute the input channel of the server object.

Ezample 6. A goal representing an object account reaching a new state:

o_account(In,Out, [att (number,101) ,att(name, john) ,att(balance,80),
att(times,5) ,att(pin,1234),att(rank,0) ,att(good_balance,false)])

The possibility of trigger activation in the new state (that will be reached)
was detected during the previous change of state. The clause doing this work is:
verify_o_account_triggers([t1|RestTriggers],State,Triggers) :-
utility:get_attributes(State, [att(times,Times),
att (good_balance,Good_balance),att(rank,Rank)]),
LExpl:= Times, RExpl:= 5,
LExp2=Good_balance, RExp2=false,
LExp3:= Rank, RExp3:= 0,
utility:test_condition([[c(ge,LExpl,RExpl),
c(eq,LExp2,RExp2) ,c(eq,LExp3,RExp3)]] ,Answer) ,
utility:get_attributes(State, [att (number,Number)]),
utility:put_trigger (Answer,action(this,self,e(pay_commission,[]1)),
Triggers,NTriggers),
verify_o_account_triggers(RestTriggers,State,NTriggers) .
put_trigger is a predicate that puts the action in the trigger list if Answer
is instantiated to truwe. In this case because test_condition returns true in
Answer, we are sure that the object Mbox contains the action:
action(this,self,e(pay_commission, []))
This is an action that must be triggered because the client term is this.
Thus it is put in the output channel using:
Out=[action(This,self,e(pay_commission, []))|NOut]

Now This is the client specification referring to its identification.

4 A graphical animation environment

In the OASIS context, the system behavior is determined by the behavior of its
objects. An object behavior can be observed by analyzing the actions occurred
and the states reached by the object. In this sense, the animation of an OASIS
specification allows examining actions and states of the objects. Following the
guides mentioned before, a translator from OASIS to KL1 has been implemented.
This translator takes as input a system specification from an OASIS repository
and produces a KL1 program that is compiled in order to obtain the prototype.
The translator and the prototype are programs running in a Unix workstation.
The interface has been implemented in Tcl/Tk [12] using the Tecl plug-in for
Netscape and establishing a socket connection to the Unix workstation.

Fig.3 shows the interface for a preliminary version for an environment of
animation. The idea is to make easier the use of the prototype. The object society
is drawn in the upper left corner, on the right the traces of actions of an object
(or object group) are listed. The list of traces can be filtered according to the
kind of actions defined (OFEzec;, OEFEzxec;, Conf;, Fxec; and Rejected;). In the
state area the state of the object is presented (only when one object is selected).
Buttons play, pause, stop, forward and review are provided in order to control
the session of animation. When the animation is paused it is possible to explore
the traces of actions and states at previous instants. Eventually, the two entry
widgets allow building an external action sent by the analyst in representation
of one object in the system.

mador de Especificaciones DASIS - Netscape

File Edt “iew Go Communicator Help
;

ACTIONS OCCURRED

Al Sent | Hecswsdl Cunﬂiclsl Executed | Riejected |

| S Dl

93:365 <conflict> <account[10J> <customes(pata] account[101] deposi(101> =l
93:365 <erecuted> <account{101)> <customerpato).account(101).deposit(10)>

93:366 <received> <account[101)> <customer(pata).account101).deposit(10)>

93:366 <executed> <account{101)> <customerpata)account101],depasit10]:

106:58 <received: <account{101)> <customer(pata] account101) withdraw(1234,10]>

106:559 <ewecuted: <account(101]> <customerpatol.account101]withdraw(1234 10>
N § >
. a3, pato STATE
name ; pato —‘I
«||balance: 20
times : 2

rank : 0

T 4
il LI LI m LI ;:o.dizbiitanca:fa|88

action(thiz, s{customer id[name [attiname. pata]|]].elslaccount.idinumber [attrumber, 101)]]]. efclase. [
name [all{name pato]|[.&ls|account idinumber [attfrumber, 101
id(name [att[nar nt.idinumber [att{number, 101

Madity action and send it daing RETURN

|act\nn[th|s,s[cusmmel,\d[nama,[all[name,patn]]]].e[s[accnunt,\d[numhel,[att[numhar,‘\ 01)]]Lefwithdraw [1234,10])))

=l | Document: Done

Fig. 3. An animation session

5 Conclusions

We have shown how the main features of OASIS can be naturally and directly
represented in a concurrent logic program. Using the execution model of OASIS
as a guide we can obtain a useful animation of the OASIS specification. Our
animation is only applied to purposes of requirements validation and do not
claim to be the final software product. The fidelity of the obtained concurrent
logic program in relation to the OASIS system specification is a matter that is
still being studied. In this case the verification and demonstration tasks would be
supported by three important factors: firstly at the conceptual level the model is
described in a formal language, secondly the abstract execution model is inspired
by the semantics of that formal language and eventually there are some proposals
dealing with formalization of concurrent programming languages. These factors
do not determine the required justification but give a way of formalization on
which we are working.

We have built a translator program to obtain a concurrent logic program au-
tomatically from an OASIS specification using the established correspondences.
This work is being integrated into a CASE tool for system modeling supporting
the OASIS model.

References

1

Ll

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

L. Aqvist. Deontic logic. In D.M. Gabbay and F.Guenthner, editors, Handbook of
Philosophical Logic II, pages 605-714. Reidel, 1984.

T. Chikayama. KLIC User’s Manual. Institute for New Generation Computer Te-
chnology, Tokyo JAPAN, 1995.

T. Conlon. Programming in PARLOG. Addisson-Wesley, 1989.

A. Davison. Polka: A Parlog object-oriented language, Ph.D. thesis, Department
of Computer Science, Imperial College London, 1989.

D. Harel. Dynamic Logic. In Handbook of Philosophical Logic II, editors
D.M.Gabbay, F.Guenthner; pages 497-694. Reidel 1984.

P. Heymans. The Albert II Specification Animator. Technical Report
CREWS 97-13, Cooperative Requirements FEngineering with Scenarios,
http://sunsite.informatik.rwth-aachen.de/CREWS /reports97.htm.

R. Herzig and M. Gogolla. An animator for the object specification language
TROLL light. In Proc. Colloq. on Object-Orientation in Databases and Software
Engineering, Montreal 1994.

P. Letelier, P. Sénchez and I. Ramos. Animation of system specifications using con-
current logic programming. Symposium on Logical Approaches to Agent Modeling
and Design, ESSLLI’97, Aix-en-Provence, France, 1997.

P. Letelier, I. Ramos, P. Sanchez and O. Pastor. OASIS 3.0: Un enfoque formal
para el modelado conceptual orientado a objeto. SPUPV-98.4011, Servicio de Pu-
blicaciones Universidad Politécnica de Valencia, 1998.

P. Letelier, I. Ramos and P. Sdnchez. Un modelo de ejecucién para especificaciones
OASIS 3.0 Inférme Técnico DSIC-11/36/98, Universidad Politécnica de Valencia,
1998.

J.-J.Ch. Meyer. A different approach to deontic logic: Deontic logic viewed as a
variant of dynamic logic. In Notre Dame Journal of Formal Logic, vol.29, pages
109-136, 1988.

J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

O. Pastor and I. Ramos. OASIS version 2 (2.2) : A Class-Definition language
to model information systems using an object-oriented approach, SPUPV-95.788,
Servicio de Publicaciones Universidad Politécnica de Valencia, 1995.

E. Pimentel. L2[|O2: Un lenguaje 16gico concurrente orientado a objetos, Tesis
Doctoral, Facultad de Informética, Universidad de Malaga, 1993.

C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N.A.M. Mai-
den, M. Jarke, P. Haumer, K. Pohl, E. Dubois and P. Heymans. A Propo-
sal for a Scenario Classification Framework, Technical Report CREWS 96-01,
http://sunsite.informatik.rwth-aachen.de/CREWS /reports96.htm.

P. Sénchez, P. Letelier and I. Ramos. Constructs for Prototyping Information Sys-
tems using Object Petri Nets, Proc. of IEEE International Conference on System
Man and Cybernetics, pages 4260-4265, Orlando, USA, 1997.

E. Shapiro and A. Takeuchi. Object oriented programming in concurrent prolog,
en New Generation Computing, vol.1, pages 25-48, 1983.

J. Siddiqi, I.C. Morrey, C.R. Roast and M.B. Ozcan. Towards quality requirements
via animated formal specifications. Annals of Software Engineering, n.3, 1997.

K. Yoshida and T. Chikayama. A’UM: A string based concurrent object-oriented
language, In Proc. of the Int.Conf. on FGCS, ICOT, pages 638-649, 1988.

R.J. Wieringa and J.-J.Ch. Meyer. Actors, Actions and Initiative in Normative
System Specification. Annals of Mathematics and Artificial Intelligence, 7:289-346,
1993.

