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Abstract. Tele–operated service robots are used for extending human
capabilities in hazardous and/or inaccessible environments. Their use is
undergoing an exponential increase in our society, reason why it is of
vital importance that their design, installation and operation follow the
strictest possible process, so that the risk of accident could be minimised.
However, there is no such process or methodology that guides the full
process from identification, evaluation, proposal of solutions and reuse
of safety requirements, although a hard work is being done, specially
by the standardisation committees. It’s also very difficult to even find
in the literature examples of safety requirements identification and use.
This paper presents the engineering process we have followed to obtain
the safety requirements in one of the robots of the EFTCoR1 project and
the way this requirements have affected the architecture of the system,
with a practical example: a crane robot for ship hull blasting.

1 Introduction

Human operators use tele–operated service robots for performing more or less
hazardous operations (manipulation of heavy and/or dangerous products) in
more or less hostile environments (nuclear reactors, space missions, warehouses,
etc). Anyway, independently of the operation, the robot has to interact with both
the environment it’s working on and with human operators. So, it is essential that
the design (which include both software and hardware) of the robot involves no
(or an acceptable level of) risk, neither for the operators, nor for the environment
nor for the robot itself.

Nevertheless, it’s not always possible to make a system free of failures in
its design or operation. Apart from the risk inherent to the use of the mech-
anisms themselves, these systems work in hazardous environments, where the
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probability of the risk is higher than normal. Should a failure happen, the con-
sequences of it can even involve the loss of human lives. [1] documents many
cases of computer–related failures, such as the Therac–25 (a radiation–therapy
device), the missiles shield in Saudi Arabia, etc.

But safety aspects are seldom included in the design process of the system
from the beginning, even though they are a critic aspect. Generally, safety has
to conform and adapt to the already designed system and not vice versa, when
it’s known that safety involves not only the design of the software but also the
hardware. In fact, there are many situations in which a simple hardware solution
can eliminate a hazard or simplify the design of the safety software.

However, the identification of safety requirements is not different from the
identification of the rest of requirements of the system. It only requires a more
thorough study, due to their importance (don’t forget, human lives and equip-
ment integrity may depend on it!). On the other hand, safety has a big reper-
cussion in the design phase, specially when the time to define the architecture
of the system arrives. Its impact is even bigger by the need to avoid common
failure modes, that can propagate failures within different units of the system.

The objectives of this paper are to stress the importance of the capture of
the safety requirements early in the design process and to present a practical
experience on how to capture these safety requirements and how they can alter
the design of the system. The example presents a thorough study of the safety
requirements that a crane robot (a member of the EFTCoR [2,3] project) must
conform to in order to work in such a hazardous environment as shipyards are.
The EFTCoR project is about to end after three years of intense work. Altough
the robot fulfils the basic safety requirements, we are now thinking about making
a commercial version of it, so a deeper study of safety is needed.

This paper is structured in five sections. Section 2 presents a brief description
of the EFTCoR project and the safety characteristics that make it a perfect
example. In section 3 the process followed to obtain the safety requirements
is commented, while section 4 presents the process of identification of safety
requirements for the EFTCoR crane robot. Finally, section 5 summarises the
contents of the paper and outlines future lines of work.

2 EFTCoR: the Danger of Cleaning Ship Hulls in
Shipyards

The EFTCoR family of robots offers a global solution to the problems related
to the most dangerous hull maintenance operations, such as cleaning, blasting
and painting (see Fig. 1-a). The solution is provided by means of two families
of robots: tele–operated cranes and climbing vehicles, depending on the work-
ing area. All these robots consist of a primary positioning system, capable of
covering large hull areas, and a secondary positioning system, mounted on the
primary system, that can position a tool over a relatively small area (4 to 16 m2).
The robots have been developed to achieve the objective of performing the cur-
rent hull cleaning operations in a way that avoids the emissions of residues to
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the environment and enhances the working conditions of the shipyard operators
without worsening the current costs and operation times. Figure 1-b shows the
crane robot in action.

a) Before EFTCoR b) With EFTCoR crane

Fig. 1. Blasting operation

The design of such a complex system as EFTCoR involves the necessity of
early detection and identification of failures so that correcting measures can be
adopted early in the design of the robot. The fundamental characteristics of
the EFTCoR that makes it necessary to take into account the need of a safe
approach when designing the robots are summarised by the following points:

. The operator uses a heavy mechatronic device whose range of movement can
cause serious damage (see Fig. 1-b).

. The system has to be used outdoors, so it has to be able to deal with at-
mospheric agents that can alter its normal operation (rain, water on the
ground, dust, noise, wind, etc).

. The working environment of the robots (shipyards) is very dynamic: there are
many cranes, load and unload of heavy equipments, lots of operators moving
around (either working on the robot or conscious or not of its presence), etc.

. Some maintenance operations include the blasting of the hull with high–
pressure abrasive particles. The energy of the jet makes it very dangerous
for human operators and for the rest of the equipment, so it’s absolutely
necessary to train operators in the use of the tool, to maintain the equipment
in perfect conditions and to install all the security components needed. Also,
as a result of the impact of the jet with the hull, a lot of dust is produced,
worsening the condition of the working place.

3 A Safety Process

The purpose of this section is to present a brief summary of the steps we have
followed for discovering the safety requirements for the EFTCoR and the con-
sequences they imply on the architecture of the system. To work this out we
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have based our work on the ANSI standard for robotics [4] (see next point),
completing it with the contribution of other authors, such as Douglass [5], that
complete the proposal.

Before going on, we introduce the meaning of some words that are used in
the paper. According to Douglass, a risk is an event or condition that can occur
but is undesirable; safety is the characteristic of a system that does not incur
too much risk to persons or equipment and an accident is damage to property
o harm to persons, the happening of a risk. A safety system is, according to the
definition of ANSI/RIA, a system that has been tested, evaluated and proven to
operate in a reliable and acceptable manner when applied in a function critical
to health and welfare of personnel. Leveson [6] defines a hazard as a state or set
of conditions of a system (or object) that, together with other conditions in the
environment of the system (or object) will inevitably lead to an accident (loss
event).

3.1 Survey of Safety Standards and Techniques

There are several approaches to manage safety in literature. Many deal with
the problem of designing a standard that guides the whole process (from iden-
tification to solution) while others are simple tools or techniques. Among the
standards we want to stress the European Standard EN 61508:2001 [7] and the
American ANSI/RIA R15.06-1999 [4]. Among the techniques for safety designs
we highlight fault trees [8] and ROPES [5] (Rapid Object-oriented Process for
Embedded Systems).

EN 61508:2001. This European standard sets up a generic approximation for
dealing with all the activities related to the life–cycle of the systems that use
electric and/or electronic and/or programmable devices for safety functions.
The other main purpose of this standard is to serve as basis for the develop-
ment of specific standards for each application sector, that would take into
account techniques and solutions typical of the sector.

ANSI/RIA R15.06-1999. The objective of this standard is to enhance the
safety of personnel using industrial robot systems by establishing require-
ments for the manufacture (including remanufacture and overhaul), installa-
tion, safeguarding methods, maintenance and repair of manipulating indus-
trial robots. It is the intention of this standard that the manufacturer (in-
cluding remanufacturer and rebuilder), the installer and the end–user have
specific responsabilities.

Fault trees. It’s one of the most popular approaches to identify, evaluate and
manage safety requirements. These trees provide a graphical notation and a
formal support that makes it easy to make the analysis from the perspective
of the system failures and their origins. However, they do not offer a global
framework for requirement specification as a discipline.

ROPES. ROPES is, in words of Douglass, “a development process that em-
phasises rapid turnaround, early proofs of correctness and low risk”. It’s an
iterative process that makes the design in small, incremental steps. Douglass
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proposes an eight–steps methodology for dealing with the safety aspects of
any system.

3.2 Process of Elicitation of Requirements

As last section shown, until a new standard derived from EN 61508 and targeted
to robotics appear, only the ANSI standard offers an specific guide to this kind
of systems. But ANSI encourages the use of hardware solutions (such as barriers,
light beams, buttons, etc), and does not provide any guide on the use of more
complex, software based, solutions.

To complete this lack of detail, the proposal “eight steps to safety” from
Douglass has been adopted. In it, Douglass proposes some design patterns ori-
ented to the achievement of a particular safety objective, such as multi–channel
voting pattern, watchdog pattern, safety executive pattern, etc. By using these
patterns we can design software solutions that conform to the needs imposed by
the ANSI standard, according to the level of risk of a particular hazard.

Finally, the technique of fault trees can be used to obtain the possible causes
of the failures that are analysed in the second step of the methodology we pro-
pose. Fault trees is a very used and mature technique, but it doesn’t help in
neither measuring nor classifying nor solving failures. We haven’t use this tech-
nique for obtaining the causes of the failures, although we think it would have
been a good idea to do so.

The four–steps methodology we present proposes the fusion of the standards
and techniques presented in subsection 3.1. It encourages the tracking of safety
throughout the life–cycle of the robot (as EN 61508 proposes) and uses the ANSI
standard as a guide to classify hazards and to propose solutions. By completing
ANSI with the contributions of Douglass, it is possible to deal with the design
of software–based solution that are more complex than a simple barrier.

Step 1 I Identify hazards. It is desirable that a system should normally
work without imminent hazards. So, the first step is to identify all the tasks that
involve the use of the system and that have potential hazards. After that, for
each task an analysis of the hazards is performed. Some possible sources for the
identification of hazards, that can serve as a starting point in their identification,
are the following ones (extracted from [4]):

• The movement of mechanical components, especially those which can cause
trapping or crushing.

• Stored energy in moving parts, electrical or fluid components.
• Power sources: electrical, hydraulic, pneumatic.
• Hazardous atmospheres, material or conditions: explosive or combustible,

radioactive, high temperature and/or pressure, etc.
• Acoustic noise, vibrations, EMI, etc.
• Human failures in design, construction, installation, and operation, whether

deliberate or not.
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This analysis of hazards also include the identification of the possible causes
of the failure (hardware, software or human), the task in which it can happen, the
reaction to the happening of the hazard, and some temporal data (adopted from
Douglass) relative to how long can the hazard be tolerated before it results in an
accident (tolerance time), the maximum amount of time to detect the happening
(detection time) and the maximum time to react to it (reaction time).

Step 2 I Identify risks. The objective of this second step is to identify the
possible risks of the system and classify them, according to the impact they
have on the environment and linking them to the hazards identified on the the
first step. The ANSI standard says that, for each risk, three characteristics have
to be evaluated. They are the level of severity, the level of exposure and the
level of avoidance, each with two different values (for a total of eight possible
combinations). Depending on the different values of these characteristics, a Risk
Reduction Category (RRC) is obtained. Based on the RRC, ANSI requires a
certain level of performance of the safeguard and circuit that are to be design
to reduce the risk (simple, single channel, single channel with monitoring and
control reliable). Moreover, ANSI also recommend the adoption of safety policies
to help human operators avoid some risks (training, presence detectors, security
barriers, etc).

After applying the safeguards designed for the specific RRC of the risk, a
new analysis is performed to calculate the residual risk, just to be sure that the
risk is kept at a tolerable level for both the system and the environment. This
process does not end here but has to be repeated during the life–cycle of the
robot to ensure that no new risk appears and that the risk already identified are
kept under control.

Step 3 I Specify safety requirements. The purpose of this third step is to
extract the safety requirements for the system from the results of the previous
steps. This is quite difficult to do, because neither ANSI nor Douglass offer a
methodology to deduce the requirements from the previous results, so this ex-
traction has been handmade. At this point, it’s necessary to have an appropriate
process for the harvest of requirements, a way to catalogue them so that they can
be reused in other systems of the domain of application (tele–operated robots in
our case), as well as tools for tracking the use of the requirements throughout
the development process and, in particular, until the architecture of the system.
This is the kind of work the Universidad de Murcia is doing inside DYNAMICA.

Step 4 I Make safe designs. The design of the architecture of the system
must consider the safety measures and avoid that the failure in a part spread
through the rest of the system. A safe design must start off with the previous
requirements of security (third step) to adopt a concrete architectural pattern
that could be periodically reviewed when new hazards are identified. To be able
to do it, to be able to be adaptable, a rigorous architectural approach that allows
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the evolution of the architectural model due to new requirements or by evolution
of the conditions of work is necessary.

4 Safety in the EFTCoR Project

In this section we present an example of the application of the process to obtain
the safety requirements for the crane robot of the EFTCoR project. The crane
robot uses a commercial crane as the primary positioning system (see Fig. 2-
a) and a XYZ table as the secondary positioning system (see Fig. 2-b). The
crane has its own control (provided by the manufacturer), a height of twelve
meters and a weight of twenty tons, which make unavoidable the movement
of the robot with the consideration of safety requirements. It also has, in its
central zone, an articulated arm of two tons for holding the XYZ table (which
includes a cleaning tool). The control system of the XYZ table has been designed
to follow the cleaning instructions from a human operator or from a computer
vision system, which finds the areas of the hull to be blasted.

a) Crane b) XYZ table

Fig. 2. Crane robot for cleaning vertical surfaces in EFTCoR

Due to the extension of the work, only the results of the safety analysis for
the primary position system (tasks, hazards and risks) will be presented (see
subsection 4.1). Subsection 4.2 presents the solution adopted for the hazard
“The arm of the primary system does not stop” (see table 2, H13).

4.1 Identification of Hazards and Risks for the Primary System

Using the functional requirements of the EFTCoR system as a starting point, a
total of 30 different tasks with a potential hazard have been identified (excerpt
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in Table 1). These tasks are performed not only by the operator of the robot
but also by the maintenance and cleaning staff, can have been planned or not,
and their frequency can be daily, weekly, monthly, annually, etc. Table 2 shows
an excerpt of the 31 hazards related to the tasks to be performed by the robot
(only the hazards related to the primary are shown). These two tables comprise
the first step.

# Type Description

T1 Operator Move the primary (rail)

T2 Operator Move the primary (vertical axis)

T8 Operator Execute a sequence

T20 Maintenance Calibrate one of the axes of the primary

T23 Maintenance Repair an axis (primary or secondary)

Table 1. Excerpt of tasks related to the primary system

Hazard Risk Origin Prob. Reaction

H3.Person in the rail Very
severe

There’s a person
standing on the rail

Med. Raise alarm. Stop the
primary. Emergency
stop

H4.Obstacle in the
rail

Severe There’s an obstacle
on the rail

Med. Raise alarm. Stop the
primary. Emergency
stop

H5.Obstacle in the
vertical axis

Very
severe

There’s an obstacle
on the trajectory

High Raise alarm. Stop the
primary. Emergency
stop

H7.The limit switch
of the vertical axis is
passed

Very
severe

Sensor or software er-
ror. Comm failure

Low Raise alarm. Emer-
gency stop

H8.The limit switch
of the rail is passed

Very
sever

Sensor or software er-
ror. Comm failure

Low Raise alarm. Stop
power source

H13.The arm of the
primary system does
not stop

Very
severe

Joint control error.
Comm or power fail-
ure

Low Raise alarm. Stop
power source. Emer-
gency stop

H15.The sequence of
the primary does not
end

Very
severe

Sequence control er-
ror. Comm failure

Low Raise alarm. Stop
primary

Table 2. Excerpt of hazards related to the primary system

Finally, Table 3 shows the results of the step identify risks, but just for the
hazards related to the primary positioning system (with the consequences of an
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accident, the RRC required according to ANSI, the safeguard adopted and the
residual RRC).

# Risk RRC Solution RRC

H3 Run over a person R2A Add presence sensors to the rail. Add an
acoustic signal when the robot moves

R3B

H4 Damage obstacle and
primary

R2A Add presence sensors to the rail. Add an
acoustic signal when the robot moves

R3B

H5 Damage obstacle and
primary

R1 Add presence sensors to the vertical axis. R3B

H7 Damage to equipment or
primary or persons

R2B Add mechanic limits R4

H8 Damage to equipment or
primary or persons

R2B Add mechanic limits R4

H13 Damage to equipment or
primary or persons

R2B Add an emergency stop mechanism. Add
sensors external to the control loop

R4

H15 The robot can even
knock over

R2B Add an emergency stop mechanism. Add
sensors external to the control loop

R4

Table 3. Excerpt of solutions for the primary system hazards

4.2 Analysis of a Hazard: “The Arm of the Primary System does
not Stop”

An analysis with detail of this hazard takes us to associate the following possible
sources of error: (1) any sensor integrated with the motors that move the arm
fails; (2) the electric power is off and (3) the control unit does not run correctly
(a hardware fail or a software error). The hazard H13 may imply the breaking of
mechanical parts, the precipitation of components to the floor or damages to the
human operator. See table 2 and table 3 for the characterisation of this hazard.

Following the ANSI standard, the levels of the severity of the injury, the
frequency of the exposure and the probability of avoidance are evaluated. This
evaluations results in a RRC of R2B. Figure 3 shows the deployment partitioning
of the system (using an extension of the standard UML notation) that accom-
plishes the R2B to R4 risk reduction for the hazard H13. This particular solution
uses the watchdog pattern from Douglass [5]. The limitation of space in this pa-
per does not allow us to give all the details related to the real implementation
of the safeguard for this hazard, although table 4 shows the connection between
the entities shown in the deployment diagram and their implementation in Ada.
Anyway, the full description of the solution follows:

1. When a movement command is received, the Man Machine Interface (MMI)
node forwards it simultaneously to the Control Unit node (that will exe-
cute it) and to the redundant node, which is in charge of detecting possible
hazards (Safety Control node).
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Fig. 3. Deployment diagram for H13

2. The Control node reads periodically the current position of the joint from a
sensor and controls the actuator. The Safety node is in charge of stopping
the motor when it detects that the motor is not working properly.

3. Just before the execution of any command, the Control node sends a mes-
sage to the Safety node, authorising the start of the movement. From here,
the Control Unit sends to the Safety node the current value just read from
the sensor. The Safety node answers with an acknowledgement that includes
as parameter the estimated value of the motor position. Both nodes compute
the curve of the discrete positions that must be reached by the robot arm,
depending on the initial value and the movement command. Any difference
between the calculated values (or no data at all) implies an anomaly in the
function of the robot movement (or communication link), which triggers the
stop of the robot and the generation of an emergency signal (both nodes
have access to the actuator).

Element from Fig. 3 Ada implementation Note

Node Task Does its main function (control, mon-
itor and MMI).

Watchdog Task Synchronous rendezvous with time-
out.

Access to hardware Protected object Periodically updated by a task.

Real time issues — Both node and watchdog are periodic
tasks. Watchdog has higher priority.

Table 4. Relation between deployment diagram and Ada objects
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4.3 Safety Conclusions for the Crane Robot

Although only the study of safety for the primary positioning system has been
presented, in this last subsection we want to present a summary of the conclusion
that can be extracted of the whole study. To do so, the 31 identified hazards
have been classified in six groups, depending on the type of safeguard adopted.
The following conclusions can be extracted from this study:

– 45% of the safety requirements do not affect neither the design of the archi-
tecture nor its possible evolution.

– 55% of the safety requirements do affect architecture:
• 40% imply the addition or extension of some components so that the

values of the actuators can be double–checked.
• 6.66% imply the design and adoption of redundant nodes as the one

described in subsection 4.2.
• 8.66% imply the addition of new sensors to the robot to monitor the

system (generally, safety–related sensors).

These extensions or additions to the basic architecture (based only on the
functional requirements) due to the safety requirements, mean the need of mak-
ing cross verifications in practically every level of the architecture, which makes
the process of designing the architecture harder and more complicated.

5 Conclusions and Future Works

It is always desirable to make the analysis of the possible hazards for any system
to improve its design and safety. When the system interacts with the environ-
ment and/or with humans (as project EFTCoR does), the analysis becomes
indispensable. But the analysis of hazards is a complex process that needs the
support of a methodology. The more domain–specific the methodology, the more
accurate the results will be. We have used the ANSI/RIA standard as the basis
for the identification and classification of the hazards, risks and the safeguards
to be adopted to reduce the risks to acceptable levels. This standard can be
complemented by the safety patterns extracted from Douglass when designing a
more complex solution and the use of fault trees to identify the possible causes
of failure. In this sense, we hope that soon an European standard, derived from
EN 61508 and specifically targeted to robotics systems, soon appears to fulfil
the lack of a methodology for safety requirements specification and solutions in
the EU.

Although it may seem that this work is the result of applying together
(“glued” even) several standars, the contribution of this work goes further on
because:

1. It gathers the methodologic experience of diverse authors, since this experi-
ence is usually absent in most of the standards.
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2. The range of application of the proposal is wider than that of one of a
single standard or technique seen in subsection 3.1, because this work covers
from requirements specification to the implementation patterns applied in
architectural design.

3. Lastly, a case study of a real application has been presented, where the safety
requirements were naturally present from the beginning of the proyect, not
added later.

From the work on safety requirements for the crane robot two important
conclusions can be extracted: (1) only half of the safety requirements really affect
the software architecture of the system and (2) only a few fraction of them require
the use of external redundant control that must conform to the strictest level of
safety. Nevertheless, since security requirements are, conceptually, independent
of the functional ones, it would be more than desirable to have an architectural
approach that allows this conceptual separation of concerns could be used by the
designer. This is the line of work we are currently working on in the context of
the research project DYNAMICA with the Universidad Politécnica de Valencia
(Spain) and its ADL, PRISMA. It’s also necessary to have a proper methodology
to extract the safety requirements from the tables of risks and hazards and to
have tools to catalogue them and to track their use and ease their reuse in another
products of the same family, which is the aim of that project also shared with
the University of Murcia in Spain.
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