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ABSTRACT Proposing a novel hybrid uniform theory of diffraction-physical optics (UTD-PO) formulation,
we develop a method to calculate the E-plane radiation pattern of corrugated E-plane rectangular horn
antennas with rectangular corrugations. We derive the technique from the estimation of the total field that
reaches the emitting source (a magnetic current line), thereby assuming the impingement of a plane wave
above the horn (reciprocity is applied). To validate our method, we compare the performance of the UTD-PO
analysis with that of the electric field integral equation (EFIE) solved using the method of moments (MoM).
Our method shows improved computational efficiency over EFIE and other numerical techniques that fully
discretize the geometry.

INDEX TERMS Corrugated antennas, pattern analysis, multiple-diffraction, uniform theory of diffraction.

I. INTRODUCTION
Corrugated horn antennas with rectangular corrugations have
distinct features that set them apart from conventional (i.e.,
non-corrugated) horns. As such, they are well-suited for
application at microwave frequencies, e.g., when there is
a need for a low cross-polar response, radiation pattern
symmetry, low side-lobes and back-lobes, or broad-band
performance [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].
However, analyzing the radiation patterns of corrugated
horns in or below the mm-band (encompassing a number of
corrugations per wavelength) demands complex numerical
techniques that engender high computational costs [11], [12].

Meanwhile, as shown in [13] and [14], for non-corrugated
E-plane rectangular horns the E-plane radiation pattern can be
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investigated via the ray-based uniform theory of diffraction
(UTD). This method uses the calculation of the total field
arriving at the emitting source (a magnetic current line),
assuming the impingement of a plane wave above the horn
(reciprocity is applied). Notably, such a rectangular horn’s
E-plane radiation pattern can be estimated via a 2-D approach
as the illumination remains constant [13].

This approach has produced applicable hybrid
UTD-physical optics (PO) solutions for corrugated horn
antennas whose corrugations are either V-shaped [14]
or cylindrical [15]. Such methods demonstrate enhanced
computational efficiency compared to alternative numerical
techniques that fully segment the geometry.

In light of this, the current work proposes a hybrid
UTD-PO formulation that offers an easier and faster way
to estimate the E-plane radiation patterns of corrugated
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FIGURE 1. Schema of the investigated E-plane of a corrugated E-plane
rectangular horn antenna.

E-plane rectangular horn antennas that have typically used
rectangular-shaped corrugations, i.e., are spaced and dis-
tributed equally across the horn’s faces. The presented tech-
nique is eminently applicable for investigating very densely
corrugated horn antennas with numerous corrugations per
wavelength.

II. THEORETICAL FORMULATIONS
Based on the UTD-PO solutions for evaluating multiple radio
wave diffraction over a series of plateaus, as given in [16]
and [17] for positive and negative incidence, respectively,
we may determine the normalized E-plane radiation pattern
of an E-plane rectangular horn with n rectangular corruga-
tions (see Fig.1 for the E-plane schema) by calculating the
following:

Pattern(dB) = 20 log10

(
|ET (θ )|

|ET (θ = 0)|

)
(1)

where ET (θ ) is the total field arriving at the emitting source
(considering reciprocity).

As Fig. 1 shows, we assume that this horn has n conducting
rectangular corrugations of width v and height d that are
distributed and spaced at a constant distance w along the
horn’s arms;w is also assumed to separate the emitting source
from the preceding rectangular section. Additionally, ρE is
the length of the faces of the horn and θE is the half-angle of
the aperture of the horn.

Fig. 1 presents three basic possible field contributions,
namely the direct ray (r), the ray multiply diffracted at the

horn’s upper face (r1), and the ray multiply diffracted at the
horn’s lower face (r2). Hence, five different zones can be
distinguished (Z1−5), in line with the contributions that reach
the receiving point at a given θ between 0 and π ; hence,
ET (θ ) takes on a different expression in assocation with the
considered zone:

Z1 (θ ≤ θE ):

ET (θ ) = Er+r1 (θ ) + Er2 (θ ) (2)

with

Er+r1

=
1
2n


n−1∑
q=0

Eq

[
exp [−jk(n− q)(v+ w) cos (θE − θ)]

+
1

√
(n− q)(v+ w)

·D
(

φ′
=

π

2
+(θE − θ) , φ=

3π
2

,L = (n− q)(v+ w)
)

× exp [−jk(n− q)(v+ w)]
]

+

n∑
r=1

E(r)
[
exp [−jk [(n− r)(v+ w) + w] cos (θE − θ)]

+
1

√
(n− r)(v+ w) + w

·D
(
φ′

= (θE − θ) , φ = π,L = (n− r)(v+ w) + w
)

× exp [−jk [(n− r)(v+ w) + w]]
]}

. (3)

This term represents the field of the r and r1 contributions
(using the solution presented in [16] for positive incidence).
E0 is the incident plane wave’s relative amplitude, k is the
free-space wave number, and D(φ, φ, L) is the diffraction
coefficient for a conducting wedge as per [18]; also

E(r)

=
1

2n− 1

{
n−1∑
m=0

Em
[
exp [−jk [(n− m)(v+ w) − w]

cos (θE − θ)] +
1

√
(n− m)(v+ w) − w

·D
(

φ′
=

π

2
+ (θE − θ) , φ =

3π
2

,

L = (n− m)(v+ w)−w) exp [−jk [(n−m)(v+w) − w]]
]

+

n−1∑
p=1

E(p)
[
exp [−jk(n− p)(v+ w) cos (θE − θ)]

+
1

√
(n− p)(v+ w)

·D
(
φ′

= (θE − θ) , φ = π,L = (n− p)(v+ w)
)

exp [−jk(n− p)(v+ w)]
]}

(4)

Meanwhile, based on the solution suggested by [17] for
negative incidence over a series of plateaus, we can estimate
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the second term of (2), Er2(θ ), as

Er2 =
1

n′ + 1

n′
−1∑

m=0

En′m (5)

where

En′m = E ′

n′m ±
(
E ′′

n′m − E ′′′

n′m

)
(6)

with (7)–(9), as shown at the bottom of the page, being that

E (1) = E0
1

√
v

· D
(

φ′
=

π

2
, φ =

3π
2

,L = v
)
exp (−jkv)

(10)

E ′ (1) = E0

[
exp (−jkv) +

1
√
v

·D
(

φ′
=

π

2
, φ =

3π
2

,L = v
)
exp (−jkv)

]
(11)

w′
= (n− m)w+ (n− m− 1) v (12)

n′
= n− 1, (13)

assuming Q2 and Q′

2 are the same point, and

E(0) = E ′

2

=
E0

2 ·
√
L2
D(φ′

2, φ2,L2)

× exp [−jk (w+ 2 · ρE sin θE · sin θ)] (14)

where D(φ2, φ′

2, L2) is the diffraction coefficient for an edge,
as per [19]; also

L2 = w (15)

φ2 = 2π (16)

φ′

2 = π + θE + θ (17)

Ei =

{
E(0), if m = 0
Em if m ̸= 0

(18)

Here, to calculate Er2, we consider the first diffraction
at the edge of the end of the horn’s lower arm (Q2 and
Q′

2 are assumed to be co-located, as with a non-corrugated

horn), which delineates the field over the subsequent
rectangle (E ′

2). With the direct ray having already been
considered in (3), we then calculate the remaining multiple-
rectangle diffraction via the grazing incidence over the
rectangular sections; hereby, the smaller angle of incidence
(θE − −θ ) elevates the relevance of the multiple diffraction
effect compared to that due to the array of corrugations at
the horn’s lower arm, which has a greater angle of incidence
(θE + θ ).
Z2 (θE< θ ≤ π /2):

ET (θ ) = Er1 (θ ) + Er2 (θ ) (19)

with

En =
1
n

n−1∑
m=0

Enm (20)

considering (6), and (21)–(23), as shown at the bottom of the
next page, considering (12), and

Ei =

{
1, if m = 0
Em if m ̸= 0

(24)

E (1) = E0
1

√
v

· D
(

φ′
=

π

2
+ α, φ =

3π
2

,L = v
)

× exp (−jkv) (25)

E ′ (1) = E0

[
exp (−jkv cosα) +

1
√
v

·D
(

φ′
=

π

2
+ α, φ =

3π
2

,L = v
)
exp (−jkv)

]
,

(26)

with α = θE−θ .
Furthermore, the second term of (19), Er2(θ ), can be

calculated as in Z1.
Z3 (π /2 <θ ≤ θE + π /2):

ET (θ ) = Er1 (θ ), (27)

E ′

n′m =
1
2

Ei
1

√
(v+ w′)

D
(

φ′
=

π

2
, φ =

3π
2

,L =
(
v+ w′

))
exp

(
−jk

(
v+ w′

))
+E (1)

1
√
w′
D

(
φ′

=
π

2
, φ =

3π
2

,L = w′

)
exp

(
−jkw′

)
 (7)

E ′′

n′m = Ei

 exp
(
−jk

(
v+ w′

))
+ exp (−jkv)

1
√
w′

·D
(

φ′
=

π

2
, φ =

3π
2

,L = w′

)
exp

(
−jkw′

)
 (8)

E ′′′

n′m =
1
2


Ei(exp

(
−jk

(
v+ w′

))
+

1
√
v+ w′

·D
(

φ′
=

π

2
, φ =

3π
2

,L =
(
v+ w′

))
exp

(
−jk

(
v+ w′

))
)

+E ′ (1)
[
exp

(
−jkw′

)
+

1
√
w′

· D
(

φ′
=

π

2
, φ =

3π
2

,L = w′

)
exp

(
−jkw′

)]

 (9)
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where Er1(θ ) can be calculated as in Z2.

Z4(θE+π/2 < θ ≤ π−θE ) :

Consider (27), with

Er1 =
1

n′ + 1

n′
−1∑

m=0

En′m (28)

and expressions (6)-(13), with Q1and Q′

1 now being assumed
to be co-located, and

E(0) = E ′

1 =
E0

2 ·
√
L1
D(φ′

1, φ1,L1) exp [−jkw] (29)

withD(φ1, φ′

1, L1) once more being the diffraction coefficient
for an edge, as per [19], and

L1 = w (30)

φ1 = 0 (31)

φ′

1 = π − θE + θ, (32)

with also considering (18).
Hereby, we obtain Er1 in the same manner with which Er2

was estimated in Z1.
Z5 (π -θE< θ ≤ π ):
Consider (19), with the estimation of Er1 being as in Z4 and

that of Er2 as in Z1, except that here,

φ′

2 = θE − π + θ (33)

III. RESULTS
As clarified in Section II, Fig. 2 presents a corrugated
E-plane rectangular horn’s E-plane radiation pattern as
estimated using the proposed UTD-PO technique, assuming
ρE = 15λ, θE = 35◦, 40 rectangular corrugations, verti-
cal/hard polarization, v = 0.26λ, and d = 0.375λ.
To validate the presented UTD-PO solution, we performed

a comparison between this pattern and the pattern obtained
for the same structure and parameters but based on [12]’s
solution, which applies a standard two-dimensional electric

FIGURE 2. E-plane radiation patterns of a corrugated horn with
40 rectangular corrugations – comparing the UTD-PO approach proposed
here with the EFIE technique [12]. The plot also presents the E-plane
radiation pattern of an equivalent horn with no corrugations. ρE = 15 λ,
v = 0.26λ, d = 0.375λ, and θE = 35◦.

field integral equation (EFIE) that is solved using the method
of moments (MoM) (through a code programmed by the
authors in FORTRAN 90). Based on subsectional, triangular-
shaped basis functions with linear variation defined in two
adjacent mesh segments, it was possible to calculate the
integral equation via the expansion of the unknown electric
current density; this was tested using these functions via a
Galerkin approach. To be more specific, 1531 basis functions
were used to produce the simulation of the corrugated horn
with rectangular corrugations in Fig. 2, thereby making
sure that there was at least one basis function every 0.2λ;
the evaluation of the reaction integrals was performed with
the maximum fifth order Gauss-Legendre quadrature rule.
We checked the numerical convergence of the integral
equation technique by progressively increasing the number
of basis functions and mesh segments. The numerical
convergence was achieved for a mesh segment length below

E ′
nm =

1
2

Ei
1

√
(v+ w′)

D
(

φ′
=

π

2
+ α, φ =

3π
2

,L =
(
v+ w′

))
exp

(
−jk

(
v+ w′

))
+E (1)

1
√
w′
D

(
φ′

=
π

2
+ α, φ =

3π
2

,L = w′

)
exp

(
−jkw′

)
 (21)

E ′′
nm = Ei

 exp
(
−jk

(
v+ w′

)
cosα

)
+ exp (−jkv cosα)

1
√
w′

·D
(

φ′
=

π

2
+ α, φ =

3π
2

,L = w′

)
exp

(
−jkw′

)
 (22)

E ′′′
nm =

1
2


Ei(exp

(
−jk

(
v+ w′

)
cosα

)
+

1
√
v+ w′

·D
(

φ′
=

π

2
+ α, φ =

3π
2

,L =
(
v+ w′

))
exp

(
−jk

(
v+ w′

))
)

+E ′ (1)
[
exp

(
−jkw′ cosα

)
+

1
√
w′

· D
(

φ′
=

π

2
+ α, φ =

3π
2

,L = w′

)
exp

(
−jkw′

)]

 (23)
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0.2λ (free space). A faster convergence can be obtained if
an adaptative mesh strategy is applied, i.e. using a fine mesh
around the corners of the corrugations, where stronger field
intensities can be observed. To facilitate the comparison, the
plot also presents the radiation patterns of an equivalent non-
corrugated horn, calculated both using the EFIE technique
outlined above (here, with 479 basis functions) and the UTD
method by [14].

The results reveal good agreement between our proposed
UTD-PO method and the EFIE technique for the horn
with rectangular corrugations. Indeed, this agreement is
particularly good for the main lobe and initial secondary
lobes, which represent crucial parameters for the analysis of
antenna radiation patterns.

Notably, because the radiation level is significantly lower
at the back than at the front, the application of numerical
techniques leads to increased divergence in line with the
numerical parameters, e.g. mesh density, type of basis
functions, and quadrature rule integration.

In computationally comparing the two methods presented
in Fig. 2, we find that the UTD-PO calculations for the
horn with rectangular corrugations need only 7 seconds to
complete, while the results from the EFIE technique obtained
using the same computer (an HP Z600 Workstation, 2.4 GHz
Intel Xeon processor, 8 Gb of RAM) require 43 seconds, i.e.
a six-fold increase. Thus, the proposed UTD-PO technique
offers a significant improvement in computational efficiency
compared to conventional techniques, such as EFIE, that
segment the entire structure.

IV. CONCLUSION
A technique using a hybrid UTD-PO formulation was utilized
to assess the E-plane radiation pattern of corrugated E-plane
rectangular horn antennas that have rectangular corrugations.
Validation of the technique was achieved by comparing it to
the electric field integral equation (EFIE) solved using the
method of moments (MoM).While there was good alignment
between these approaches (particularly good for the main
lobe and initial secondary lobes), the UTD-PO method
demonstrated superior computational efficiency, providing
the solution six times faster than EFIE.
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