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Abstmct- A new and simple spatial images method 
has been implemented for the numerical calculation 
of the Green’s functions in circular cylindrical enclo- 
sures. The technique is based on the imposition @$& replacements 
boundary conditions for the potentials, using a spatial 

X‘ = 0.5 X 

, images arrangement. Results show that the numeri- 
cal convergence of the novel technique is attained fast. 
They also demonstrate that the new Green’s functions 
lead to accurate results when analyzing real structures. 
The technique has been used for the efficient analysis 
of practical planar circuits shielded in circular cavities. 
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I. INTRODUCTION 
The analysis of shielded circuits and cavity backed an- 

tennas is a subject that has attracted recently the atten- 
tion of many investigations [l]. The main reason for this 
is the need to create software tools which can evaluate and 
predict the shielding effects occurring in many Monolithic 
Microwave Integrated (MMIC) high frequency circuits and 
cavity backed antennas mounted on vehicles [2]. 

For the analysis of shielded circuits and cavity backed 
antennas, the integral equation technique has grown in 
popularity due to its efficiency, and to the capability to 
push to a maximum the analytical treatment of the prob- 
lem [3]. The key element of any integral equation formula- 
tion is the ability to compute the Green’s functions of the 
problem. 

For the calculation of the Green’s functions, only the 
rectangular enclosure has been extensively treated in the 
past [4]. For this geometry the Green’s functions are usu- 
ally expressed, using spectral domain formulations, with 
slow convergence series of vector modal functions inside 
the rectangular cavity [4]. However, recently attempts 
have been reported to compute them using spatial domain 
formulations [ 5 ] ,  where the Green’s functions are expressed 
as slow convergence series of spatial images. 

Due to this particular mathematical formalism of the 
Green’s functions inside cavities, the circular geometry has 
been by far less exploited. In general, the Green’s func- 
tions formulation in circular geometries are based on spec- 
tral domain techniques, by using the corresponding vector 
modal series based on the Bessel functions [6]. However, 
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Fig. 1. 
this paper. 

this approach shows to be critical from the numerical point 
of view, since the higher order Bessel functions are not 
easily computed with high accuracy. Also, since the con- 
vergence of the series is slow, very high orders of Bessel 
functions are usually required. On the other hand, spatial 
domain formulations have not been applied to  the compu- 
tation of the Green’s functions in circular-cylindrical ge- 
ometries. This is mainly because an analytical solution 
for the spatial images of a point source in the presence of 
circular-cylindrical metallic structures does not exist. 

In this context, the paper presents a numerical tech- 
nique that can be used for the computation of the Green’s 
functions in circular-cylindrical cavities. The technique is 
formulated for the first time in the spatial domain, and it 
uses the theory of images to enforce the proper boundary 
conditions for the fields. In this paper the technique is ap- 
plied to the numerical calculation of the Green’s functions 
inside an empty circular-cylindrical cavity. Its extension, 
however, to consider dielectric layers inside the cavity is 
straightforward. 

Unitary dipole inside a circular cylindrical cavity studied in 

11. THEORY 
The geometry for the calculation of the mixed potential 

Green’s functions is presented in Fig. 1. As shown, a unit 
dipole is placed inside a circular-cylindrical metallic cavity. 
For the electric scalar potential Green’s function we should 
impose null potential on the cavity wall. If we impose 
this condition at only one point of the wall, then a proper 
choice will be to place an infinite plane tangent to the 
cylindrical wall at the point of interest, and then by image 
theory take a negative charge at the mirror position with 
respect to the plane. 
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Fig. 2. 
conditions for the electric scalar potential at discrete points along 
the cylindrical wall. Point P is a generic observation point. 

Image charges rearrangement used to  enforce the boundary 

It is desirable, however, to be able to impose the bound- 
ary conditions at more than one point of the cylindrical 
wall. To do so we continue with the same strategy, and 
now we take two tangent planes to the cylindrical cavity 
in order to impose the boundary conditions at two distinct 
points (see Fig. 2). The key point of the procedure is to 
evaluate numerically the value of the two image charges so 
that the boundary conditions for the potential me satisfied 
at the two selected tangent points. 

The same procedure can now be generalized in order to 
impose proper boundary conditions for the potential at N 
distinct points (T i )  of the cylindrical wall. The following 
system of linear equations is obtained: 

xqkGv(Fi ,T i ’ )  = -Gv(C,Fo’); 
k=l 

N 
Z = 1 , 2 , * . .  , N  (1) 

where ~ 1 1  positions vectors are shown in Fig. 2 ,  and 
Gv(T, ) is the potential Green’s function of a unit point 

The solution of this system gives the value of the N 
image charges ( q k )  needed to satisfy the boundary condi- 
tions for the potential at N distinct points of the cylindri- 
cal wall. The final scalar potential Green’s function inside 
the cylindrical cavity is simply evaluated by reusing the 
already computed charge amplitudes: 

. charge in free-space. 

N 

c;by,(p) = G V ( ~ ,  To’) + qk G V ( ~ ,  a’) (2) 
k=l 

For the evaluation of the magnetic vector potential 
dyadic Green’s function, a similar procedure is followed, 
but taking into account the vector nature of the quantity 
to be computed. Considering a unit dipole oriented along 
the z-axis (Fig. 3),  we first impose the boundary condi- 
tions at one point of the cylindrical wall. In this case, the 
zero tangent component of the electric field at the cav- 
ity wall leads ,to two different conditions for the magnetic 
vector PO tential: 

dpx;I=O; V . A = O  (3) 

t Y  \ 

Fig. 3. Image dipoles used to enforce the boundary conditions for 
the magnetic vector potential at, discrete points along the circular 
cylindrical wall. 

Expanding the divergence in cylindrical coordinates, the 
second condition can be translated to the normal compo- 
nent of the magnetic vector potential in the following way: 

(4) 

To impose both conditions at one point of the cylindrical 
cavity wall, we propose to use two orthogonally oriented 
dipoles, each one having different weights, as shown in 
Fig. 3. 

The same procedure can now be generalized in order 
to impose the right boundary conditions at N-arbitxary 
points along the cavity wall. Following this technique, a 
(2N x 2 N )  system of linear equations is obtained, namely: 

N 

- sin(cp,) C G ~ ( F ~ ,  r i ’ )  I; + cos(p,) 

( 5 4  
k=l 
N EG>Y(F.,T~‘) I: = sin(cp,) G ~ ( T , , % ’ )  
k=l 

N 

+ cos(cp,) ctk I: + sin(cp,) 

CEk I; = - cos(p,) cz,o: 

k = l  
N 

i = 1 , 2 . .  , N 
k=l 

(5b) 

where we have defined the following constants: 

Both constants can be computed, for a general niultilay- 
ered medium, in the spectral domain. For the case of free 
space, however, straightforward calculations lead to the 
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following closed form expression: 

Electric scalar potential G v  convergence along the Y-axis. 

Once the system is solved, all the amplitudes of the 
(2 N )  image dipoles (I:, 1;) are used to recover the mag- 
netic vector potential components inside the cylindrical 
cavity, in the following way: 

N 

Gzy,  ( F )  = Gy(F,  7‘0’) + I: G%z(T, T;’) (8a) 

GZy,(f9 = X I :  G:y((T,G‘) (8b) 

It is worth mentioning that, according to these expres- 
sions, an %-directed dipole will produce a y-component 
of the magnetic vector potential. This cross component 
is given by the y-component of the dipole images in the 
arrangement shown in Fig. 3, and physically it is caused 
by the curvature nature of the circular-cylindrical cavity 
wall. 

k = l  
N 

k=l 

111. RESULTS 
In order to check the numerical behavior of the tech- 

nique developed, we present in Fig. 4 the electric scalar 
potential Green’s function along the Y axis, for a cavity 
with radius a = X (Fig. 1). The figure shows the results 
obtained when 2, 10, 15 and 20 points are used to enforce 
the boundary conditions. It can be observed that the re- 
sults with 15 and 20 points are very similar, showing that 
convergence has been reached. It is interesting to  note 
in the figures that the right boundary condition for the 
electric scalar potential at the cavity wall is satisfied. 

Similar results are presented in Fig. 5 for the GZyl(T)  
component of the vector magnetic potential dyadic Green’s 
function along the Y-axis. Again the results are presented 

Fig. 5. Magnetic vector potential GSx convergence along the Y-axis. 
GT%dP0 

Fig. 6. Magnetic vector potential G T  evaluated with 20 images. 

when 2, 10, 15, and 20 points are used to enforce the 
boundary conditions. Also in this case the convergence 
is attained with about 15 points, showing the effectiveness 
of the derived approach. 

As already discussed, the curvature of the circular- 
cylindrical cavity generates a cross GTy, (F) component 
of the magnetic vector potential dyadic Green’s function 
(see equation (8b)). Fig. 6 presents a contour plot of this 
GEy,(T) cross component. It can be observed that this 
component tends to be maximum at directions 45O off the 
horizontal axis, while it is very small along the main X- 
axis of Fig. 1. 

As a validation example, we present in Fig. 7 the 
GFJc,, ( F )  component of the electric field dyadic Green’s 
function, along the Y-axis, as computed with the novel 
Green’s functions formulated in this paper. Furthermore, 
Fig. 8 shows the cross GgJ<.,(F) component, again along 
the Y-axis of Fig. 1. In the figures, we include for compar- 
ison the results obtained using a standard Surface Integral 
Equation technique, considering a unitary dipole inside 
a circular-cylinder of finite height. The surface Integral 
Equation utilizes the free-space Green’s functions, and it 
discretizes the finite lateral wall of the cylinder using trian- 
gular cells. The Integral Equation is solved with a Galerkin 
procedure, using roof-top basis functions defined on trian- 
gular cells. Both figures show the results obtained with 
the Integral Equation considering two cylinders of differ- 
ent heights (h/X = 2,4). It can be observed that the field 
recovered with the newly developed cavity Green’s func- 
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Fig. 10. Input impedance obtained with three different techniques. 

Fig. 8. Electric field GgJcyl(F) component along the Y-axis. 
IV. CONCLUSIONS 

tions is very closed to the field computed with the IntegTal 
Equation approach. 

For the numerical solution of the Integral Equations in 
these examples, 844 cells (1211 unknowns) were used in 
the discretization of the whole lateral cavity wall. On the 
contrary, the new Green’s functions axe calculated using 20 
points along the wall contour. It is important to point out 
that, in the novel formulation, the number of points needed 
to achieve good convergence depends on the electrical size 
of the cylindrical cavity. Numerical results have shown 
that good numerical precision is obtained when 15 points 
are used per wavelength of the cylindrical cavity radius (15 
points per a/A). 

As a final example, we have analyzed the square patch 
shown in Fig. 9, placed inside a circular-cylindrical cavity. 
Fig. 10 presents the input impedance obtained with the 
new mixed potential Green’s functions formulated in this 
paper. The integral equation is solved with the Method of 
Moments, by discretizing the geometry of the patch with 
triangular cells. In the figure we can compare these re- 
sults with those obtained using a spectral domain formu- 
lation inside a square waveguide of equal area [5].  Also, 
the results obtained with a free-space integral equation, 
are included. In this last case, both the patch and the 
cavity wall (of 20cm height) are discretized using trian- 
gular cells. The results using the new Green’s functions 
agree well with those obtained with the other techniques. 
These results confirm the usefulness of the derived Green’s 
functions for the analysis of real practical structures. 

In this paper we have presented a simple and efficient 
procedure to numerically evaluate the Green’s functions 
inside cylindrical cavities. The value of the approach de- 
rived is in that i t  can be used inside integral equation for- 
mulations for the analysis and design of shielded circuits 
and cavity backed antennas inside cylindrical enclosilres. 
The approach is based on the imposition of the boundary 
conditions for the mixed potential Green’s functions at dis- 
crete points of the cylindrical cavity wall. This imposition 
is achieved with the aid of discrete spatial images. 
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