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Abstract: Individuals with diabetes mellitus type 1 (DM1) tend to check their blood sugar levels
multiple times daily and utilize this information to predict their future glycemic levels. Based on these
predictions, patients decide on the best approach to regulate their glucose levels with considerations
such as insulin dosage and other related factors. Nevertheless, modern developments in Internet of
Things (IoT) technology and innovative biomedical sensors have enabled the constant gathering of
glucose level data using continuous glucose monitoring (CGM) in addition to other biomedical signals.
With the use of machine learning (ML) algorithms, glycemic level patterns can be modeled, enabling
accurate forecasting of this variable. Constrained devices have limited computational power, making
it challenging to run complex machine learning algorithms directly on these devices. However,
by leveraging edge computing, using lightweight machine learning algorithms, and performing
preprocessing and feature extraction, it is possible to run machine learning algorithms on constrained
devices despite these limitations. In this paper we test the burdens of some constrained IoT devices,
probing that it is feasible to locally predict glycemia using a smartphone, up to 45 min in advance
and with acceptable accuracy using random forest.

Keywords: constrained devices; diabetes; IoT; monitoring; machine learning

1. Introduction: The Forecasting Problem in Type 1 Diabetes Mellitus

Due to insulin deficiency, diabetes causes elevated blood sugar. Glycemic homeostasis
is a closed-loop process that regulates blood sugar in healthy people. Thus, the pancreas
produces insulin from β cells that are sensitive to high glucose levels and enables glucose
to enter cells, reducing hyperglycemia.

People with type 1 diabetes mellitus (DM1) cannot naturally regulate their insulin.
DM1 patients who do not make insulin must inject or hold an insulin pump to lower their
glycemic levels. Diabetics must also monitor their glucose levels multiple times a day and
use these data and other variables, such as meals, exercise, and others, to anticipate their
glycemia. Then, they must determine how much insulin they need to maintain normal
blood glucose levels (avoiding both hyper- and hypoglycemia). Thus, precise blood glucose
prediction is crucial for insulin dosing [1].

Thankfully, modern technology opens up new diabetes control alternatives. Continu-
ous glucose monitoring is now essential to diabetes management (CGM) [2]. This notion
has revolutionized diabetes management by continually providing glucose level magnitude,
tendency, frequency, and duration. CGM-based devices can take one glucose measurement
every minute (1440 day) and sometimes also measure other variables concurrently [3]. Such
data might improve glucose level prediction [4,5].

There are alternative methods to continuous glucose monitoring (CGM) devices that
can provide 24 h patient monitoring [6], which allows for the collection of essential health

Sensors 2023, 23, 3665. https://doi.org/10.3390/s23073665 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073665
https://doi.org/10.3390/s23073665
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0118-3406
https://orcid.org/0000-0003-0084-3844
https://orcid.org/0000-0002-3298-6439
https://orcid.org/0000-0002-9059-2569
https://doi.org/10.3390/s23073665
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073665?type=check_update&version=2


Sensors 2023, 23, 3665 2 of 19

data to aid in developing effective glycemia treatments. Specific variables, such as heart
rate, temperature, sleep quality, and exercise, can be reliably monitored using the primary
sensors found in commercially available smartwatches [7].

Telemedicine, used to monitor patients remotely, employs a wireless body area net-
work (BAN) comprising wearable computing units [8]. BANs need to incorporate all
functions that are either inside, outside, or close to the human form, along with commu-
nication capabilities. BANs are well-suited for observing patients’ biological signals in a
medical setting. A wireless body area network (WBAN) is created as a wireless network
formed with sensors that utilize a certain number of networks and wireless appliances that
remotely record biosignals in diverse circumstances. BANs mandate a body gateway and a
network hub, usually in the form of a smartphone.

However, current diabetes management body gateways [9] do not analyze biometric
data locally or predict blood sugar concentrations [10]. The data are transferred to an
adjacent gateway device, which then sends it to the cloud for enhanced analysis [11,12].
Since glycemia can change rapidly in DM1 patients and unforeseen changes in their daily
routine can occur, continuous monitoring of data is essential to predict future blood glucose
levels, and local computing and forecasting of glycemia may be necessary in the event of
lack of connection.

The study discussed here assumes that wearable devices can execute forecasting
algorithms that can interpret CGM sensor data in real time and create DM1 patient alarms
without cloud infrastructure, thus conserving battery power and memory. Researchers
and practitioners are increasingly interested in merging IoT constrained devices and using
them to compute.

In this paper, we investigate the feasibility of predicting glycemic levels in individuals
with diabetes mellitus type 1 (DM1) using wearable IoT devices and machine learning
algorithms. Specifically, we aimed to determine whether local processing and analysis of
continuous glucose monitoring (CGM) sensor data using lightweight machine learning
algorithms could achieve accurate and timely glycemia predictions, without relying on
cloud infrastructure.

We collected CGM sensor data from DM1 patients using wearable IoT devices, which
provided continuous glucose measurements every minute. We then used machine learning
algorithms, specifically random forest, to model glycemic level patterns and make predic-
tions up to 45 min in advance. To overcome the computational limitations of wearable
IoT devices, we implemented lightweight machine learning algorithms and performed
preprocessing and feature extraction to reduce the computational burden.

In the context of diabetes management, predicting future glycemic levels is a critical
task that enables patients to adjust their insulin dose and take necessary actions to prevent
hypo- or hyperglycemia. Predictive models leverage past glucose readings, along with other
relevant data such as meals, physical activity, and insulin doses to forecast future glucose
levels. These models can be based on statistical methods, machine learning algorithms, or
a combination of both.

The prediction process generally involves several steps, including data preprocessing,
feature engineering, model selection, and model training. Data preprocessing involves
cleaning and transforming the raw data to ensure its quality and consistency. Feature
engineering involves selecting and transforming relevant features from the preprocessed
data to feed into the prediction model. Model selection involves choosing an appropriate
algorithm or ensemble of algorithms that best fits the data and the prediction task. Model
training involves fitting the selected model to the training data, evaluating its performance,
and fine-tuning its parameters to optimize its predictive accuracy.

When selecting a prediction algorithm, several characteristics must be taken into
account, such as model complexity, interpretability, scalability, and generalization ability.
Model complexity refers to the number of parameters and computations required to fit the
model to the data. A more complex model may result in better prediction accuracy, but it
may also be prone to overfitting and may require more computational resources to train
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and deploy. Interpretability refers to the ability to understand and explain how the model
makes predictions, which is critical for clinical decision making and trust in the model’s
outputs. Scalability refers to the ability to handle large datasets and generalize well to new
data. Generalization ability refers to the ability of the model to make accurate predictions
on unseen data, which is crucial for clinical applicability and reliability.

In the context of wearable devices and IoT, additional factors such as energy efficiency,
memory footprint, and real-time processing capabilities must also be considered when
selecting a prediction algorithm. Machine learning algorithms that are lightweight, require
low computational resources, and operate in real-time can be ideal for predicting glycemic
levels on wearable devices. For instance, random forest and support vector machine (SVM)
are often used for glucose level prediction tasks in diabetes management due to their good
performance and relatively low computational cost.

Local analysis and forecasting may have interesting advantages, including that it may
be performed without an internet connection, which may be unavailable in distant areas,
during phone coverage failures, or if the unit is in flight mode and unable to acquire data
from the cloud (theatre, flight, or lessons). Additionally, local processing enhances data
control. Since wearable device data are not sent to the cloud, we can give users full control
over their data. This supports this research’s objective of data privacy. Smart healthcare
systems need data privacy.

Previous studies have used several approaches to anticipate glycemia, some of which
are better suited to a particular computing environment [13,14]. As more factors are
included, data processing needs will increase.

In this paper, we first introduced the problem of forecasting blood sugar levels in
individuals with type 1 diabetes mellitus (DM1) and its importance in managing the
condition. Section 2 provides a review of previous works and the related literature, offering
context and background information on the subject. Section 3 presents various methods for
glucose level prediction, including the techniques and algorithms used. In Section 4, we
detail the monitoring campaign undertaken to collect data for the study. Section 5 describes
the implementation of the selected techniques, including the hardware, software, and
configurations. Section 6 presents the results and discusses their implications, comparing
the performance of different approaches. Finally, Section 7 concludes the paper, summarizes
the findings, and suggests future directions for research in this area.

2. Previous Works and Literature Review

Constrained devices, such as smartphones and low-power electronics, have become
increasingly popular in biomedical applications due to their cost-effectiveness, portability,
and ease of use. These devices have been used for a wide range of biomedical applications,
such as disease detection, diagnosis, and monitoring. In recent years, researchers have
explored new techniques to enhance the capabilities of these devices while minimizing
their power consumption.

One of the key challenges in using constrained devices in biomedical applications is to
avoid developing demanding algorithms that can operate on limited resources. Shoaran
et al. [15] proposed an energy-efficient classification method for resource-constrained
biomedical applications. The proposed method utilizes a combination of optimized feature
extraction and machine learning algorithms to reduce power consumption while main-
taining high classification accuracy. The results demonstrated that the proposed method
achieved an F1 score of 99.23% with a 27× reduction in energy-area-latency product.

In addition to energy-efficient algorithms, wireless power transfer systems have also
been developed to enable long-term operation of biomedical devices without the need for
battery replacement. Ahire and Gond [16] presented a review of wireless power transfer
systems for biomedical applications. The authors discussed various wireless power transfer
techniques, including electromagnetic induction and radio frequency energy harvesting
and their potential applications in biomedical devices.
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Smartphones have also emerged as a popular platform for developing low-cost
and portable biomedical devices. Banik et al. [17] provided a review of recent trends
in smartphone-based detection for biomedical applications. The authors discussed various
smartphone-based sensors, such as cameras, microphones, and accelerometers, and their
potential applications in biomedical fields including disease detection and diagnosis.

Overall, the use of constrained devices in biomedical applications has shown great poten-
tial in improving healthcare accessibility and reducing costs. With continued advancements in
energy-efficient algorithms, wireless power transfer systems, and smartphone-based sensors,
the future of constrained devices in biomedical applications looks promising [18].

Computational effort is a significant challenge in executing machine learning algo-
rithms. Machine learning algorithms require a large amount of data and complex mathe-
matical computations to train models and make predictions. The size of the datasets used
in machine learning applications has significantly increased in recent years, and as a result,
the computational resources required to process these data sets have also increased.

The computational effort required to execute machine learning algorithms can be
affected by several factors, including:

• Model complexity: More complex models, such as deep neural networks, require more
computational resources to train and execute.

• Size of the dataset: Larger datasets require more computational resources to process.
• Hardware resources: The hardware resources available, such as CPU, GPU, and

memory, can affect the speed and efficiency of machine learning algorithms.

Overall, the computational effort problem in executing machine learning algorithms is
a significant challenge, but researchers and practitioners are continuously developing new
techniques to address this challenge and make machine learning more efficient and scalable.

Performing the task of forecasting glycemia requires a specific type of hardware. Given
that this task will be performed multiple times per hour, “on-the-fly” style, with the model
being recalculated and predicted each time, it is crucial to consider the execution time. The
computational effort required is a significant constraint, and to the authors’ knowledge, no
previous work in diabetes management has studied or compared the computational time
and accuracy of prediction methods to achieve a compromise solution.

Depending on the machine learning (ML) algorithm selected, we may face computer
limitations, not just due to the hardware, but also due to the software, including the
operating system [19]. This idea of device restrictions has been previously explored in more
demanding processes [20]. In that case, classification methods were studied and compared.

A comparison of ML performance in medicine can be found in ref. [21] with functional
magnetic resonance imaging (fMRI), where the accuracy of six different ML algorithms
(including RF and SVM) applied to the neuroimaging data of individuals responding to a
range of propositional statements was compared. RF was found to be more accurate than
SVM in this interesting study. Each algorithm’s performance was assessed by reducing the
feature set, reducing the amount of data to handle, and thus reducing the computational
effort without sacrificing accuracy.

In ref. [22], we find a general comparison of ML algorithms, including RF and SVM. In
this case, the algorithms were tested using the Gisette dataset, a free dataset for handwritten
digit recognition problems. SVM was one or multiple orders of magnitude faster, while RF
was more precise.

Some other approaches can be interesting, including novel approaches such as the
augmented Lagrangian method (ALM), one of the algorithms in a class of methods used
for constrained optimization of nonlinear problems (NLP) [23], which is applied in fields
such as optimal economic growing quantities for reproductive farmed animals [24] and
customer credit [25] and could also be applied to our problem.

In 2020, a study [26] presented different models of glycemia dynamics for improved
management of type 1 diabetes mellitus using advanced intelligent analysis in an Internet
of Things (IoT) context. The authors proposed a new model for glycemia dynamics that
takes into account the dynamics of both insulin and glucose levels. They compared this
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model with other existing models, including the well-known Bergman’s minimal model,
and evaluated the performance of the models using data collected from a clinical trial.
The results showed that the proposed model outperformed the other models in terms
of accuracy and efficiency. We affirm that random forest (RF), as both a predictive algo-
rithm and FS strategy, offered the best average performance (root median square error,
RMSE = 18.54 mg/dL) throughout the 12 considered predictive horizons (up to 60 min in
steps of 5 min), showing that support vector machines (SVM) had the best accuracy as
a forecasting algorithm when considering, in turn, the average of the six FS techniques
applied (RMSE = 20.58 mg/dL).

In 2021, another study [27] compared different feature selection and forecasting ma-
chine learning algorithms for predicting glycemia in type 1 diabetes mellitus. The authors
used a dataset of glucose readings collected from patients with type 1 diabetes and com-
pared the performance of different feature selection techniques, including PCA and Lasso,
with different machine learning algorithms, including random forest, SVM, and LSTM.
The results showed that random forest and SVM with PCA feature selection outperformed
the other techniques in terms of prediction accuracy, whereas LSTM did not perform as
well. The authors also evaluated the interpretability of the models and concluded that the
Bayesian regularized neural network (BRNN) offered the best performance (0.83 R2) with a
reduced root median squared error (RMSE) of 14.03 mg/dL.

The authors have not found any data on computational effort in glucose prediction for
DM1. Therefore, this work’s primary goal was to improve the computational performance
of various glycemia forecasting methods. Then, we will analyze the possibility of running
these algorithms on small devices. Our findings could be applied to other similar ML
applications in time series data frequently used in medicine.

Using machine learning algorithms on constrained devices, such as wearable devices,
smartphones, and Internet of Things (IoT) devices, is challenging. These devices generate a
large amount of data, but their limited computational resources, including processing power,
memory, and battery life, make it difficult to efficiently execute these algorithms. Model
optimization techniques, such as model compression and pruning, can be used to reduce
the size and complexity of machine learning models. Specialized hardware, such as GPUs
and ASICs, can also be used to accelerate the execution of machine learning algorithms.
However, despite these optimizations, the problem of computational effort in constrained
devices remains a significant challenge, and further research is required to develop new
techniques and algorithms that are specifically designed to run efficiently on these devices.
Edge computing is a promising approach that can reduce the need for data transmission
and improve the efficiency of machine learning algorithms on constrained devices.

Constrained devices are electronic devices with limited resources, such as computing
power, memory, and battery life. They are designed for specific tasks and typically have
small form factors and low power consumption, making them suitable for use in various
Internet of Things (IoT) applications and embedded systems [28]. The Internet of Med-
ical Things (IoMT) is an ecosystem of connected medical devices and sensors that help
healthcare providers to gather, analyze, and act on patient data in real time. Constrained
devices play a crucial role in this ecosystem by providing the means to collect, process, and
transmit medical data from remote and often challenging environments.

Examples of constrained devices include smartphones, wearable devices, smart sen-
sors, and embedded systems in automobiles, appliances, and medical devices. These
devices often operate in environments with limited network connectivity, low processing
power, and limited storage.

To accommodate the limited resources of constrained devices, engineers must consider
the device’s constraints when designing software and applications. This requires a different
approach to software development compared to traditional desktop or mobile applications.
Constrained devices typically use lightweight protocols and data formats, such as message
queuing telemetry transport (MQTT) [29] and constrained application protocol (CoAP) [30],
and usually rely on edge computing or cloud computing to perform some processing tasks.



Sensors 2023, 23, 3665 6 of 19

MQTT is a publish/subscribe messaging protocol that is optimized for low-bandwidth
and high-latency networks. It allows devices to efficiently exchange messages with a server,
known as a broker, while minimizing the use of resources.

CoAP is a RESTful web transfer protocol that is designed for use with constrained
devices and networks. It is a highly efficient protocol with a small code footprint and low
network overhead.

Both MQTT and CoAP are designed to minimize the use of resources and provide
reliable communication between devices, even in challenging network conditions. This
makes them well-suited for use in constrained devices, which often have limited computing
power [31], memory, and network connectivity.

With these limitations, we focused on the challenge of executing ML algorithms locally,
considering the limited computational power. However, there are several strategies for
running machine learning algorithms on constrained devices, despite these limitations.

One approach is to perform some or all of the processing on a more powerful device,
such as a server or cloud-based system. Another strategy is to perform preprocessing on
the data collected by the constrained device [32], reducing the amount of data that needs to
be transmitted [33] to the more powerful device for analysis.

Another approach is to use lightweight machine learning algorithms that have a
smaller computational footprint. These algorithms should be designed to be fast, efficient,
and require fewer resources to run than more complex algorithms, such as deep neural
networks. This makes them well-suited for use on constrained devices.

3. Methods for Glucose Level Prediction

Figure 1 depicts the fragmentation of acquired data into input windows for the patient-
centered prediction model. Every 5 min, a single measurement is taken to sample the
CGM sensor’s data. The sampled values are used to create a moving window for the past
(PSW), which contains historical values of the last 6 h. The PSW regulates the quantity of
data used by the model for prediction. On the basis of the data from the moving window,
the model continually forecasts glucose levels 15 and 45 min prior to the present time at
predetermined prediction horizons (PH).
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Figure 1. Cross-validation and time series analysis using a slide window.

The sliding window operates as described. Every time a new CGM value is received,
the training dataset is restructured by deleting the oldest observation, shifting all values up
by one place and then inserting the newly arrived value as the newest value. Consequently,
the size of the dataset and order of the observations are always maintained.

3.1. Feature Selection

Feature selection is an essential step in machine learning, which aims to identify the
most relevant features or variables that can improve the accuracy of a predictive model.
Feature selection techniques can be broadly categorized into filter, wrapper, and embedded
methods. However, some of these methods can be computationally demanding, which can
limit their applicability to resource-constrained devices.
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Filter methods are computationally efficient and commonly used in feature selection.
These methods evaluate the relevance of each feature independently of the model using
statistical tests or correlation analysis. For example, the Chi-squared test [34] is a widely
used statistical test in feature selection. These methods can efficiently identify the most
relevant features but may not consider interdependence between features.

Embedded methods are another class of feature selection techniques that are com-
putationally efficient and integrated with the learning algorithm. These methods aim to
learn the best subset of features during the training process. For example, Lasso [35] and
ridge regression are widely used embedded methods that can automatically select relevant
features while simultaneously regularizing the model to prevent overfitting.

Wrapper methods are computationally demanding as they involve evaluating different
subsets of features by repeatedly training and validating the model [36]. These methods can
accurately select the most relevant features but may not be suitable for resource-constrained
devices. For example, recursive feature elimination (RFE) is a popular wrapper method
that recursively removes features and evaluates the model’s performance until the optimal
subset of features is identified [37].

In summary, filter and embedded methods are computationally efficient and suitable
for feature selection in resource-constrained devices. These methods can efficiently identify
the most relevant features and improve the predictive accuracy of the model. On the other
hand, wrapper methods may be computationally demanding but can provide accurate
feature selection. Hence, the choice of feature selection technique depends on the available
computational resources and specific requirements of the application.

We then used Lasso regression. It aims to minimize the cost function and automatically
identifies the relevant features while discarding the redundant or irrelevant ones. This is
achieved by setting the coefficient of the discarded feature to zero in the regression model.

3.2. Forecasting Algorithms

The glucose level prediction methods considered in this work are the following:
Random forest (RF): RF bagging is a method used by algorithms that is characterized

by the repeated sampling of data instances in order to generate different training subsets
based on the same training data [38]. Following the completion of each training subset,
decision trees are generated, which are then compiled into an ensemble. The result of an
incoming data instance class label is ultimately decided by a unit vote that is cast by each
tree. The use of RF is versatile and needs just a small amount of processing resources.

In time series forecasting, random forest can be used to model the relationship between
the past values of a time series and its future values [39]. To do this, the algorithm first
divides the time series into training and testing sets. The training set is used to train the
decision trees, while the testing set is used to evaluate the performance of the algorithm.

Each decision tree in the random forest model is trained on a random subset of the
training data, and each tree is grown to a different depth. The final prediction is made by
combining the predictions of all the trees using a majority voting mechanism. This process
helps to reduce the variance and overfitting associated with individual decision trees.

Support vector regression (SVR) [40]: Support vector regression is a machine learning
algorithm that is commonly used for regression tasks. It is computationally efficient, even
for large datasets, and can be used for time series forecasting by converting the time series
into a regression problem. It is a type of regression analysis that uses support vector
machine (SVM) to model the relationship between the inputs and outputs.

In time series forecasting, SVR can be used to model the relationship between the past
values of a time series and its future values. To do this, the algorithm first divides the time
series into training and testing sets. The training set is used to train the SVM, while the
testing set is used to evaluate the performance of the algorithm.

The goal of SVR is to find the best function that can accurately predict the output
based on the inputs. This function is represented as a hyperplane in a high-dimensional
feature space, and it is trained using a set of support vectors that define the hyperplane.
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The SVM algorithm optimizes the hyperplane such that it maximizes the margin between
the hyperplane and the support vectors, while also ensuring that the prediction error
is minimized.

Random forest and support vector regression (SVR) are generally considered to be
computationally efficient algorithms that can be used for executing machine learning tasks
on constrained devices like smartphones or Raspberry Pi.

Random forest is a decision tree-based algorithm that relies on the idea of constructing
a multitude of decision trees at training time and outputting the class that is the mode
of the classes (classification) or mean prediction (regression) of the individual trees. The
algorithm can efficiently handle large datasets with high dimensionality, and it is known
for being computationally efficient compared to other algorithms, such as neural networks,
which require significant computational resources.

Similarly, SVR is also known for its ability to handle high-dimensional data and for
being computationally efficient. It is based on the idea of mapping input vectors into a
high-dimensional feature space using a kernel function, which allows the algorithm to
efficiently find a linear regression function in that feature space. The algorithm can handle
non-linear data and is known to provide good results with relatively small datasets.

On the other hand, long short-term memory (LSTM) is a type of recurrent neural
network (RNN) that is often used for processing sequential data, such as time series data.
LSTMs can be computationally intensive, requiring a significant amount of processing
power and memory to run effectively. This makes them less suitable for constrained devices
such as smartphones or Raspberry Pi, which have limited computational resources.

In summary, while random forest and SVR are computationally efficient and can be
used for executing machine learning tasks on constrained devices, LSTMs may not be the
best choice due to their high computational demands.

The measure of predictive performance, the root mean square error (RMSE), is a metric
that is used in the analysis of prediction accuracy. This is the most commonly used metric
to measure prediction performance in the related literature.

All of the predictive tasks were optimized using hyper-tunning according to Table 1.

Table 1. Hyper-tunning parameters.

Algorithm Parameter Range

Random Forest (RF)

Max depth 10 to 70
Min samples leaf 1 to 4
Min samples split 2 to 10
n estimators 200 to 1200

Support Vector Regression (SVR)
C 0.1 to 1000
gamma 1 to 0.0001
kernel ‘rbf’

To develop a proper machine learning model, several steps need to be taken, including
data preparation, model training, and model evaluation. The following actions were taken
in the given scenario:

• Transformation: The first step is to consider the parameters that will be used as input
to the models. It is important to select the most representative features for the model,
and data transformation can help achieve this. For example, feature scaling or log
transformation can be used to normalize and standardize the data.

• Normalization: After transformation, the next step is to normalize the data. Normaliza-
tion helps to bring all the values within a specific range. In this case, the normalization
process was applied to scale all the values between 0 and 1.

• Evaluating metric: To evaluate the performance of the model, root mean square error
(RMSE) and R squared (R2) metrics were selected. RMSE provides an estimate of the
mean of the error found, while R squared describes the standard deviation of the fit.
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These metrics can help to determine how well the model is performing and if it needs
to be adjusted or retrained.

• Validation method: 10-fold cross-validation and 5 repetitions over the training dataset
were used as the validation method. Cross-validation is a technique used to evaluate
the performance of the model by splitting the dataset into training and testing sets.
The 10-fold cross-validation method involves dividing the dataset into ten equal parts,
using nine of them for training and the remaining one for testing. This process was
repeated five times to ensure the stability and reliability of the results.

• Test: Finally, the model is tested to evaluate its performance on the new data. This
step is important to determine if the model is able to generalize well on unseen data
and can be used for prediction.

In summary, developing a proper machine learning model involves several steps,
including data preparation, model training, and model evaluation. The steps listed in the
given scenario include data transformation, normalization, selecting appropriate evaluation
metrics, choosing a suitable validation method, and testing the model on new data.

One of the main contributions of this work compared to previous works is the com-
prehensive data collection approach, which combined data from multiple sources such as
CGM devices, Fitbit Charge 5 smart bands, and other bio-medical devices. This allowed for
a more detailed understanding of the factors affecting glycemic levels in type 1 diabetes
patients. The study also employed the Lasso algorithm for variable selection, enabling a
more focused and accurate prediction by considering only the most relevant variables. This
approach helped identify key variables and their ranking, providing valuable insight into
the factors affecting glycemia.

Another significant contribution is the use of sliding cross-validation for model build-
ing and later predictions, which takes into account the time window of past data and the
predictive horizon. This method ensures more robust models and predictions. Furthermore,
the study compared the performance and computational efficiency of two machine learning
algorithms, random forest (RF) and support vector regression (SVR), in predicting glycemic
levels. The comparison included both accuracy and computational efficiency, which is
essential for real-time applications on devices with limited resources such as smartphones
and Raspberry Pi devices.

4. Monitoring Campaign

To validate our proposal, a monitoring campaign was previously performed. The
diabetic person monitoring system consisted of a portable Abbott Freestyle Libre paired
with a smartphone, which could transfer data to the cloud. Software installed on the
patient’s constrained device regularly connected to the CGM device and other biomedical
devices through a secure NFC-based short-range wireless connection or Bluetooth Low
Energy to obtain the most current measurements [41].

The CGM sensor can measure blood glucose (milligram/deciliter, mg/dL) every
min [42] by inserting a sensor in the patient. With an average absolute relative subtraction
(MARD) of 11.4%, the value of the CGM sensor is an estimation of the real sugar level in
the blood [43,44], as specified by the manufacturer. The maximum lifespan of the CGM
sensor is fourteen days. A total of 13,440 h of data was collected.

The dataset was completed using the Fitbit Charge 5 smart band. This type of wearable
has experienced an important advance recently [45]. Each subject wore an intelligent watch
that continuously recorded the movement performed (number of steps), heart rate, and
minutes of sleep. Although they are not specialized medical gadgets, the inputs are
legitimate and their energy usage is lowering.

The aforesaid technology was tested on 40 DM1 diabetics in 2021 by local hospitals.
The research followed the Helsinki declaration. Table 2 lists the patients’ clinical features.
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Table 2. Information on the DM1 patients included in the trial.

Features Value

Number of patients 40
Sex 24 men–16 women

Population Characteristics Median Min Max
Age (years) 22.53 18 56
Body Mass Index (BMI, kg/m2) 21.30 18.25 23.71
Duration of diabetes (years) 12 4 29
HbA1C (%) 6.7 6.1 7.8

During monitoring, which is performed by passive means, patients were advised to
adhere to their normal routine and consume a calorically balanced diet.

We considered the following features collected in our experimental phase:

• Glycemia. A set of past measurements.
• Insulin injections: Past values of rapid doses of insulin.
• Meal ingestion: In the same manner as insulin, previous values.
• Exercise: The number of steps representing influential past data.
• Heart rate: Current value as well as previous ones.
• Sleep: Only values for “asleep” or “awake” were gathered for the data. It makes sense

to think of sleep as a compilation of all the times in the past that one has slept.

5. Implementation

Running machine learning (ML) algorithms on constrained devices like smartphones
or Raspberry Pi can be a challenging task due to the limited hardware resources available.
However, with the advancement of technology, it is now possible to run ML algorithms on
such devices. In this regard, there are several technical considerations that need to be taken
into account.

It is essential to select the appropriate ML algorithms that are optimized for running
on constrained devices. Some algorithms require high computational resources and may
not be suitable for such devices. Therefore, it is important to choose algorithms that have
been specifically designed to run on these devices.

The selection of the programming language and development environment is critical.
In general, high-level languages such as Python and R are preferred for ML tasks, and there
are various libraries and frameworks available that support these languages. For instance,
TensorFlow Lite and PyTorch Mobile are popular frameworks for running ML models
on constrained devices. On the other hand, there are several development environments
available, such as UserLAnd and Raspbian, that allow running ML algorithms on devices
with different operating systems.

It is important to optimize the code for efficient execution on constrained devices.
This can be accomplished by minimizing the memory usage and reducing the computation
time. The code can be optimized by using techniques such as pruning, quantization, and
compression, which can reduce the size of the models and improve their execution time.

Additionally, it is essential to consider the hardware limitations of the device when
running ML algorithms. For instance, the memory capacity, processing speed, and storage
space of the device need to be taken into account. In this regard, it may be necessary to use
techniques such as data batching, which can reduce the memory usage by processing the
data in smaller batches.

Running ML algorithms on constrained devices such as smartphones or Raspberry
Pi requires careful consideration of the algorithms, programming language, development
environment, code optimization techniques, and hardware limitations. By taking these
factors into account, it is possible to develop efficient and effective ML models that can run
on these devices.
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We used R v4.2.2 software together with the CARET (Classification And REgression
Training) tool version 6.0–93 to develop the initial models. In order to compare the perfor-
mance of two constrained devices, namely a smartphone and a Raspberry Pi, we conducted
several experiments.

The smartphone we employed for our experiments was a Samsung S22 model, equipped
with an octa-core Snapdragon 8 Gen 1 system-on-chip consisting of 1 × 3.00 GHz Cortex-X2,
3 × 2.50 GHz Cortex-A710, and 4 × 1.80 GHz Cortex-A510, as well as 8 GB of LPDDR5
RAM running at 5500 MHz. To leverage the device’s internal storage of 128 GB UFS 3.1 for
computation, we used UserLAnd, an open-source app that allows running several Linux
distributions, as a Debian simulator. Despite the fact that the Samsung S22 runs on Android
13, we were able to run R and its libraries on UserLAnd. To ensure that the computations did
not interfere with the device’s daily use, we reserved 7/8 cores for computation.

For the other device, we used a Raspberry Pi 4b. Raspberry Pi is an inexpensive
device created to facilitate computing in developing countries. It is affordable and has
sufficient capabilities that make it ideal for IoT development [46]. Raspberry Pi 4b leverages
a Broadcom BCM2711 SoC with a 1.5 GHz 64-bit quad-core ARM Cortex-A72 processor and
8 GB LPDDR4 RAM running at 3200 MHz. We performed computations using a Micro SD
HC 64GB UHS-3 Class 10. We ran the mathematical software R using Raspbian, a freeware
system with based on Debian, which is specially conceived for Raspberry Pi device. In this
case, we used all four cores to achieve the forecasting tasks.

6. Results and Discussion

For each of the patients, we performed user-centric assays in order to predict glycemia
using other concurrent variables. We decided to use the data from the past 6 h as previ-
ous work indicated that this was the most relevant time slot. We decided to predict at
15 and 45 min (predictive horizon, PH). We performed sliding cross validation for model
building and later predictions by shifting the time window of past data and thus the
predictive horizon.

Before the prediction phase, variable selection was performed using LASSO in order
to discuss the results of the variable selection ranking for that algorithm and historical data.
Figure 2 depicts the ranking obtained.
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We began by discussing the primary variable by itself, glycemia. Consequently, this
will serve as the expected characteristic and need to be an inlet variable in a model for
prediction (taking into account the past data).

In the ranking of importance, glycemia took the first position. Although some autore-
gressive models merely account for glycemia in the preceding half hour [47], these choices
are not properly explained. We need to realize that this characteristic in some manner
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incorporates many other conditions that might effect glycemia, so we saw the last six hours
as a recap of the past’s significant events.

Insulin was the second most influential feature, followed by meals. In this respect, we
may comprehend that the standard deviation for insulin was less, given that its behavior
was more consistent among individuals.

The major action of rapid-acting insulin (boluses) typically lasts for two and a half
hours, with a maximum at 90 min [48]. Nonetheless, there are indications of a longer,
lingering effect. Insulin on board has appeared often in the scientific literature; it refers
to the quantity of insulin that is now present in the body and, therefore, remains acting.
It includes basal insulin and residual fast insulin, which may exert a low-intensity (but
detectable) effect for a number of hours. It is believed to have an extraordinary impact
within 8 h [49], despite the fact that another study indicates an acting range of five to
eight hours [50].

The third crucial variable was the meals. In this instance, the effect seemed to be more
varied from patient to patient, which makes sense given that the nutritional makeup and
metabolism of each individual affect the absorption of food differently. Thus, a meal with a
higher amount of fat will alter glycemia later [51,52]; conversely, the consumption of fiber
might delay the absorption of carbs [53].

Inasmuch as exercise raises glucose demand and insulin sensitivity, its effect on
the evolution of glycemia has been investigated. It is highly correlated with heart rate,
and because of their high correlation, exercise data could be excluded because it can be
considered as included in the heart rate time series; however, this consideration must be
made with caution and is left open for consideration, depending on the dataset, patients,
and their habits.

This outcome was consistent with the literature on sports influence [54], in that it en-
compasses a broad variety of sports and intensities and exhibits a high degree of variation.
Regardless, exercise continues to have an impact up to 48 h afterwards [55]. Accord-
ing to the data, we could differentiate between a group of individuals who engaged in
high-to-moderate intensity sports and a minority who engaged in physical activities with
less intensity.

Heartbeat was variable number six. If an elevated heart rate is not the consequence
of physical exercise, it may be due to stress [56]. Moreover, variations in heart rate may
also be symptomatic of hypoglycemia [57]. Thus, heart rate responses vary considerably
among people.

Sleep was the last feature taken into account. In light of the fact that a lack of sleep
is associated with a rise in hyperglycemic stress hormones, the effect of the number of
hours spent sleeping was explored. Although having a low influence and being pretty
variable from person to person, sleep deprivation has been pointed as a cause of insulin
resistance [58], resulting in hyperglycemia in diabetic people.

We analyzed the results of the forecasting stage. These results are shown in Table 3.

Table 3. RMSE and CE according to algorithm and PH.

Algorithm PH RMSE (mg/dL) Device/CE (s)

Samsung S22 Raspberry Pi

RF 15 min 13.17 52.20 137.50
RF 45 min 26.21 54.61 144.37

SVR 15 min 17.20 31.02 97.27
SVR 45 min 35.05 32.55 98.43

In order to evaluate the performance of the random forest (RF) and support vector
regression (SVR) models for predicting glycemic levels in patients with type 1 diabetes
mellitus, the root mean square error (RMSE) was calculated for both models. The RMSE
values were then graphically displayed in Figure 3 for the RF model and Figure 4 for the
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SVR model. The RMSE values were calculated in the same manner for both models, and
the results were replicated equally for both PH on the Samsung S22 and the Raspberry Pi.
Additionally, to assess the computational efficiency of the models, the time required for the
model to perform the prediction calculations was recorded and presented as seconds taken
in the respective figures. The results of these analyses provide valuable insight into the
performance of the models and their computational efficiency, which can be used to inform
future research and development efforts in the field of type 1 diabetes mellitus management.
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In terms of accuracy, both algorithms performed adequately, with acceptable errors for
both RF and SVR. It is true that RF performed a more accurate prediction and SVR offered a
poorer prediction for the 45 min PH. In terms of the Parkes error grid [59], the performance
of both algorithms are shown in Figure 5 (RF) and Figure 6 (SVR). The grid is divided into
five zones, A through E, each representing a different level of clinical risk:

• Zone A: This zone represents the most accurate predictions, where the predicted blood
glucose values are very close to the reference values. Predictions in this zone are
considered clinically acceptable and would lead to appropriate treatment decisions.

• Zone B: Predictions in this zone are also considered clinically acceptable, although
they are less accurate than those in Zone A. The differences between predicted and
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reference values in Zone B may result in minor changes to treatment decisions but
would not pose any significant risk to the patient.

• Zone C: In this zone, the predictions deviate further from the reference values and may
lead to unnecessary treatment adjustments. While these discrepancies might not cause
immediate harm to the patient, they could result in suboptimal diabetes management.

• Zone D: Predictions in Zone D are considered potentially dangerous, as they could
lead to incorrect treatment decisions that may cause harm to the patient. For example,
a prediction in this zone might cause a patient to administer insulin when it is not
needed, resulting in hypoglycemia.

• Zone E: This zone represents the most inaccurate and dangerous predictions, where the
predicted values are entirely opposite to the reference values. Predictions in this zone
would lead to severe treatment errors that could have life-threatening consequences
for the patient.
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As we can see in Figure 6, the incursions in Zone C were more numerous.
The weight of a machine learning algorithm depends on several factors, such as the

size of the training data, the complexity of the model, and the computational resources
required to fit and use the model. In general, both support vector regression (SVR) and
random forest can be considered “heavy” algorithms compared to some simpler algorithms,
such as linear regression or k-nearest neighbors.

In terms of computational efficiency, random forest is typically considered to be a
heavier algorithm compared to support vector regression [60]. This is because random
forest builds multiple decision trees and combines the predictions of these trees to make
the final prediction. The computational cost of building these trees can be significant,
especially for large datasets. On the other hand, support vector regression is a relatively
simple algorithm that requires relatively low computational resources, making it more
computationally efficient compared to random forest.

In general, SVR can be considered a relatively lightweight algorithm compared to
random forest, especially for small to medium-sized datasets. SVR has a simple model
structure, and the optimization problem can be formulated as either a linear or non-linear
optimization problem, depending on the choice of kernel.

On the other hand, random forest is a more complex algorithm that can require more
computational resources, especially for large datasets. Random forest builds multiple
decision trees and combines their predictions to make the final prediction. This can be
computationally intensive, especially for large datasets, as each decision tree requires time
and computational resources to train.

The RF computational effort on a Raspberry Pi was at the limit of what was acceptable,
having average times that fell within the tolerable range considering that the sampling
frequency is 5 min. However, if we want to ensure that the device will be able to make
a prediction before the next data arrives, we should either run SVR or RF, but the latter
should be limited to running on the Samsung S22.

7. Conclusions

When comparing machine learning algorithms for forecasting, it is essential to consider
their computational requirements, as this can have a significant impact on their suitability
for constrained devices. Although both random forest and support vector regression (SVR)
can produce acceptable forecasting results, the actual computational requirements will
depend on the specific characteristics of the machine learning problem being addressed.

For small datasets, random forest may not be computationally intensive, and a power-
ful device may be able to handle the algorithm’s requirements with ease. On the other hand,
larger datasets may require more computational resources to process and SVR may become
more computationally intensive, especially if a non-linear kernel is used [61]. Therefore, for
machine learning problems with large datasets or complex non-linear relationships, SVR
may not be the best choice for constrained devices.

Despite this, random forest can provide highly accurate predictions for problems
with complex and non-linear relationships between inputs and outputs. The algorithm is
well-suited for handling noisy and non-linear data and can handle high-dimensional input
problems. In many cases, constrained devices can handle random forest-based forecasting
tasks with some limitations.

In conclusion, when selecting a machine learning algorithm for forecasting, it is
essential to consider the specific characteristics of the problem being addressed and the
computational requirements of each algorithm. While both random forest and SVR can
produce acceptable forecasting results, the actual computational requirements will depend
on the specific problem characteristics and the suitability of each algorithm for constrained
devices will vary accordingly. With careful consideration and optimization, however,
limited devices can still perform machine learning tasks such as forecasting effectively,
despite their computational constraints.
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The present study has taken into account the measurements of 40 diabetics, which may
be a limitation given the characteristics of the volunteers. Although our sample reflected
a wide range of glycemic control, it is possible that patients who experience very poor
disease care may suffer from poor accuracy performance.

One potential future direction for the proposed method is to explore the feasibility of
incorporating real-time physiological data on the fly in the predictive model. This could
lead to more accurate and personalized glucose level predictions, which could facilitate
more effective diabetes management.

Another direction is to investigate the potential of integrating the proposed method
with closed-loop insulin delivery systems, such as artificial pancreas devices, to create
a closed-loop system that can automatically adjust insulin dosages based on predicted
glucose levels. This could improve diabetes management by reducing the risk of hypo- and
hyperglycemia and potentially enhance patient quality of life.

Additionally, future research could explore the potential of applying the proposed
method to other types of diabetes, such as type 2 diabetes, and investigate its generalizabil-
ity to other populations, including pediatric and elderly patients.
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