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Resumen 
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vistos en la sección teórica, mostrando el ensamblaje de la estación robótica, la programación de cada 

uno de sus componentes y la implementación de la pantalla inalámbrica. Se presentan las 

conclusiones y una lista de referencias bibliográficas.  
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Santrauka 

 

Baigiamojo projekto tikslas – suprogramuoti ir paleisti dvigubą robotų stotį, sudarytą iš dviejų 

antropomorfinių rankų ir savo GUI. Šį projektą sudaro: įvadas, kuriame pristatomas darbo tikslas ir 

priežastys; teorinė analizė, kur apibūdinamos darbui atlikti reikalingos žinios apie robotiką, 

mikrovaldiklius, programavimą ir atvirojo kodo robotines rankas; teorinė dalis, kurioje pasirenkami 

komponentai, siūloma elektros ir valdymo sistemos konstrukcija, robotizuotos stoties ir jos 

mikrovaldiklių struktūra ir schema. Eksperimentinėje dalyje pristatomi teorinėje dalyje aptarti 

aspektai, parodomas robotų stoties surinkimas, kiekvieno jos komponento programavimas bei 

belaidžio ekrano sudarymas. Pateikiamos išvados ir bibliografinių nuorodų sąrašas.
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Introduction 

In the field of robotic arms, there have been constant advancements since their inception, enabling a 

growing variety of processes to be automated year after year. However, there were numerous tasks 

that could not be automated using a single robotic arm, but instead required human intervention. This 

led to the development of a new type of robot, the dual arm robot, consisting of two arms capable of 

working together and coordinating their actions. 

To automate these types of tasks, research has been focused on dual arm robots, which consist of two 

robotic arms that require more precise and advanced control to work together on the same task. These 

robots offer many new possibilities, including the ability to automate tasks that were previously only 

possible for humans to perform, such as manipulation or complex assembly of parts and even 

surgeries. Before the advent of dual arm robots, these tasks could only be performed by highly trained 

individuals, with all the limitations associated with humans: fatigue, physical constraints, efficiency, 

and precision. 

Moreover, developing a low-cost model of dual arm robots would be useful for assisting people with 

physical disabilities or difficulties, enabling them to perform certain activities or tasks that they 

otherwise could not do. Therefore, the objective of this project is to develop a functional dual robotic 

station, consisting of two anthropomorphic robotic arms, each being an existing open-source model, 

low-cost and 3D printed. 

In addition, this robotic station will be prepared with a central GUI, allowing both arms to be 

controlled in real-time and to create, save, and execute coordinated paths between them without the 

need of an external computer. This will create a functional dual arm robotic station for academic and 

research purposes, enabling future developments in this field. 

Objectives 

The objective of the final project is the programming and commissioning of a dual robotic station, 

made up of two anthropomorphic arms and its own GUI.  

To achieve this goal, it is divided into the following sub-objectives: 

1. Research on open source robotic arm models and selection. 

2. Selection and design of necessary electrical and electronic components for the robotic station. 

3. Robots assembly. 

4. Robotics Station Integration of both arms with the central box. 

5. Design and programming of the closed-loop motion control system. 

6. Implementation of the wireless touch panel to the central computer. 

7. Design and programming of the app responsible for coordinating the robots and remote control. 



16 

1. Theoretical Annalysis 

1.1. Robotic Arms 

Robotic arms first emerged in the 1960s and were initially used in various industrial processes such 

as welding or assembly of production parts [1]. The first robotic arm was Unimate (see Fig. 1). 

 

Technological advancements and demand from various industries have led to the development of 

different types of robots, including Cartesian robots, SCARA robots, collaborative robots, and 

articulated robots. Articulated robots are those with multiple joints, allowing them to perform 

complex movements. Within this type of robot, are the so-called anthropomorphic arms. 

1.1.1. Antropomorphic Robotic Arm 

An anthropomorphic robotic arm is a type of robotic arm with a structure similar to a human arm (see 

Fig. 2), allowing them to perform complex movements and operations. 

 

 

Fig. 1. Unimate, the first robotic arm [2] 

 

  

Fig. 2. Generic antropomorphic robotic arm [3] 
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Their structure is formed by a series of joints that simulate the anatomy of a human arm: shoulder, 

elbow, and wrist. Therefore, these robots are articulated arms formed by at least six DOF, because 

with less joints it can‘t simulate all the movements of a human arm [4]. However, some arm models 

have a greater number of DOF, allowing for greater movement capacity. 

1.1.2. Dual Arm Robot 

Dual arm robots are an evolution of conventional industrial robots, driven by the need to automate 

increasingly complex tasks and improve the versatility and capabilities of robots. Dual arm robots are 

formed by two robotic arms (see Fig. 3) which enable them to perform more complex tasks that 

require greater maneuverability and were previously more difficult to automate or had to be 

performed by humans[5]. 

 

This type of robot requires very precise control, as each arm must take into account the position of 

the other arm in order to perform a joint operation. If the position of the end-effector of one arm is 

not exactly what the other arm expects, this can cause the arms to not work together and the task 

cannot be completed[7]. 

1.2. Mathematical model of a robotic arm 

Creating a mathematical model of a robot is crucial as it allows us to understand the geometry and 

behavior of the robot. This model can also enable the subsequent calculation of the robot's kinematics 

and dynamics. 

One of the most commonly used methods for modeling a robot is to obtain the Denavit-Hartenberg 

parameters for each of the robot's joints [8]. These parameters are as follows: 

– Link length (d): The perpendicular distance from the 𝑍𝑖−1 axis to the  𝑍𝑖 axis, measured along 

the 𝑋𝑖 axis. 

– Rotation angle around the previous Z-axis (θ): The angle between the 𝑍𝑖−1 axis and the 𝑍𝑖 

axis, measured around the 𝑋i−1 axis. 

– Link offset distance (a): The perpendicular distance from the 𝑋i−1 axis to the 𝑋𝑖 axis, measured 

along the 𝑍𝑖 axis. 

– Rotation angle around the current X-axis (α): The angle between the 𝑋i−1 axis and the 𝑋𝑖 axis, 

measured around the 𝑍𝑖 axis. 

  

Fig. 3. YuMi, the ABB dual arm robot [6] 
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By obtaining these parameters, a table can be created, known as the D-H table (see Fig. 4), which 

describes the robot's geometry. These parameters can be used later for calculating the robot's forward 

kinematics and inverse kinematics. 

 

1.2.1. Forward kinematics 

The forward kinematics is a mathematical calculation that enables us to determine the position and 

orientation of each component of a robot, based on its mathematical model and the angles of its 

individual joints. If the D-H table of the robot has been obtained, the Denavit-Hatenberg algorithm 

can be used to obtain the forward kinematics. 

1.2.2. Inverse kinematics 

Unlike forward kinematics, inverse kinematics can calculate the configuration of a robot (angles at 

which each joint should be positioned) in order for the end-effector or a specific joint to be in a certain 

position and orientation.  

However, calculating the inverse kinematics for arms with more than three degrees of freedom (DOF) 

can become very complicated, as opposed to forward kinematics, since this calculation can have 

multiple possible results for each position and orientation.  

To calculate inverse kinematics, different methods can be used, such as analytical methods and 

iterative methods. Analytical methods use mathematical equations to obtain exact solutions, but they 

can only be used for robots with simple geometries, such as a two or three DOF robot, as the 

complexity of the equations and the number of possible results increase significantly for more 

complex geometries. Iterative methods, on the other hand, use an iterative approach to reach a 

solution, meaning that they adjust the joint angle values in each iteration until the result is close 

enough to a valid configuration. These methods can be used for robots with complex configurations. 

Therefore, to calculate the inverse kinematics of a 6-DOF anthropomorphic arm can be used an 

iterative method [10] such as Inverse Jacobian, Pseudo-inverse, Damped least squares, Newton-

Raphson or Levenberg-Marquardt [11]. 

  

Fig. 4. Denavit-Hartenberg table [9] 
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One of the main issues when calculating the inverse kinematics of a robot is the presence of 

singularities, which are configurations in which the robot loses one or more degrees of freedom, and 

the calculation of the inverse kinematics becomes indeterminate or impossible.  

To solve this problem, the Levenberg-Marquardt method has proven to be very useful, avoiding 

singularities and providing stable solutions in the presence of singular configurations in robots with 

multiple degrees of freedom [12]. 

1.3. Control Systems of a robotic arm 

Robotic arms are composed of different motors, sensors, and actuators. In this way, a robotic arm 

moves in a certain space to perform certain tasks. To achieve this, different types of control can be 

applied, which will determine its movement and how it executes these tasks. 

Two types of classification of these control systems can be made: 

– Classification based on the controlled physical magnitude. 

– Classification based on the type of control loop. 

1.3.1. Physical magnitude-based classification 

The control of different physical magnitudes can be classified as: 

– Position 

– Speed 

– Acceleration 

– Torque 

1.3.2. Looptype-based classification 

Open-loop control (Fig. 5): This type of control moves the robotic arm motors based on the expected 

operation, following a pre-defined programming, without considering any external disturbances or 

unexpected events that may occur, such as a motor skipping a step or colliding with an obstacle, since 

it does not have sensors to measure these physical magnitudes. 

 

Close-loop control (Fig. 6): In this case, sensors or encoders are used to measure real-time data from 

the system. Therefore, the physical properties of the system in real-time can be measured, adjusting 

the control action of the system. 

  

Fig. 5. Open-loop control schema [13] 

 



20 

1.4. Serial communication protocols 

Serial communication protocols are commonly used for short-distance communication, and 

microcontrollers typically support two types of serial communication protocols: 

1.4.1. I2C 

I2C is a synchronous serial communication protocol. It can handle multiple devices in the same 

connection. It uses two lines for the communication, SDA (Serial Data Line) and SCL (Serial Clock 

Line). Its architecture is master-slave, so, in an I2C connection the master will start a connection and 

send information, which will be received by the slaves.  

1.4.2. UART 

UART is an asynchronous serial communication protocol. It can connect two devices, and both of 

them can send and receive information in the same UART connection. It uses two lines for the 

communication, Tx(to transmit information) and Rx(to receive information). The Tx pin of each 

device is connected to the Rx pin of the other device. 

1.5. Programming tools for robotics 

In the field of robotics, different tools and libraries have been developed, making the programming 

of complex robotic systems easier and more effective. In fact, the use of these tools can be one of the 

main factors in deciding which language to program in or which hardware to select to control the 

robot. 

1.5.1. Marlin 

Marlin is an open-source firmware written in C++, and it is widely used for controlling 3D printers, 

CNCs, and other machines based on a microcontroller. Due to its high configurability and efficiency, 

it is also popularly used in open-source robotic arms[15]. 

Once installed on the microcontroller, this firmware can receive commands in the standard "Gcode" 

by a serial port. With these commands, the firmware can move the motors, change the speed, 

acceleration, actuate the gripper, among other functionalities. 

  

Fig. 6. Close-loop control schema [14] 
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1.5.2. ROS 

ROS is an open-source framework widely used in robotics, as it provides tools and solutions for most 

robotics projects and it is compatible with several programming languages, including C++ and 

Python.  

It is highly modular, and one of its characteristics is that these modules can even be distributed across 

different physical devices and connected through the network, making it easier to create complex 

robotic systems for all types of tasks. Furthermore, ROS has a wide variety of packages developed 

for all kinds of robotic applications, from moving a robotic arm to autonomous navigation, allowing 

them to be reused for other projects. 

For the control of a robotic arm, the package MoveIt! is available, which allows the control and 

motion planning of a robotic arm. It provides a pre-built graphical interface with a 3D environment 

to visualize the robot's movements in real-time[16]. 

MoveIt! is a very useful package, but it is computationally heavy to run, so it would be necessary to 

run it on an external computer, making impossible to use it in an embbeded system based in a 

microcontroller or a single-board compuer, because the GUI and the simulations are too heavy to run. 

1.5.3. Accelstepper library 

The AccelStepper library is an Arduino library used to control stepper motors, allowing to control the 

speed and the acceleration in each movement. Additionally, this library allows us to control multiple 

stepper motors, so all the motors grouped in a multiple controller start and end their movement 

synchronously.  

This makes this library a very useful tool for a precise control of robots with stepper motors based on 

a microcontroller such as Arduino, as it is optimized to realized coordinated control of multiple 

motors despite Arduino isn‘t able to use multi-threading. 

1.5.4. Robotics Toolbox for Python 

This is an open-source Python library that provides functions for mathematical analysis and 

simulation of robotic systems. This library is based on the famous MATLAB toolbox for robotics and 

was developed by Peter Corke, a robotics professor at the University of Queensland[17]. 

This library can be used to create the mathematical model of a robot and realize operations with it, 

such as direct and inverse kinematics calculation, dynamics, collisions, and drawing the robot in a 3D 

plot, among other things. 

In general, it provides tools for working with different types of robots, such as mobile robots, 

industrial robots, and manipulator robots, and has many tools for visualizing and simulating robotic 

systems. 
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1.6. Programming languages for GUI creation  

1.6.1. C++ 

C++ is a general-purpose programming language that was developed in 1983. It is an extension of 

the C language, implementing object-oriented features. C++ is a compiled programming language 

with low runtime overhead, and it is used in a wide variety of applications. One of these applications 

is the creation of GUI, which can be done easily through libraries such as Qt[18].  

Qt is an open-source framework used for creating GUI. This framework is easy to use and can develop 

cross-platform applications without having to rewrite the code enterely for each operating system. 

1.6.2. Python 

Python is an interpreted, high-level programming language designed to be very easy to write and 

read. Being interpreted, it does not need to be compiled, as the machine interprets the code and 

transforms it into machine code in real-time during execution. Additionally, this language includes 

several different libraries for creating GUIs, including PyQt and Tkinter[19]. 

PyQt is a library that allows for creating graphical applications using the Qt framework mentioned 

before. PyQt allows for creating user interfaces utilizing the power and versatility of Qt, while also 

taking advantage of the simplicity and ease of use of Python. This library is the best option for creating 

a complex project with an advanced GUI. 

On the other hand, Tkinter is the default Python library for creating graphical user interfaces. Tkinter 

is a very simple and easy-to-use library that is distributed along with most Python installations and 

uses the Tk graphics toolkit. It is highly customizable and ideal for creating simple and elegant 

interfaces, as it includes a large amount of functionality and is integrated into Python, making it very 

easy to get started with. 

1.7. Development boards 

There are different types of development boards available nowadays, which can be used to create an 

embedded system[20]. These boards can be mainly divided into two main types: 

1.7.1. Microcontroller boards 

This section is about boards designed around a microcontroller chip, which is a small computer that 

includes its own processor, memory, and input/output peripherals on a single integrated circuit. 

Microcontrollers have limited computing power, so they are usually programmed in C/C++. 

However, there are other tools that allow writing code for microcontrollers in other languages such 

as Python or Javascript. These microcontrollers can be programmed, and the code they contain will 

be executed when the board is turned on. There are different types of microcontroller boards, such 

as: 

– Arduino: It is the most famous development board in the world, and it has different models 

depending on the needs. The main models are Arduino Nano, Arduino Uno, and Arduino 

Mega. 
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– ESP: These development boards have become popular in recent years and have the peculiarity 

that, unlike Arduino boards, they have integrated Bluetooth and Wifi connections. The main 

models are ESP32 and ESP8266. 

– Raspberry: Despite mainly creating single-board computers, they also have a microcontroller 

board: Raspberry Pi Pico. 

A comparision between main microcontroller-boards is shown in Table 1. 

 

Table 1. Microcontroller boards comparision [21] 

Board GPIO UART I2C Precessor Memory Wifi Bluetooth 

Arduino 

Mega 

54 4 2 ATmega2560 256 KB 

Flash 

No No 

Arduino 

Uno 

20 1 1 ATmega328P 32 KB 

Flash 

No No 

Arduino 

Nano 

22 1 1 ATmega328P 32 KB 

Flash 

No No 

ESP32 36 3 2 ESP32-D0WDQ6 520 KB 

SRAM 

Yes Yes 

Raspberry 

Pi Pico 

26 1 1 RP2040 

Microcontroller 

264 KB 

SRAM 

No No 

 

1.7.2. Single-board computer 

These boards are designed to function as credit-card-sized computers that are capable of running a 

complete operating system. The most well-known brand is Raspberry, which has progressively 

developed increasingly powerful models, culminating in the current Raspberry Pi 4.  

On these boards can be insatalled a complete operating system such as Linux or Android. Its official 

operating system is called Raspberry Pi OS, which is based on the Debian distribution of Linux. 

Because of it in these boards you can use any programming language to create any type of program, 

as they function like a regular computer. In this way, these boards have GPIO outputs like 

microcontroller boards, while also possessing basic computer ports such as USB ports, HDMI, audio 

jack, and Ethernet port. 

A comparision between main Raspberry Pi models is shown in Table 2. 
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Table 2. Raspberry Pi versions comparision [22] 

Board Raspberry Pi 3 Raspberry Pi 3B+ Raspberry Pi 4 

Processor Broadcom BCM2837B0 

64-bit quad-core ARM 

Cortex-A53 

Broadcom BCM2837 64-

bit quad-core ARM 

Cortex-A53 

Broadcom BCM2711 quad-

core Cortex-A72 (ARM v8) 

64-bit SoC @ 1.5GHz 

CPU clock speed 1.2 GHz 1.4 GHz 1.5 GHz 

RAM 1 GB 1 GB 1 GB, 2 GB, 4 GB or 8 GB 

Ethernet 10/100 Mbps Gigabit Gigabit 

Wireless 802.11n 802.11n/ac 802.11ac 

Bluetooth 4.1 4.2 5.0 

USB ports 4 4 2x USB 2.0, 2x USB 3.0 

HDMI 1 1 2 (micro HDMI) 

GPIO pins 40 40 40 

 

1.8. Open-Source Robotic Arms 

Currently, there is a wide variety of open-source robotic arm projects, ranging from simple robots 

(3DoF) consisting of 3 servomotors[23], to much more complex robots such as the BCN3D Moveo, 

which has 6 DoF, uses stepper motors to move its joints, and employs a modified version of Marlin 

firmware, which is an open-source firmware commonly used in 3D printers and CNC machines and 

controlled through Gcode. 

In this section, I will present the characteristics, advantages, and disadvantages of different types of 

open-source robotic arms with at least 6 DoF and controlled by stepper motors. The models that will 

be presented are shown in Table 3. 

 

Table 3. Open-Source robotic arms comparision 

Robot DoF Payload (Kg) Reach (mm) Cost (€) Firmware Feedback 

BCN3D Moveo 6 0.8 538 400 Marlin No 

SmallRobotArm 6 ¿? 225 ¿? Custom No 

Thor 6 0.75 422.15 379 Marlin No 

Thor with addons 6 0.75 598 500 Custom Yes 

 

1.8.1. BCN3D Moveo 

This is a robotic arm developed by the company BCN3D Technologies, a Spanish company dedicated 

to the development of 3D printing. The 6-DOF arm (see Fig. 7) is 3D printed and uses an Arduino 

Mega, whose firmware is a modified Marlin. Therefore, to control it, GCode must be sent from a 

computer, making use of a generic GCode sender. 
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Advantages: 

– In comparison with other models, it has a great reach of 538mm. 

– Low cost. 

– It is mounted on a highly optimized and robust firmware. 

Disadvantages: 

– It can only be controlled by direct kinematics. To control it by inverse kinematics, an inverse 

kinematics calculator must be used in a separate software. 

– It does not include sensors for closed-loop control. 

1.8.2. SmallRobotArm 

SmallRobotArm is a 6 DOF robotic arm of small dimensions (see Fig. 8) that uses its own Arduino 

code to control the position of the joints. The arm has smaller dimensions compared to the other 

selected robotic arms, and it is not completely 3D-printed, as it has several metallic parts to give it 

structural integrity. 

 

  

Fig. 7. BNC3D Moveo robotic arm [24] 

 

  

Fig. 8. SmallRobotArm robotic arm [25] 
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Advantages: 

– Its firmware incorporates the calculation of direct and inverse kinematics. 

Disadvantages: 

– Low reach 

– Low payload 

– Most of the arm is not 3D-printed, so it is not easily modifiable. 

– It does not incorporate feedback in its joints. 

– Its firmware does not include a communication protocol. 

1.8.3. Thor 

This is a 6DOF arm, fully 3D printed (see Fig. 9) and controlled by an Arduino Mega [26]. Like the 

BCN3D model, it uses a modified Marlin firmware. However, unlike the BCN3D robot, this arm has 

its own software for sending GCode from a computer, called "Asgard". Despite this, the software is 

only capable of performing control in direct kinematics, and can only send movement commands to 

a robot. 

 

Regarding its electronics, this robot has its own custom PCB, which once assembled can be connected 

to the Arduino Mega to control all the stepper motors of the robot. This board was created because 

existing shields for an Arduino Mega only support 5 stepper motors, while this PCB supports up to 7 

stepper motors. 

Advantages: 

– Great reach of 422.15mm 

– Low cost 

– Optimized and robust firmware (Marlin) 

– Includes its own PC software for sending GCode to the robot. 

Disadvantages: 

– Can only be controlled in direct kinematics; inverse kinematics requires a separate kinematics 

calculator. 

– Does not include sensors for closed-loop control. 

– Its software only works for one arm, and can only send commands in direct kinematics. 

  

Fig. 9. Thor robotic arm [27]  
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1.8.4. Thor with addons 

This robotic arm (see Fig. 10), developed by dannyvendeheuvel, is a modification of the previously 

seen Thor model.  

 

This model also includes significant modifications from the original robot, such as: 

– Modified STL files, so that encoders can now be placed on each joint, allowing for closed-

loop motion control. 

– Change of microcontroller from an Arduino Mega to an Ultratonics Pro v1.0 board, which is 

a 32-bit board that supports multi-threading and is commonly used for 3D printing. 

Advantages: 

– Implements the possibility of closed-loop position control. 

– Greater reach than the original Thor model. 

– Improved microcontroller used. 

Disadvantages: 

– No firmware or software developed. 

– The improved microcontroller results in a considerable increase in budget. 

  

Fig. 10. Thor with addons wobotic arm [28] 
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2. Theoretical approach  

2.1. Robotic arm selection 

The first step consists of choosing which robotic arm will be used to develop the dual robotic station. 

Among the options of open-source anthropomorphic arms mentioned previously, the arms with the 

greatest range of motion are Thor and BCN3D Moveo. 

Between these two options, the version of Thor with addons stands out, because it already 

incorporates in the design support for encoders on each joint. This model is a robotic arm with 

feedback in each of its axes, with an intermediate microcontroller that will handle the gripper control 

and sensor data collection, so that only two signal cables have to run through the arm, in addition to 

the power supply and motor cables. 

But the major disadvantage of this model is that having feedback requires the use of a more powerful 

and substantially more expensive microcontroller, in this case the Ultratonics v1.0 board, which 

supports multi-threading and provides the possibility of controlling the motors while checking the 

position of each joint, but it has a price ten times higher than an Arduino mega, which is the controller 

used in the other models. 

Despite this, and due to budget limitations, it was decided to use an Arduino Mega, which has 

sufficient power for the simultaneous control of 7 stepper motors, performing feedback each time the 

motors reach the setpoint. To be able to do this, a new firmware had to be developed from scratch for 

being efficient. 

Therefore, the Thor with addons model will be used for the robotic station, with an Arduino Mega as 

the main controller and an Arduino nano for sensor reading and gripper control. 
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2.2. Mathematical model of the robot  

This robotic arm is divided into 6 joints as shown in Fig. 11. 

 

Measurement of each part is shown in Table 4. 

 

Table 4. Thor parameters values 

Variable Value 

L1 202 mm 

L2 160 mm 

L3 195 mm 

L4 67.5 mm 

Gripper 175.5 mm 

 

Knowing these data, the next step is to obtain its Denavit-Hartenberg parameters (see Table 5), which 

give us the mathematical model of the robot that can be used for subsequent calculations of direct and 

inverse kinematics. It has been added also a rotation of -90º to joint 3 (𝜃3 = −90º), so its initial 

position is completely vertical. 

  

Fig. 11. Thor parameters representation [29] 
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Table 5. Thor Denavit-Hartenberg table. 

Joints θ d a α 

Joint 1 0 L1 0 -90 

Joint 2 -90 0 L2 0 

Joint 3 -90 0 0 -90 

Joint 4 0 L3 0 90 

Joint 5 0 0 0 -90 

Joint 6 0 L4 + Gripper 0 0 

 

In addition to this, it will be also added to the model the minimum and maximum limits for the rotation 

of each of the joints, shown in Table 6. 

 

Table 6. Thor‘s joints angles limits. 

Joints Minimum(º) Maximum(º) 

Joint 1 -180 180 

Joint 2 -90 90 

Joint 3 -90 90 

Joint 4 -180 180 

Joint 5 -90 90 

Joint 6 -180 180 

 

To verify the right working of the mathematical model and to have a virtual environment for 

simulating and testing the robots has been used RoboDK[30]. RoboDK is a software used for 

simulation and programming of industrial robots, and you can even create your own robots in it by 

placing the 3D model of each part and bringing it to life through the Denavit-Hartenberg parameter 

table. In this way, the Thor robotic arm model has been virtualized as shown in Fig. 12. 
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After verifying the correct working of the model, the arm was painted in two different ways, 

differentiating both arms that will be used later in the robotic station (see Fig. 13). 

 

 

 

 

  

Fig. 12. Thor modeled in RoboDK 

 

  

Fig. 13. Robotic arms‘s models painted 
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2.3. Robot components 

2.3.1. Actuators  

As actuators, there are 7 bipolar NEMA 17 stepper motors (17hs3401). Each joint uses one motor, 

except for joint two, which is formed by two of these motors. This is because when the arm is 

stretched to one side, the moment created by the weight of the arm cannot be moved using a single 

motor. 

In addition to these, both motors in joint two and the motor in joint three will have a gearbox with a 

5.18:1 gear ratio, providing the necessary torque for the motors to move the robot. 

As an additional actuator, there is a 30kg strength servo motor, which is responsible for opening and 

closing the gripper. Due to its high-power consumption, a step-down to 6V 3A is supplying it. 

2.3.2. Motor drivers  

To control each stepper motor, it is necessary to use a motor driver. In this case, an A4988 module 

will be used to control each motor. These modules can function by performing full steps or microsteps 

of up to 1/16 steps. They are designed to work with bipolar stepper motors up to 35V and 2A. 

2.3.3. Microcontrollers  

As mentioned before, two microcontrollers are used to control each robotic arm. In the middle part 

of the arm an Arduino Nanocis use. It responsible for reading all the sensors data of the robotic arm 

and sending control signals to the gripper. This microcontroller was selected due to its small size and 

possessing the necessary GPIO pins and a UART channel to connect to the main controller. 

On the other hand, at the bottom of the arm an Arduino Mega is used, which has four serial 

communication channels (UART), so it can communicate with both the robotic station and the 

controller in the middle of the arm, as well as having enough pins for connecting all components and 

sufficient power to control 7 motors simultaneously, which is why it is used in a wide variety of open 

source robotic arms. 

2.3.4. Custom PCB  

For the Arduino Mega, there are numerous shields capable of connecting up to 5 A4988 drivers for 

stepper motors, but no more. For this reason, has been assembled the custom PCB designed by Angel 

L.M. for the original THOR version. This PCB is an Arduino Mega shield that supports up to 8 motor 

drivers. 

These boards consist of SMD and through-hole components, so for their assembly, SMD components 

were soldered first in an oven as shown in Fig. 14. 
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Once they are soldered, a conventional soldering iron is used to finish soldering the remaining 

components (see Fig. 15). 

 

 

  

Fig. 14. Custom PCB with SMD soldered 

 

  

Fig. 15. Assembled custom PCB 
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2.3.5. Encoders 

For the encoders, it has been used the same as the used by Danny VdH in the chosen robot model. 

Thus, multi-turn potentiometers will be use in joints 1 and 4, as these joints can rotate completely, 

and these encoders have a measurement range of 10 turns (3600º). 

On the other hand, for joints 2, 3, 5, and 6, SMD rotary angle sensors will be used, which are 

potentiometers that can give values with a precision of 1º in a range of 330º, which is sufficient for 

the robot considering that these axes only move between 90º and -90º. 

The exception to this would be axes 5 and 6, as the movements of these axes are combined. Thus, to 

rotate joint 6, both motors must rotate in the same direction, while to rotate joint 5, each motor must 

rotate in a different direction. 

It results in the range of rotation shown in equation 2.3. 

𝜃𝑚𝑖𝑛 = −90 − 180 = −270º  (2.1) 

𝜃𝑚𝑎𝑥 = 90 + 180 = 270º  (2.2) 

𝑅𝑎𝑛𝑔𝑒 = 2 ∗ 270 = 540º  (2.3) 

But the feedback using these SMD encoders can only cover a range of 330º. Even so, due to design 

issues in the joint and lack of space, these limited encoders will be used. To solve the problem, the 

feedback function will be disabled when the robot goes to a configuration that exceeds this combined 

angle, such as when joint 5 rotates to its maximum value (±90º) and joint 6 to a value greater than 

±75º. 

2.4. Control system design  

2.4.1. Selection of the central controller 

Once have been decided which controller to use for each robotic arms, it is time to think about how 

both robots will be controlled in a coordinated way using a custom central GUI [31]. 

For this task, a Raspberry Pi 3 Model B has been used, because unlike a microcontroller such as 

Arduino, this is a computer, and it has enough power to run a graphical interface on a monitor and 

under an operating system like Linux. 

In this case, the Raspberry Pi OS operating system has been installed on this Raspberry Pi, which is 

based on the Debian distribution of Linux and is optimized to run more efficiently on this type of 

mini-computer. 

2.4.2. Selection of communication protocols  

For fast and secure communication between the central controller and the main controller of each 

arm, and between the main and secondary controllers of an arm, it has been decided to use the UART 

serial communication protocol. Using this protocol you can create a connection between two devices, 

and both are capable of sending and receiving information. 
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In this way, the central controller will be able to send action commands to each arm, and they can 

send a message every time they finish to perform the action indicated by the central controller. Also, 

the main controller of the arm can order to the secondary controller to move the gripper or request 

the angle values of the joints, and the controller can respond by sending a message when finished or 

with the requested information. So there is a bidirectional communication between the controllers, 

with the security and efficiency offered by the UART serial communication at short distances. 

On the other hand, the method of communication between the central controller and the screen where 

the graphical interface will be used must be chosen. The simplest method would be to connect a 

monitor using an HDMI cable, as the Raspberry includes an HDMI connector. 

However, the idea of the robotic station includes a wireless screen, so you can control both robots 

even at a certain distance. Because of it, it has been decided to use a commercial tablet, as it includes 

a screen, battery, and internet connection for a lower price than it would cost to build something 

similar from scratch. The chosen tablet has been a Lenovo Tab M10 Plus (3rd gen). 

And as a communication method, it has been decided to use TeamViewer, which is a solution created 

for remote control of computer devices and can be installed on both the Raspberry Pi and the tablet. 

These types of programs usually have a significant delay[32], so a hotspot has been created on the 

Raspberry, so that the tablet connects to this network, using TeamViewer through the local network 

and eliminating the delay. 
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2.4.3. Control diagram  

The control diagram of the robotic station is shown in Fig. 16. 

 

2.5. Power system design  

2.5.1. Calculation of required power 

Once the structure of the robotic station has been decided, the next step is to select a power supply 

with enough power for the system. To do this the maximum power that each part of the system can 

consume must be calculated. 

Voltage and maximum current of each device is shown in Table 7. 

 

 

Fig. 16. Robotic station‘s control schematic 
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Table 7. Voltage and maximum current comsumed by the components 

Components Voltage (V) Current (A) 

Raspberry PI 5 2.5 

Tablet 5 3 

Arduino Mega 5 0.5 

Arduino Nano 5 0.5 

Servomotor 4.8-7.2 3A 

Stepper-motor 17S3401 12 1.3A 

 

As it can be noticed, it’s needed to supply different voltage levels, from 12V to 5V. Therefore, a 12V 

power supply will be use, as it is the maximum voltage level required in the station; and the rest of 

the voltage levels will be obtained through the use of step-down circuits. 

The first step is to calculate the maximum power consumed by the stepper motors. Each arm has 7 

17S4401 motors, which gives the consumption shown in equation 2.6. 

𝑃𝑚𝑜𝑡𝑜𝑟𝑠 = 𝑉𝑚𝑜𝑡𝑜𝑟 · 𝐼𝑚𝑜𝑡𝑜𝑟 · 𝑛𝑚𝑜𝑡𝑜𝑟𝑠  (2.4) 

𝑃𝑚𝑜𝑡𝑜𝑟𝑠 = 12 · 1.3 · 7  (2.5) 

𝑃𝑚𝑜𝑡𝑜𝑟𝑠 = 109.2 𝑊  (2.6) 

For the rest of the components in the system, it is needed to use step-down circuits to obtain the 

different voltage levels, considering that these circuits have an efficiency of around 90%. 

In the Table 8 is written the power required for each component. The Arduinos Mega and encoders 

are not included, as the Arduinos Mega are powered from the USB ports of the Raspberry Pi 3, as 

each USB port can provide up to 600mA. The encoder consumption is accounted for within the 

consumption of the Arduino Nano. 

 

Table 8. Components‘s consumption 

Components Voltage(V) Current(A) Power(W) Power/0.9(W) 

Raspberry PI 5 2.5 12.5 13.89 

Tablet 5 3 15 16.67 

Servomotor 6 3 18 20.00 

Arduino Nano 5 0.5 2.5 2.78 

 

In the robotic station there are two robotic arms, so the calculated consumption of the motors, servo 

motor, and Arduino Nano will need to be doubled. The total consumption of each robotic arm is 

shown in equation 2.9. 
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𝑃𝑟𝑜𝑏𝑜𝑡 = 𝑃𝑚𝑜𝑡𝑜𝑟𝑠 + 𝑃𝑠𝑒𝑟𝑣𝑜 + 𝑃𝑛𝑎𝑛𝑜  (2.7) 

𝑃𝑟𝑜𝑏𝑜𝑡 = 109.2 + 20 + 2.78  (2.8) 

𝑃𝑟𝑜𝑏𝑜𝑡 = 131,98 𝑊  (2.9) 

Therefore, the maximum consumption of the system is calculated in equation 2.12. 

𝑃 = 𝑃𝑅𝑃3 + 𝑃𝑇𝑎𝑏𝑙𝑒𝑡 + 2 · 𝑃𝑟𝑜𝑏𝑜𝑡  (2.10) 

𝑃 = 13.89 + 16.67 + 2 · 131,98  (2.11) 

𝑃 = 294.52𝑊  (2.12) 

Now, applying a safety factor of 20% the new power consumption is shown in equation 2.14. 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃 · 1.2 = 294.52 · 1.2  (2.13) 

𝑃𝑡𝑜𝑡𝑎𝑙 = 353.42 𝑊  (2.14) 

It implies that the 12V source must be able to supply at least 29.45 A as shown in equation 2.17. 

𝐼𝑚𝑖𝑛 =
𝑃𝑡𝑜𝑡𝑎𝑙

𝑉
  (2.15) 

𝐼𝑚𝑖𝑛 =
353.42

12
  (2.16) 

𝐼𝑚𝑖𝑛 = 29.45𝐴  (2.17) 

Finally, it must be calculate the diameter of the cable necessary to efficiently supply current to each 

robot. To do this is used the equation 2.18. 

𝐴 =
𝐼·ρ·L

𝑓𝑘·𝑉
  (2.18) 

Where ρ is the resistivity of the conductor material, in this case copper (0.0175 Ω·mm^2/m), fk is the 

loss factor that is assumed as 1% (fk=0.01), and L is the length of the cable, in this case 0.5m. 

Additionally, the maximum consumption of each arm is about 132W, which is equivalent to a voltage 

(V) of 12V and a current (I) of 11A, which, multiplied by a safety factor of 1.2, becomes 13.2A. 

Therefore, the minimum cable section will be the shown in equation 2.20. 

𝐴𝑚𝑖𝑛 =
13.2·0.0172·0.5

0.01·12
  (2.19) 

𝐴𝑚𝑖𝑛 = 0.946 𝑚𝑚2  (2.20) 

2.5.2. Components selection  

After the calculation of the power needed by the system, the next step is to choose the components. 

In this section, the selection of the power supply will be discussed, cables, and step-down circuits. 

The first thing is to select a power supply that provides at least 353W. In this case, a 360W power 

supply that was already available has been selected, which has three outputs at 12V and 10A each, 

giving a total of 30A. 
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To avoid power failures, it has been decided to use all the outputs of this power supply, also making 

use of a multimeter module that is connected to the power supply and provides us with a real-time 

reading of the voltage, current, and power always consumed. Additionally, to achieve the lower 

voltage levels it will be use an adjustable step-down regulator module.  

As mentioned earlier, the step-down circuit used has an energy efficiency of around 90% and can 

supply up to 3A, so several modules are needed. On the one hand, two will be needed in the central 

box with a 5V output, to power the Raspberry Pi and to charge the Tablet. And on the other hand, 

two will be needed in each robot, one exclusively for the servo motor, due to its high consumption, 

which will decrease the voltage to 6V, and another for the Arduino Nano and encoders, with a 5V 

output. Therefore, a total of 6 step-down modules is needed. 

By modularizing the step-down in this way, the current transmission between blocks, that is, from the 

central box to each of the arms, is carried out directly from the 12V power supply, using cables with 

a diameter of 1.5mm^2, fulfilling the minimum requirement calculated above. 

2.5.3. Power connections diagram  

The power connections of the robotic station are shown in Fig. 17. 

 

  

 

 Fig. 17. Robotic station‘s power schematic 
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2.6. Connections diagram of the robotic station 

The connections diagram of the robotic station is shown in Fig. 18. 

 

The intern connections diagram of each robot is shown in Fig. 19. 

  

Fig. 18. Robotic Station‘s connections diagram 
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Fig. 19. Robot‘s connections diagram 
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2.7. Robotic station structure 

Therefore, the robotic station will be divided and encapsulated into three blocks: a central box and 

two robots. On the one hand, the central box will contain the power supply, the central controller, and 

a support to place the tablet. On the other hand, each robot will have a box on its base where its 

microcontroller, two step-down modules, and motor drivers are located. In this way, each robot has 

only two inputs, the power input at 12V and a USB input for communication and powering of the 

Arduino Mega. 

Thus, it is obtained a highly modular design, being able to take a robot from the station and make it 

work by supplying only 12V and sending orders through the USB port from any computer. In addition 

to this, two supports for the robotic arms have been added, which can be attached and removed, so 

the arms can be held on these supports when they are not in use. 

With all the components clear, the only thing left to decide is how the arms will be placed in the 

robotic station for having enough workspace and at the same time, cooperation capacity. To make 

this decision, RoboDK has been used, the simulation software mentioned above. It was used by 

placing both robots on the same table to check the range of movements they have and to search the 

optimal distance between them, with a common and an individual space (see Fig. 20). 

 

After some tests, it was decided that the best distance would be 700m between the center of the robots, 

since each robot has a range of approximately 420mm, and in this way, there is a central area in which 

both robots can manipulate objects with different configurations. If the robots were further they would 

not be able to pick up objects by placing the gripper perpendicular to the ground in the common 

workspace. Once the distance between robots was decided, all components were distributed and 

ordered so that the table on which will be assembled the robotic station don’t become excessively 

large, obtaining as total dimensions of 950x750mm. 

  

Fig. 20. Robotic station simulation 
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2.8. Robotic Station flowcharts  

The flowchart of the robotic station is shown in Fig. 21. 

 

The robotic station (Fig. 21) is formed by 3 different types of controllers, the central controller and 

two controllers per robot, the main one and the secondary, in charge of the data of the encoders and 

control the gripper. In the next flowcharts it will be shown the flowchart of each controller. 

 

 

 

  

Fig. 21. Robotic Station flowchart 
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2.8.1. Central controller  

The flowchart of the central controller is shown in Fig. 22. 

  

Fig. 22. Central controller flowchart 
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2.8.2. Robot controller  

The flowchart of the robot controller, the main controller of the arm, is shown in Fig. 23. 

 

  

Fig. 23. Robot controller flowchart 
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2.8.3. Encoder controller 

The flowchart of the encoders controller, the secondary controller of the arm, is shown in Fig. 24. 

 

  

Fig. 24. Encoder controller flowchart 
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3. Experimental approach  

3.1. Assembly of the central box 

The first step was testing the power supply with the incorporated multimeter (see Fig. 25). 

 

Once the multimeter is working it has been added the Raspberry Pi with two fans for air flow, an 

emergency button, two internal step-down modules, for powering the raspberry pi and charging the 

tablet, and two usb from Raspberry Pi and two 12V outputs for the robotic arms, as shown before in 

the connections diagram (Fig. 19). Then it is assemblied in the central boxas shown in Fig. 26. 

 

  

Fig. 25. Power supply test 

 

  

Fig. 26. Central box assembly 
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3.2. Assembly of robots 

The first step is to assembly the joints five and six, as shown in Fig. 27. 

 

Once both joints were tested moving correctly from the Arduino the joint 4 was added (see Fig. 28). 

 

  

Fig. 27. Fifth and sixth joint of each robot assemblied 

 

  

Fig. 28. Robot assemblied from the forth joint to the sixth joint 

 



49 

 

With them working it was prepared the base with the joint1 as shown in Fig. 29. 

 

The next step consists in adding the second and third joints. In this step the encoders controller has 

to be added, connecting every the gripper, encoders, power supply and serial communication wires 

as shown in the diagram of Fig. 19. The result is shown in Fig. 30. 

 

  

Fig. 29. Base and first joint assemblied 

 

  

Fig. 30. Encoders controller connections 
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After realizing the connections the piece can be added to the forth joint as shown in Fig. 31. 

 

Finally the higher parts of the robot shown in the Fig. 31 are attached to the lower part shown in Fig. 

29, and the gripper can be added, finishing the assembly of the robotic arm (see Fig. 32). 

 

  

Fig. 31. Robots from third to sixth joint 

 

  

Fig. 32. Robots assemblied 
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3.3. Assembly of robots boxes  

With the arms assemblied is time for finishing its electronnics boxes. First of all the A4988 drivers 

must be prepared, seting the maximum current that the driver will provide to the motors. In the case 

of the project motors its maximum current is 1.5A, so the limito f the drivers will be setted to 1.2A. 

As shown in the page 9 of its datasheet[33] for setting the driver to this maximum current value a test 

must be done, adjusting the driver potentiometer to measure a determined voltage value, calculated 

with the equation 3.1. 

𝑉𝑅𝐸𝐹 = 𝐼𝑇𝑟𝑖𝑝𝑀𝑎𝑥 · 8 · 𝑅𝑆  (3.1) 

In the case of our module 𝑅𝑆 = 0.1 Ω, 𝑉𝑅𝐸𝐹 is 0.96V as shown in equation 3.3. 

𝑉𝑅𝐸𝐹 = 1.2 · 8 · 0.1  (3.2) 

𝑉𝑅𝐸𝐹 = 0.96 𝑉  (3.3) 

With the reference voltage calculated the next step is to connect the VDD and GND pins of the drivers 

to the 5V and pins of the arduino in that order. Finally the multimeter negative pin is connected also 

to GND and the positive pini s connected to a screwdriver, which will be use for configurate the 

potentiometer value (see Fig. 33), achieving the desired reference voltage in the multimeter. 

 

 

 

 

 

 

 

 

  

Fig. 33. Drivers A4988 maximum current test 
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After the tests the robots boxes have been assemblied as shown in Fig. 34, following its schematic 

(see Fig. 19), and everything works as expected. 

 

As shown in Fig. 35 each robot has two connections, an usb for the serial communication between 

the central controller and the robot and a power input of 12V, which can be openned using a switch. 

 

  

 

Fig. 34. Top view of the Blue Robot box 

 

 

Fig. 35. Front view of the Blue Robot box 
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3.4. Programming of the robot controller 

3.4.1. Main loop 

The main loop of the robot controller follows a simple structure. It realizes 4 different actions shown 

in Fig. 36. 

 

First of all it reads if there have been new commands from the central controller. After if the controller 

didn‘t send a stop order the robot realizes a feedback for updating the joints position. Lastly it moves 

the axis and the gripper if needed. 

Besides inside of the MoveToPosition function the controller is all the time checking if it has received 

new orders from the central controller (so it‘s possible to stop the robot without delay, improving the 

security of the system) and also it makes a feedback before of telling to the central controller that the 

position has been reached, moving the axis til approach the setpoint. 

All these functions will be explained in detail in the next sections. 

3.4.2. Serial communication with central controller 

This communication is based in  the next concept: Central controller sends commands, that can be 

movement commands or orders to stop or to continue the movement. And Arduino Mega answers to 

the central controller with the message, “Ok“ each time that the action has been performed.  

In this way our controller will update the robot position each time it finishes his movements, and 

thanks to the feedback it is accurate with the reality. 

This action is performed by the function read(). This function checks if there is a new line to read in 

the serial buffer, and if it is then the string is divided by the white spaces in an array of tokens. 

The first of these tokens will tell us the type of action that the robot has to perform (see Table 9). 

 

 

 

Fig. 36. Robot controller main loop 
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Table 9. Possible command‘s types by the central controller 

token[0] Action 

‚M‘ Move joints to a new configuration of angles 

‚G‘ Open/Close gripper in a specified percentage 

‚S‘ Stop the movement of the robot suddenly 

‚C‘ Continue moving the robot 

‚P‘ Request for sending the current position 

‚D‘ Deactivate the motors 

'A' Activate the motors 

 

If the token[0] is ‚M‘ then the next 6 tokens are the new angles for the 6 joints, starting from the base, 

and the next tokens could be ‚S‘ or ‚A‘, what means that the next token to each of these letters will 

be the maximum speed and the acceleration for moving the joints. The structure of the command is 

shown in Table 10. 

 

Table 10. Movement command example 

pos[0] pos[1] pos[2] pos[3] pos[4] pos[5] pos[6] pos[7] pos[8] pos[9] pos[10] 

M 0 0 0 0 0 0 S 2000 A 1000 

 

In this example the robotic arm will move to the homing position {0,0,0,0,0,0} with a maximum 

speed of 2000 steps/s and an acceleration of 1000 steps/s^2. 

If token[0] is ‚G‘ the next token will be the percentage of oppening of the gripper (see Table 11). 

 

Table 11. Gripper command example 

pos[0] pos[1] 

G 60 

 

In this case the gripper will open itself to the 60% of its maximum. 

If the token[0] is ‚S‘ then the robot will stop its movement and will remain waiting for the next order. 

If the token[0] is ‚C‘ then the robot will continue its movement. If between the stop and continue the 

robot receives a new movement order it will start moving now to the new setpoint instead of the last 

one. 

If the token[0] is ‚P‘ then the robot will execute the feedback() function and will send its current 

position to the central controller. 
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If the token[0] is ‚D‘ then the robot will deactivate the motors, doing it possible for you to move them 

freely using the hands. 

If the token[0] is ‚A‘ the motors will be activated again. 

Finally the robot will send an ‚Ok‘ message each time these actions are completed, except of the 

move action, that won‘t send this message til the feedback() match the setpoint. 

3.4.3. Robot movement  

To move the robot joints has been used the accelstepper library mentioned before. Using it all the 

motors have been put together in the same group using the multistepper extension of this library. In 

this way when i set the new positions of several motors they will move all together, mapping their 

velocities for finishing all the movements at the same time. 

For achieve this the motor that has to realize the longest movement moves with the maximum speed 

chosen in the command, and the others motors map their speed to finish at the same time. 

Once the motors have been added the working of the library is easy. You can set maximum speed, 

acceleration and the desired position of each motor. After this executing the function run() all the 

motors will move a step if needed, depending on its speed and position, while this function will be 

summing up the steps to the current position of the motor. Therefore a loop can be realised, executing 

the function run() while checking between each step if a new message have been received from the 

central controller. 

When the run() function returns false it means that the setpoint has been reached. Then the feedback() 

function is executed for checking if it is true or our robot has lost some steps due to a collision or a 

big effort that resulted in a wrong position. 

Also in the case of this robot the joints 5 and 6 don‘t have their own motors, so an extra calculation 

must be done for reaching the positions, and the movement must be done in two steps. First the joint 

6 will rotate if needed, and after it the other 5 joints will rotate simultaneously. 

When both motors rotates in the same direction the joint 6 rotates, and when both motors rotate in 

opposite directions the joint 5 rotates. To move this joints first it must be known in which position 

are they, using equations 3.4 and 3.5. 

𝐴𝑛𝑔𝑙𝑒𝑗𝑜𝑖𝑛𝑡6 = (𝑎𝑛𝑔𝑙𝑒𝑚𝑜𝑡𝑜𝑟5 +

 𝐴𝑛𝑔𝑙𝑒𝑚𝑜𝑡𝑜𝑟6)/2  

(3.4) 

𝐴𝑛𝑔𝑙𝑒𝑗𝑜𝑖𝑛𝑡5 = 𝑎𝑛𝑔𝑙𝑒𝑚𝑜𝑡𝑜𝑟5 −  𝐴𝑛𝑔𝑙𝑒𝑗𝑜𝑖𝑛𝑡6  (3.5) 

Once the current angle of the joint 6 has been calculated is done the difference with the new setpoint 

(see equation 3.6). 

𝑥 = 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑗𝑜𝑖𝑛𝑡6 − 𝐴𝑛𝑔𝑙𝑒𝑗𝑜𝑖𝑛𝑡6  (3.6) 

And the calculation of the new motors setpoints are calculated with equations 3.7 and 3.8. 

𝑎𝑛𝑔𝑙𝑒𝑚𝑜𝑡𝑜𝑟5 = 𝑎𝑛𝑔𝑙𝑒𝑚𝑜𝑡𝑜𝑟5 + 𝑥  (3.7) 
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𝑎𝑛𝑔𝑙𝑒𝑚𝑜𝑡𝑜𝑟6 = 𝑎𝑛𝑔𝑙𝑒𝑚𝑜𝑡𝑜𝑟5 + 𝑥  (3.8) 

Once this joint has been moved the calculations to move the joint 5 are performed with the rest of the 

joints using from equation 3.9 to equation 3.11. 

𝑥 = 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑗𝑜𝑖𝑛𝑡5 − 𝐴𝑛𝑔𝑙𝑒𝑗𝑜𝑖𝑛𝑡5  (3.9) 

𝑎𝑛𝑔𝑙𝑒𝑚𝑜𝑡𝑜𝑟5 = 𝑎𝑛𝑔𝑙𝑒𝑚𝑜𝑡𝑜𝑟5 + 𝑥  (3.10) 

𝑎𝑛𝑔𝑙𝑒𝑚𝑜𝑡𝑜𝑟6 = 𝑎𝑛𝑔𝑙𝑒𝑚𝑜𝑡𝑜𝑟5 − 𝑥  (3.11) 

Once all the movements have been performed the feedback() function is executed, and if the real 

position is different of the setpoint the current position of the joints is updated and the function starts 

again from the beginning. When the setpoint has been reached it is communicated to the central 

controller. 

3.4.4. Secondary controller requests 

The last part of the code is refered to the serial communication with the secondary controller of the 

robot. The main controller cand send either an order for moving the gripper or a request asking for 

the real angle of the joints. 

When the central controller sends the command for moving the gripper the movegripper condition is 

turned on, so the main controller sends the same command to the secondary controller, and wait a 

delay of time til the action has been performed. 

On the other hand is the feedback function. It is used when the main controller wants to know the real 

angle position of each joint. For this it sends the command ‚P‘ through serial communication to the 

secondary controller, and after waiting a small delay it reads the answer, which contains the angles 

from the 2nd to the 6th joint, and the 1st joint is measured directly from an analog main controller 

pin, due to it‘s in the base of the robot. 

As happened before the same calculations must be performed for changing the angles from the 

encoders 5 and 6 to the angles of the joints, but before it must be checked if the 

abs(motor5)+abs(motor6) is lower than 165º, because as i explained before these SMD encoders has 

a range of 330º, from -165º to 165º. After it if there is difference between the current position counted 

by the program and the position of the encoders then the position in the main program is updated. 

In this function there is an extra condition, and if the secondary controller didn‘t answer after a delay 

of 100ms it means that the arduino nano isn‘t connected, so the program keep working without using 

the feedback() function, trusting in the step counting. 

3.5. Programming of the sensors controller 

This controller is just waiting for a command from the main controller. When a command is received 

then it is processed as in the main controller, with the difference that in this case there are just 2 types 

of possible commands (see Table 12). 
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Table 12. Possible command‘s types to the encoder‘s controller 

token[0] Action 

‚G‘ Open/Close gripper in a specified percentage 

‚P‘ Request for sending the current position 

 

The gripper command is the same as the received in the main controller, but deleting white spaces. 

An example for opening the gripper a 60% of its maximum is „G60“ (see Table 13). 

 

Table 13. Gripper command example 2 

pos[0] pos[1] 

G 60 

 

Once the string has been divided by tokens the token[1] wich is a percentage value is multiplied by 

the maximum angle of the servo (180º), and it is sent to the servomotor. The example case is shown 

from equation 3.12 to equation 3.14. 

𝑎𝑛𝑔𝑙𝑒𝑠𝑒𝑟𝑣𝑜 = 𝑎𝑛𝑔𝑙𝑒𝑚𝑎𝑥 ·
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

100
  (3.12) 

𝑎𝑛𝑔𝑙𝑒𝑠𝑒𝑟𝑣𝑜 = 180 · 60/100 = 108º  (3.13) 

𝑎𝑛𝑔𝑙𝑒𝑠𝑒𝑟𝑣𝑜 = 108º  (3.14) 

In the other hand when asking for the position the received command is ‚P‘. Once it is received the 

controller just collect the data of the encoders, process them to get numbers and sends them to the 

main controller. 

The data read by the analog pins goes from 0 (0V) to 1023 (5V), so for processing this data this valu 

is splitted by 1024, multiply it by the angles range of the encoder and substract the half of the range 

as shown in equation 3.15. Their maximum ranges of measurement are 330º for the SMD encoders 

and 3600º for the multi-turn encoders. 

𝑎𝑛𝑔𝑙𝑒 = 𝑣𝑎𝑙𝑢𝑒 ·
𝑟𝑎𝑛𝑔𝑒

1024
−

𝑟𝑎𝑛𝑔𝑒

2
  (3.15) 

After this calculation the angle received by the SMD encoders will be in the range [-165º,165º], and 

in the multi-turn encoders [-1800º,1800º], and all these values are sent to the main controller in a 

string where each angle value is separated by a white space:  

„angle2 angle3 angle4 angle5 angle6\n“ 
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3.6. Control app 

The GUI has been programmed from python, using the Tkinter library explained in the theoretical 

annalysis section. This GUI is running in the central controller, and it is accesible from the central 

screen.   

It is divided in 3 main tabs: connection tab, controller tab and path planning tab.  

3.6.1. Connection tab 

The connection tab is formed by two buttons (see Fig. 37), and its purpose is to see if the robots are 

connected, and if they are not connected you can press the button for trying to perform a connection.  

 

When you open the app it tries to perform both connections in the starting. But if the robot is 

disconnected in the momento f the app starting you always can perform a connection pressing the 

button. When a robot is connected the button gets disabled and on it is written the robot name: 

 

3.6.2. Controller tab 

The controller tab is more complex than the last one, because it allows plenty of actions and different 

types of control for both arms. And the tab is divided in different parts, numerated in the Fig. 38. 

 

Fig. 37. Application‘s connection tab 
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The first part is the type of kinematics applied. In the image it is in forward kinematics mode, what 

can be appreciated in the box 2, controlling directly the joints angles. Clicking in one of the arrows 

of the box 1 you can change to inverse kinematics control: 

In the box 2 you have the sliders for controlling each one of the arms, in forward or inverse kinematics 

depending of the box before, and controlling also the gripper percentage of openning and the speed 

and acceleration of the stepper motors. You can do this by moving the slide or with the buttons next 

to the sliders. These buttons are a way to move to an exact value in an easier way, and you can change 

the steps of these ‚+‘ and ‚-‘ buttons using the precision buttons of the box 3. 

In the box 3 you can choose the value of degrees or milimiters that the buttons next to the sliders will 

sum up or substract to the sliders value.  

Also there are other 3 important buttons in this box. The real time button, that when is activated sends 

the sliders values to the robot arms in real time, so you can move the robots just moving the sliders. 

And the others are the stop and continue buttons, which can be pressed in any moment, sending a 

stop or continue command to the robot, for stop its movement in that position if something goes 

wrong ori f the movement gets dangerous. 

Finally the box 4, which is formed by the actions that can be performed in each arm. In this part the 

send and execute buttons will only be activated if the arm is connected and waiting for receiving a 

new command. In the case of this image the blue arm is connected and the black one is not connected. 

In this box there are six different buttons: 

 

 

Fig. 38. Application‘s controller tab 
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– Send button: This button is used when the real time option is deactivated. Each time this button 

is pressed the app sends the joints values to the robotic arm. 

– Save button: It saves the current sliders values in a list, that will be useful for the execute 

button or the path planning. 

– Execute button: After save different positions using the save button this button will execute 

of the commands save din the list. 

– Undo button: It will update the sliders values to the last command sent to the robot, what 

means it updates the sliders values to the real position of the robot. 

– Plot button: This button plots the current sliders configuration of the robot in a 3D plot, where 

you can see the robot representation and the end-effector position before of sending it to the 

robot, as is shown in the Fig. 39. 

– Clear button: This button eliminates all the commands created by the save button in the 

execution list. 

 

  

  

 

Fig. 39. Plotting option example 
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3.6.3. Path planning tab 

In the path planning tab (see Fig. 40) you can create a coordinated path between both robotic arms, 

that can be created, modified, executed and saved in a file. 

 

As is shown in the image there are 3 different boxes. In the first box you can find the name of the file 

that you are editing or executing, in this case None, because there isn‘t any file openned, and also you 

can find a listbox whith all the steps of the path. If you open a file it will appear as shown in Fig. 41. 

 

 

The commands are the same explained in the programming of the robot controller, adding the white 

command and a number next to the command letter.  

 

Fig. 40. Application‘s path planning tab 

 

 

Fig. 41. Path example 
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The first letter of the command means what type of command it is, as shown in Table 14. 

 

Table 14. Possible commands of the path creator 

token[0] Action 

‚M‘ Move joints to a new configuration of angles 

‚G‘ Open/Close gripper in a specified percentage 

‚W‘ Program waits til the defined arm finishes the movement 

 

Each of these commands has a number next to them, which means in what robot will be applied (see 

Table 15). 

 

Table 15. Robot‘s number for the commands 

Number Robot 

1 Black 

2 Blue 

 

Then this path would: 

1. Move black robot to angles {0,0,0,0,0,0} in a max speed of 4000 steps/s and acceleration of 

4000steps/s^2. 

2. Open the gripper of the blue robot to the 35%, while black robot is moving, because there isn‘t 

any wait command. 

3. When the blue robot finished its action it will moves to angles {0,0,0,0,0,0} in a max speed of 

4000 steps/s and acceleration of 4000steps/s^2. 

4. Wait until the blue robot finishes the movement. 

5. Close the gripper of the black robot. 

6. Move black robot to angles {90,30,0,20,0,0} in a max speed of 2000 steps/s and acceleration of 

1000 steps/s^2. 

7. Move blue robot to angles {90,30,0,20,0,0} in a max speed of 2000 steps/s and acceleration of 

1000 steps/s^2 while black robot is still moving, because there isn‘t a wait command. 

In the second box you have the execute button, whose function is obviously to execute the path, and 

when it is pressed it is changed by other two buttons in its place, „Stop button“ and „Finish button“. 

Lastly it is the third box, formed by the buttons with all the options implemented for creating, editing 

and saving paths in permanent files. 

The first row of buttons is easy to understand, you can open, create, save and rename files where the 

paths will be allocated. These files are in a folder named „paths“, in the same directory as the 

application. When you press the button „Open file“ a new window is open, which you can use for 

searching paths in this directory, as shown in Fig. 42.  
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As you can appreciate in the last image each time you create a new file from the application if you 

don‘t rename it the file will be created under the name: „Path date_hour“. 

Apart from control the files from the application they can be edit too, using the others buttons. If you 

press the buttons „Add Step Black“ or „Add Step Blue“ a new frame will appear in the tab (see Fig. 

43), where you can create the command that you want to add. 

 

 

Fig. 42. Menu for openning files 

 

 

Fig. 43.  Menu for adding steps in path‘s creator tab 



64 

As is shown in this new menu it can be chosen the step number of the command, the action, the robot 

to be applied, and next to it boxes with each value of the command. When the add button is pressed 

it automatically takes the last values sent to the robot or saved in the controller tab. They can be edited 

also from this tab, or even edit them in the controller tab and press the save button, so coming back 

to this tab and press update the values will be updated. 

Once the new command has been defined you have two ways to add it to the path, replace or insert. 

If the step number chosen is the next one both buttons will insert the step into the path without 

difference, as in the case of the image, because the step number chosen is 8, and the path has 7 steps. 

However it can be added as the fifth step,  and there are two different ways of doing it.  

On the one hand using the replace button, so the fifth step will be eliminated and replaced by this new 

command as shown in Fig. 44. 

 

On the other hand using the insert button. In this case the steps from the fifth to the last will be 

displaced by 1 and the new command will be inserted in the fifth position (see Fig. 45). 

 

Furthermore steps already added can be editted or removed using the two remaining buttons. 

 

Fig. 44. Path example with step replacement 

 

 

Fig. 45. Path example with step inserted 
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3.7. Control app backend 

3.7.1. Serial communication  

In the case of the app the serial communication between the central controller and the robots controller 

is managed in a second thread (see Fig. 46). This second thread is in charge of perform the 

connections, read the serial port and send the commands to the robots. 

 

The connect(bool robot1,bool robot2) function is used in the starting of the second thread, for 

connecting both robots in the starting of the app. After that the thread enters in an infinite loop where 

it will send commands to the robots and receiving status messages from them. 

For send commands the thread has two modes: path_mode or normal_mode. Depending on this 

condition the app will execute the function send_path() or the functions for sending commands to the 

robots when needed. 

Either way the app will read at each iteration if there are any status messages from the arms. 

3.7.2. Robotics toolbox 

For creating some functions of the app, and making possible other future applications has been used 

the robotics toolbox for python explained in the theoretical annalysis. Thanks to this toolbox it has 

been modeled the robots in the application, and functions for inverse and forward kinematic and for 

plotting robots can be used. 

Robots have been modeled using the D-H table showed before, and the limit angles of each joint (see 

Fig. 47). 

 

 

Fig. 46. Second thread for serial communication 
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Using these values it has been created the robots using the DHRobot function from this library as 

shown in Fig. 48. 

 

Once they are created its current position can be plotted, update it, and realize calculations for forward 

and inverse kinematics. In the case of the inverse kinematics is used the function with the algorithm 

of Levenberg-Marquardt. The main functions of this library used in the application are the written in 

the Fig. 49. 

 

Fig. 47. Robot parameters 

 

 

Fig. 48. Robots declaration 
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3.8. Implementation of wireless screen  

The wireless screen has been added to the raspberry using teamviewer. For avoiding the delay the 

control has been performed in a local red, created in the raspberry pi, and a static ip has been chosen 

for the raspberry pi: 10.42.0.1 

After it teamviewer has been installed in both, raspberry pi and tablet, and configured for accepting 

just local connections, and in the raspberry pi a permanent password has been chosen for remote 

connections. 

Once these configurations has been finished the tablet can already perform a stable connection with 

the raspberry pi following the next step: 

- Connect tablet to the Raspberry‘s hotspot. 

- Open teamviewer and introduce the static ip of the raspberry pi. 

- Enter the chosen password. 

Following these simple steps you can already control the robotic station wireless (see Fig. 50). 

 

 

Fig. 49. Robotics toolbox functions used in the backend 

 

 

Fig. 50. Robotic Station wireless monitor 
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Results and conclusions 

1. After researching about the different types of open-source robotic arms it has been decided to use 

the Thor model with addons, as it already incorporates support for feedback sensors in the design, 

and it is a 6 DOF antropomorphic arm with a high payload, taking into account that it is fully 

printed in 3D (up to 0.75 kg) and the highest range of action of the studied 3D printed arms, with 

a reach of 598 mm. 

2. The electrical and electronic componentes of the robotic station have been selected and tested 

based on system needings, and the designed electrical and control schematics works as expected. 

Every part of the robotic station is correctly powered and the control of both robots has been 

successful. 

3. Both robotic arms has been assemblied and wired. Both arms can move all the joints throughout 

its entire range of motion, as exepected in the simulations with the virtual model created in 

RoboDK. 

4. Both arms has been assemblied in the same table, and has been connected to the central controller 

and the general power of the robotic station, achieving to work together simultaneously without 

issues in communications or power supply. 

5. Each robot controller has been programmed for realising the actions sent by the central controller 

to the the main controller of each arm, as moving the gripper, stop, and move the joints to a 

designed position, with the capacity of controlling all the motors at the same time, counting steps 

and realising a feedback periodically. The gripper actions and the encoders data collection is 

performed by the secondary controller of the arm, connected to the main controller by serial 

communication. 

6. A wireless touch screen has been implemented in the robotic station, in order to control the central 

computer GUI. The connection is stable and according to the tests there is no appreciable delay 

in a range of 10 meters. 

7. A GUI has been created from scratch to control the robotic station. This GUI enables a wide range 

of functionalities, including establishing connections with the robots, forward and inverse 

kinematics controlling, possibility of using real-time control, stoping and continuing its 

movements instantaneously and creating of coordinated paths for both arms, which can be 

executed by the robots or saved in a file. 
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Appendices 

Appendix 1. Central controller code. 

#!/usr/bin/env python 

#Pendiente hacer funcionar las inverse/forward kinematics 

import tkinter as tk 

import datetime 

import os 

from tkinter import ttk 

from tkinter import filedialog 

import roboticstoolbox as rtb 

from roboticstoolbox import DHRobot, RevoluteDH 

import numpy as np 

import threading 

import time 

import serial as se 

import serial.tools.list_ports as ser_tool 

from spatialmath.base import eul2tr 

from spatialmath import SE3 

import matplotlib 

import matplotlib.pyplot as plt 

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg 

from matplotlib.figure import Figure 

#Connection variables--------------------------------------------------------------

--------------------- 

robot_a=-1 

robot_b=-1 

serial=[0,0] 

connected=[0,0] 

ready=[0,0] 

ports=[-1,-1] 

 

#Communication variables-----------------------------------------------------------

------------------------ 

real_time=0 

stopped=[0,0] 

stop=[0,0] 

 

#Normal mode variables-------------------------------------------------------------

---------------------- 

normal_mode=[1,1] 

order=0 

current=0 

orders=[] 

 

#Execution mode variables----------------------------------------------------------

------------------------- 

execution_mode=[0,0] 

exec_order=[0,0] 

exec_current=[0,0] 
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exec_list_w=[] 

exec_list_b=[] 

exec_list=[exec_list_w,exec_list_b] 

exec_list.append(exec_list_w) 

exec_list.append(exec_list_b) 

 

#Robots values variables-----------------------------------------------------------

------------------------ 

current_values=[[0,0,0,0,0,0,0,4000,4000],[0,0,0,0,0,0,0,4000,4000]] 

last_saved=[[0,0,0,0,0,0,0,4000,4000],[0,0,0,0,0,0,0,4000,4000]] 

 

#Control variables-----------------------------------------------------------------

------------------ 

ik=0 

plot_mode=0 

total_change=0 

list_accuracy=[1, 5, 10, 30, 45, 90] 

list_accuracy_mm=[1, 5, 10, 20, 50, 100] 

list_joints=['Joint 1','Joint 2','Joint 3','Joint 4','Joint 5','Joint 6','Gripper', 

'Speed', 'Acc'] 

list_axis=['x','y','z','Rx','Ry','Rz','Gripper', 'Speed', 'Acc'] 

axis_joints_min=[-450,-450,0,-360,-360,-360,-90,0,0] 

axis_joints_max=[450,450,800,360,360,360,90,4000,4000] 

angle_joints_min=[-180,-90,-90,-180,-90,-180,0,0,0] 

angle_joints_max=[180,90,90,180,90,180,100,4000,4000] 

current_sliders=[[0,0,0,0,0,0],[0,0,0,0,0,0]] 

current_sliders_ik=[[0,0,0,0,0,0],[0,0,0,0,0,0]] 

accuracy=1 

l=len(list_joints) 

 

#Initialize variables for Tkinter Control components-------------------------------

---------------------------------------------------- 

color1='#00FFAA' #Current: '#00FFAA' 

color2='#2A5749' #Current: '#2A5749' 

precis_button=[] 

stop_button=[] 

robots_labels=['Black Robot', 'Blue Robot'] 

stop_labels=['STOP \nBlack Robot','STOP \nBlue Robot','CONTINUE \nBlack Robot', 

'CONTINUE \nBlue Robot'] 

joint_slider=[[],[]] 

joint_label=[[],[]] 

minus_button=[[],[]] 

plus_button=[[],[]] 

control_frame_robots=[None,None] 

control_frame_buttons=[None,None] 

undo_button=[None,None] 

send_button=[None,None] 

plot_button=[None,None] 

save_button=[None,None] 

execute_button=[None,None] 

clear_button=[None,None] 
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r_lbl=[None,None] 

r_lbl_up=[None,None] 

 

#Path variables--------------------------------------------------------------------

--------------- 

wait=[0,0] 

path_stopped=0 

path_stop=0 

path_i=0 

path_size=0 

path_mode=0 

edit_item=0 

step_robot_option=0 

path_text="" 

current_path=[] 

text_file_dir="" 

step_complements_lbl=[0,0,0,0,0,0,0,0] 

step_comp_sel=[0,0,0,0,0,0,0,0] 

step_comp_plus=[0,0,0,0,0,0,0,0] 

step_comp_minus=[0,0,0,0,0,0,0,0] 

 

#Robots variables:-----------------------------------------------------------------

------------------ 

    #Geometry 

L1=202 

L2=160 

L3=195 

L4=67.5 

G=87.5 

d=[L1,0,0,L3,0,L4+G] 

a=[0,L2,0,0,0,0] 

alpha=[ -90, 0, -90, 90, -90, 0] 

theta=[ 0, -90, -90, 0, 0, 0] 

qlim=([-180,180], 

      [-90,90], 

      [-90,90], 

      [-180,180], 

      [-90,90], 

      [-180,180]) 

alpha = np.deg2rad(alpha) 

theta = np.deg2rad(theta) 

qlim = np.deg2rad(qlim) 

    #Robot declaration 

robot=[0,0] 

robot[0] = DHRobot([ 

    RevoluteDH(d[0],a[0],alpha[0],theta[0],qlim[0]), 

    RevoluteDH(d[1],a[1],alpha[1],theta[1],qlim[1]), 

    RevoluteDH(d[2],a[2],alpha[2],theta[2],qlim[2]), 

    RevoluteDH(d[3],a[3],alpha[3],theta[3],qlim[3]), 

    RevoluteDH(d[4],a[4],alpha[4],theta[4],qlim[4]), 

    RevoluteDH(d[5],a[5],alpha[5],theta[5],qlim[5]) 
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], name="thorBlack") 

robot[1] = DHRobot([ 

    RevoluteDH(d[0],a[0],alpha[0],theta[0]+135,qlim[0]), 

    RevoluteDH(d[1],a[1],alpha[1],theta[1],qlim[1]), 

    RevoluteDH(d[2],a[2],alpha[2],theta[2],qlim[2]), 

    RevoluteDH(d[3],a[3],alpha[3],theta[3],qlim[3]), 

    RevoluteDH(d[4],a[4],alpha[4],theta[4],qlim[4]), 

    RevoluteDH(d[5],a[5],alpha[5],theta[5],qlim[5]) 

], name="thorBlue") 

T = SE3(0, 0, 0) 

robot[0].base = T 

T2 = SE3(0, 0, 0) 

robot[1].base = T2 

 

#Eliminate delay of first plot-----------------------------------------------------

------------------------------ 

matplotlib.use('Qt5Agg') 

plt.plot([1, 2, 3, 4]) 

plt.ylabel('some numbers') 

plt.show(block=False) 

fig = Figure(figsize=(6, 4), dpi=100) 

ax = fig.add_subplot(111, projection='3d') 

plot = [0,0] 

plt.close() 

 

#Backend thread--------------------------------------------------------------------

--------------- 

class SecondayThread(threading.Thread):#This thread will be in charge of reading 

and sending data 

    def run(self): 

            global order 

            global normal_mode 

            global current 

            connect(1,1) 

            while app.winfo_exists(): 

                read() 

                if path_mode: 

                    try: 

                        send_path() 

                    except: 

                        print('Sending Path failed') 

                else: 

                    try: 

                        send_commands(0) 

                        send_commands(1) 

                    except: 

                        print('Sending Commands failed') 

                    time.sleep(0.2) 

                time.sleep(0.05)                
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#Thread and app declaration--------------------------------------------------------

--------------------------- 

backend=SecondayThread(daemon=True) 

app=tk.Tk() 

app.attributes("-fullscreen", True) 

app.title("Robotic Station") 

app.geometry("1280x720") 

 

#App: tabs-------------------------------------------------------------------------

---------- 

notebook = ttk.Notebook(app) 

tab1 = ttk.Frame(notebook) 

tab2 = ttk.Frame(notebook) 

tab3 = ttk.Frame(notebook) 

tab4 = ttk.Frame(notebook) 

notebook.add(tab1, text="Connect") 

notebook.add(tab2, text="Controller") 

notebook.add(tab3, text="Path planning") 

notebook.add(tab4, text="Fullscreen") 

style = ttk.Style() 

style.configure("TNotebook.Tab", font=("Bold", 12)) 

style.configure("TNotebook", borderwidth=0) 

notebook.pack(fill="both", expand=True) 

#App: Main frames------------------------------------------------------------------

----------------- 

connection_frame=tk.Frame(tab1) 

connection_frame.pack(side="top", fill="both", expand=True) 

control_frame=tk.Frame(tab2) 

control_frame.pack(side="top", fill="both", expand=True) 

path_frame=tk.Frame(tab3) 

path_frame.pack(side="top", fill="both", expand=True) 

fullscreen_button=tk.Button(tab4,text='Turn off\nFullscreen',font=('Bold',18), 

bg=color1, command=lambda: fullscreen_func(), width=25, height=4) 

fullscreen_button.place(relx=0.5, rely=0.5, anchor='center') 

#App: Connection frame-------------------------------------------------------------

---------------------- 

connection_button_a=tk.Button(connection_frame, text='Connect 

Robot',font=('Bold',18), bg=color1, command = lambda: connect(1,0)) 

connection_button_a.pack(expand=True,side="left",fill="both", padx=2.5,pady=5) 

connection_button_b=tk.Button(connection_frame, text='Connect 

Robot',font=('Bold',18), bg=color1, command = lambda: connect(0,1)) 

connection_button_b.pack(expand=True,side="left",fill="both", padx=2.5,pady=5) 

 

#App: Control frame----------------------------------------------------------------

------------------- 

control_label = tk.Label(control_frame, text = "Forward Kinematics Controller", 

font=('Bold',14), bg=color2, fg='#FFFFFF') 

control_label.grid(row=0, column=1, padx=5, pady=0, columnspan=3, sticky="we") 

change_button1 = tk.Button(control_frame, text = "<", font=('Bold',14), bg=color2, 

fg='#FFFFFF', command=lambda: change_kinematics()) 

change_button1.grid(row=0, column=1, padx=5, pady=0, sticky='w') 
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change_button2 = tk.Button(control_frame, text = ">", font=('Bold',14), bg=color2, 

fg='#FFFFFF', command=lambda: change_kinematics()) 

change_button2.grid(row=0, column=3, padx=5, pady=0,sticky='e') 

acc_label = tk.Label(control_frame, text = "Precision Buttons", font=('Bold',14), 

bg=color2, fg='#FFFFFF') 

acc_label.grid(row=0, column=0, padx=5, pady=0) 

control_frame_acc=tk.Frame(control_frame,bg=color1) 

control_frame_acc.grid(row=1, rowspan=2, column=0,  padx=5, pady=5,sticky='nsew') 

for i,value in enumerate(list_accuracy): 

    precis_button.append(tk.Button(control_frame_acc, text=str(value)+ 

'º',font=('Bold',20), bd=0, bg=color1, command=lambda t=i: control_accuracy(t))) 

    precis_button[i].pack() 

precis_button[0].config(bd=3) 

stop_button.append(tk.Button(control_frame_acc, 

text=stop_labels[0],font=('Bold',14), bg='#FF0000', command=lambda t=0: 

control_stop(t))) 

stop_button[0].pack(side='bottom', padx=10, pady=10, fill='both') 

stop_button.append(tk.Button(control_frame_acc, 

text=stop_labels[1],font=('Bold',14), bg='#FF0000', command=lambda t=1: 

control_stop(t))) 

stop_button[1].pack(side='bottom', padx=10, pady=10, fill='both') 

 

real_time_button = tk.Button(control_frame_acc, text='Real 

time:\nOff',font=('Bold',14), bd=0, bg=color1, command=lambda: control_real_time()) 

real_time_button.pack(side='bottom', padx=10, pady=20, fill='both') 

 

#App: Control frame: robots frames-------------------------------------------------

---------------------------------- 

gap=tk.Label(control_frame) 

gap.grid(row=1, column=2) 

for i in range (2): 

    control_frame_robots[i]=tk.Frame(control_frame) 

    control_frame_robots[i].grid(row=1, column=1+2*i,  padx=5, pady=5, sticky='ns') 

    r_lbl_up[i] = tk.Label(control_frame_robots[i], text = robots_labels[i], 

bg=color2, fg='#FFFFFF') 

    r_lbl_up[i].grid(row=0, column=1, padx=0, pady=0,columnspan=3) 

    r_lbl[i] = tk.Label(control_frame, text = "") 

 

    for j, value in enumerate(list_joints): 

        joint_label[i].append(tk.Label(control_frame_robots[i], text=value)) 

        joint_label[i][j].grid(row=j+2, column=0, padx=4) 

        joint_slider[i].append(tk.Scale(control_frame_robots[i], 

from_=angle_joints_min[j], to=angle_joints_max[j], orient='horizontal', 

length=300,width=20, showvalue=True)) 

        joint_slider[i][j].grid(row=j+2, column=2, padx=5) 

        minus_button[i].append(tk.Button(control_frame_robots[i], text='-

',font=('Bold',15), width=2, bg=color1, command= lambda a=i, b=j: 

control_minus(a,b))) 

        minus_button[i][j].grid(row=j+2, column=1, padx=5) 
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        plus_button[i].append(tk.Button(control_frame_robots[i], 

text='+',font=('Bold',15), width=2, bg=color1, command= lambda a=i, b=j: 

control_plus(a,b))) 

        plus_button[i][j].grid(row=j+2, column=3, padx=5) 

     

    control_frame_buttons[i]=tk.Frame(control_frame_robots[i]) 

    control_frame_buttons[i].grid(row=j+3, column=0,  padx=5, pady=5, columnspan=4) 

    joint_slider[i][j-1].set(angle_joints_max[j-1]) 

    joint_slider[i][j].set(angle_joints_max[j]) 

 

    undo_button[i] = tk.Button(control_frame_buttons[i], width=7, 

text='Undo',font=('Bold',15), bg=color1, command = lambda t=i: control_undo(t)) 

    undo_button[i].grid(row=1, column=0, padx=5, pady=5) 

    plot_button[i] = tk.Button(control_frame_buttons[i], width=7, 

text='Plot',font=('Bold',15), bg=color1, command = lambda t=i: control_plot(t)) 

    plot_button[i].grid(row=1, column=1, padx=5, pady=5) 

    send_button[i] = tk.Button(control_frame_buttons[i], width=7, 

text='Send',font=('Bold',15), bg=color1, state=tk.DISABLED, command = lambda t=i: 

control_send(t)) 

    send_button[i].grid(row=0, column=0, padx=5, pady=5) 

    save_button[i] = tk.Button(control_frame_buttons[i], width=7, 

text='Save',font=('Bold',15), bg=color1, command = lambda t=i: control_save(t)) 

    save_button[i].grid(row=0, column=1, padx=5, pady=5) 

    execute_button[i] = tk.Button(control_frame_buttons[i], width=7, 

text='Execute',font=('Bold',15), bg=color1, state=tk.DISABLED, command = lambda 

t=i: control_execute(t)) 

    execute_button[i].grid(row=0, column=2, padx=5, pady=5) 

    clear_button[i] = tk.Button(control_frame_buttons[i], width=7, 

text='Clear',font=('Bold',15), bg=color1, command = lambda t=i: control_clear(t)) 

    clear_button[i].grid(row=1, column=2, padx=5, pady=5) 

 

#App: Path frame-------------------------------------------------------------------

---------------- 

path_label = tk.Label(path_frame, text = "Path Planning", font=('Bold',14), 

bg=color2, fg='#FFFFFF') 

path_label.grid(row=0, column=0, padx=5, pady=0, sticky="we") 

path_file_label = tk.Label(path_frame, text = "File: None", font=('Bold',14), 

bg=color2, fg='#FFFFFF') 

path_file_label.grid(row=1, column=0, padx=5, pady=0, sticky="w") 

path_list=tk.Listbox(path_frame,height=10, width=50, font=('Bold',14)) 

path_list.grid(row=2, column=0, padx=5, pady=5, sticky="w") 

path_list_scrollbar = tk.Scrollbar(path_frame, orient=tk.VERTICAL, 

command=path_list.yview, width=40) 

path_list_scrollbar.grid(row=2, column=1, sticky=tk.NS) 

path_list.config(yscrollcommand=path_list_scrollbar.set) 

 

#App: Path frame: Exec buttons frame-----------------------------------------------

------------------------------------ 

path_frame_exec=tk.Frame(path_frame) 

path_frame_exec.grid(row=2, column=2, padx=5, pady=5, sticky="nw",columnspan=30) 
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execute_path_button = tk.Button(path_frame_exec, width=13, 

text='Execute',font=('Bold',15), bg=color1, command = lambda: path_execute()) 

execute_path_button.grid(row=0, column=0, padx=5, pady=5, sticky="nw") 

stop_path_button = tk.Button(path_frame_exec, width=13, 

text='Stop',font=('Bold',15), bg='#FF0000', command = lambda: path_stops()) 

 

#App: Path frame: Buttons frame----------------------------------------------------

------------------------------- 

path_frame_buttons=tk.Frame(path_frame) 

path_frame_buttons.grid(row=3, column=0, padx=5, pady=5, sticky="we",columnspan=30) 

open_file_button = tk.Button(path_frame_buttons, width=13, text='Open 

File',font=('Bold',15), bg=color1, command = lambda: path_open_file()) 

open_file_button.grid(row=0, column=0, padx=5, pady=5, sticky="we") 

create_file_button = tk.Button(path_frame_buttons, width=13, text='Create 

File',font=('Bold',15), bg=color1, command = lambda: path_create_file()) 

create_file_button.grid(row=0, column=1, padx=5, pady=5, sticky="we") 

save_file_button = tk.Button(path_frame_buttons, width=13, text='Save 

File',font=('Bold',15), bg=color1, command = lambda: path_save_file()) 

save_file_button.grid(row=0, column=2, padx=5, pady=5, sticky="we") 

rename_file_button = tk.Button(path_frame_buttons, width=13, text='Rename 

File',font=('Bold',15), bg=color1, command = lambda: path_rename_file(0)) 

rename_file_button.grid(row=0, column=3, padx=5, pady=5, sticky="we") 

rename_file_entry = tk.Entry(path_frame_buttons, font=('Bold',14)) 

rename_confirm_button = tk.Button(path_frame_buttons, 

text='Accept',font=('Bold',15), bg=color1, command = lambda: path_rename_file(1)) 

edit_step_button = tk.Button(path_frame_buttons, width=13, text='Edit 

Step',font=('Bold',15), bg=color1, command = lambda: path_edit_step()) 

edit_step_button.grid(row=1, column=0, padx=5, pady=5, sticky="we") 

remove_step_button = tk.Button(path_frame_buttons, width=13, text='Remove 

Step',font=('Bold',15), bg=color1, command = lambda: path_remove_step()) 

remove_step_button.grid(row=1, column=1, padx=5, pady=5, sticky="we") 

add_step_button = tk.Button(path_frame_buttons, width=13, text='Add Step 

Black',font=('Bold',15), bg=color1, command = lambda t=0: path_add_step(t)) 

add_step_button.grid(row=1, column=2, padx=5, pady=5, sticky="we") 

add_step_button_b = tk.Button(path_frame_buttons, width=13, text='Add Step 

Blue',font=('Bold',15), bg=color1, command = lambda t=1: path_add_step(t)) 

add_step_button_b.grid(row=1, column=3, padx=5, pady=5, sticky="we") 

 

#App: Path frame: Steps edit frame-------------------------------------------------

---------------------------------- 

path_frame_edit=tk.Frame(path_frame) 

step_order_lbl=tk.Label(path_frame_edit, text = "  N:", font=('Bold',10)) 

step_order_lbl.grid(row=1, column=0) 

step_instruction_lbl=tk.Label(path_frame_edit, text = "  Do:", font=('Bold',10)) 

step_instruction_lbl.grid(row=1, column=2) 

step_robot_lbl=tk.Label(path_frame_edit, text = "  Robot:", font=('Bold',10)) 

step_robot_lbl.grid(row=1, column=4) 

for i in range(len(step_complements_lbl)): 

    step_complements_lbl[i]=tk.Label(path_frame_edit, text = "  J"+str(i+1)+":", 

font=('Bold',10)) 

    step_complements_lbl[i].grid(row=1, column=6+i*2) 
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    step_comp_sel[i]=tk.Entry(path_frame_edit, width=5) 

    step_comp_sel[i].grid(row=1, column=7+i*2) 

    step_comp_plus[i] = tk.Button(path_frame_edit, text="+", width=5, command= 

lambda t=i: path_step_plus(t)) 

    step_comp_plus[i].grid(row=0, column=7+i*2) 

    step_comp_minus[i] = tk.Button(path_frame_edit, text="-", width=5, command= 

lambda t=i: path_step_minus(t)) 

    step_comp_minus[i].grid(row=2, column=7+i*2) 

step_complements_lbl[6].config(text = "  Speed:") 

step_complements_lbl[7].config(text = "  Accel:") 

step_order_sel=tk.Entry(path_frame_edit, width=5) 

step_order_sel.grid(row=1, column=1) 

step_order_plus = tk.Button(path_frame_edit, text="+", width=5, command= lambda 

t=10: path_step_plus(t)) 

step_order_plus.grid(row=0, column=1) 

step_order_minus = tk.Button(path_frame_edit, text="-", width=5, command= lambda 

t=10: path_step_minus(t)) 

step_order_minus.grid(row=2, column=1) 

step_instruction=tk.StringVar(path_frame_edit) 

step_instruction.set('Move') 

step_instructions=['Move','Gripper','Wait'] 

step_instruction_sel=tk.OptionMenu(path_frame_edit,step_instruction,*step_instructi

ons, command= lambda v: path_instr_sel(v)) 

step_instruction_sel.grid(row=1, column=3, padx=5) 

step_robot=tk.StringVar(path_frame_edit) 

step_robot.set('Black') 

step_robots=['Black','Blue  '] 

step_robot_sel=tk.OptionMenu(path_frame_edit,step_robot,*step_robots) 

step_robot_sel.grid(row=1, column=5, padx=5) 

 

#App: Path frame: Steps edit frame 2-----------------------------------------------

------------------------------------ 

path_frame_edit_buttons=tk.Frame(path_frame) 

update_step_button = tk.Button(path_frame_edit_buttons, width=13, 

text='Update',font=('Bold',15), bg=color1, command = lambda: path_update_step()) 

update_step_button.grid(row=0, column=0, padx=5, pady=5) 

save_step_button = tk.Button(path_frame_edit_buttons, width=13, text='Save 

Step',font=('Bold',15), bg=color1, command = lambda: path_save_step()) 

cancel_step_button = tk.Button(path_frame_edit_buttons, width=13, 

text='Cancel',font=('Bold',15), bg=color1, command = lambda: path_cancel_step()) 

cancel_step_button.grid(row=0, column=4, padx=5, pady=5) 

replace_step_button = tk.Button(path_frame_edit_buttons, width=13, text='Replace 

Step',font=('Bold',15), bg=color1, command = lambda: path_replace_step()) 

insert_step_button = tk.Button(path_frame_edit_buttons, width=13, text='Insert 

Step',font=('Bold',15), bg=color1, command = lambda: path_insert_step()) 

 

#FUNCTIONS SERIAL------------------------------------------------------------------

----------------- 

def read(): #Reads the data sent by both robots, updating ready state if OK is 

received 
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    global ready 

    global robot_a 

    global robot_b 

    for i in range(2): 

        if connected[i]: 

            try: 

                if serial[i].in_waiting > 0: 

                    line = serial[i].readline().decode('utf-8').rstrip() 

                    if line == 'OK': 

                        ready[i]=1 

                        if normal_mode[i]: 

                            send_button[i].config(state=tk.NORMAL) 

                            execute_button[i].config(state=tk.NORMAL)  

                    return line 

            except: 

                serial[i].close() 

                connected[i]=0 

                print('Disconnected robot '+robots_labels[i]) 

        else: 

            if robot_a==i: 

                connection_button_a.config(state=tk.NORMAL, text= 'Connect Robot') 

            elif robot_b==i: 

                connection_button_b.config(state=tk.NORMAL, text= 'Connect Robot') 

def connect(a,b): #Try to create a serial connection to the robots, and activate 

them in the app 

    global serial 

    global connected 

    global orders 

    global order 

    global seriala 

    global serialb 

    global robot_a 

    global robot_b 

    initstring1="M1 2 0 0 0 0 0 4000 4000\n" 

    initstring2="M2 2 0 0 0 0 0 4000 4000\n" 

    initstring=[initstring1,initstring2] 

    ports_detected = ser_tool.comports() 

    i=0 

    for port, desc, hwid in sorted(ports_detected): 

        if len(port)<13: 

            if port!='COM7' and port!='COM8' and port!='COM10' and port!='COM11': 

                ports[i]=port 

                i=i+1 

        elif port[11]=='C': 

            ports[0]=port 

        elif port[11]=='B': 

            ports[1]=port 

    if a and ports[0]!=-1 and (robot_a==-1 or not connected[robot_a]): 

        try: 

            seriala=se.Serial(ports[0],38400,timeout=1) #/dev/ttyACM0 vs COM3 

            seriala.flush() 
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            connection_button_a.config(state=tk.DISABLED, text= 'Connecting...') 

            linea="" 

            while(seriala.isOpen() and linea!="OK"): 

                linea = seriala.readline().decode('utf-8').rstrip() 

                print(linea) 

                if linea=="black": 

                    connection_button_a.config(state=tk.DISABLED, text= 'Black 

Robot Connected') 

                    n=0 

                     

                elif linea=="blue": 

                    connection_button_a.config(state=tk.DISABLED, text= 'Blue Robot 

Connected') 

                    n=1 

            serial[n]=seriala 

            robot_a=n 

            connected[n]=1 

            ready[n]=1 

            control_buttons(n,1) 

            orders.append(initstring[n]) 

            order=order+1 

            ports[0]=-1 

        except: 

            print ('Robot not connected in '+ ports[0]) 

 

    if b and ports[1]!=-1 and (robot_b==-1 or not connected[robot_b]): 

        try: 

            serialb=se.Serial(ports[1],38400,timeout=1) #/dev/ttyACM1 vs COM4 

            serialb.flush() 

            connection_button_b.config(state=tk.DISABLED, text= 'Connecting...') 

            lineb="" 

            while(serialb.isOpen() and lineb!="OK"): 

                lineb = serialb.readline().decode('utf-8').rstrip() 

                print(lineb) 

                if lineb=="black": 

                    connection_button_b.config(state=tk.DISABLED, text= 'Black 

Robot Connected') 

                    n=0 

                     

                elif lineb=="blue": 

                    connection_button_b.config(state=tk.DISABLED, text= 'Blue Robot 

Connected') 

                    n=1 

            serial[n]=serialb 

            robot_b=n 

            connected[n]=1 

            ready[n]=1 

            control_buttons(n,1) 

            orders.append(initstring[n]) 

            order=order+1 

            ports[1]=-1 
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        except: 

            print ('Robot not connected in ' + ports[1]) 

def send_commands(n): #This function sends the commands to the robots whenever it's 

possible 

    global stopped 

    global stop 

    global serial 

    global current 

    global exec_current 

    global ready 

     

 

    if stopped[n]==0: 

        if real_time and current==order and connected[n] and ready[n]: 

            control_send(n) 

             

         

        if normal_mode[n] and current<order and orders[current][1]==str(n+1) and 

connected[n] and ready[n]: 

            serial[n].write(orders[current].encode('utf-8')) 

            ready[n]=0 

            current=current+1 

        if execution_mode[n]: 

            print(exec_current[n]) 

            if exec_current[n]<exec_order[n] and connected[n] and ready[n]: 

                serial[n].write(exec_list[n][exec_current[n]].encode('utf-8')) 

                ready[n]=0 

                exec_current[n]=exec_current[n]+1 

            elif exec_current[n]==exec_order[n]: 

                execution_mode[n]=0 

                current=order 

                normal_mode[n]=1 

                send_button[n]["state"] = tk.NORMAL 

                execute_button[n]["text"] = 'Execute' 

    if stop[n]==1 and connected[n]: 

        if stopped[n]==0: 

            command="STOP\n" 

            stopped[n]=1 

        else: 

            command="CONTINUE\n" 

            stopped[n]=0 

        serial[n].write(command.encode('utf-8')) 

        stop[n]=0 

def send_path():#This function is in charge of sending the commands of the path to 

each robot, following the path 

    global path_i 

    global ready 

    global wait 

    global path_stopped 

    global path_stop 

    if path_i<path_size  and (connected[0] or connected[1]): 
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        if not path_stopped: 

            line=path_list.get(path_i) 

            step=line.split() 

            n=int(step[1][1])-1 

            instr=step[1][0] 

            if ready[n] and (not wait[n] or ready[not n]): 

                if wait[n]: 

                    wait[n]=0 

                if instr=='W': 

                    wait[n]=1 

                else: 

                    line="" 

                    for i in range (1,len(step)): 

                        line=line+step[i]+" " 

                    line=line+"\n" 

                    print(line) 

                    serial[n].write(line.encode('utf-8')) 

                    ready[n]=0 

                    path_list.selection_set(path_i) 

                    path_list.activate(path_i) 

                    path_i=path_i+1 

        if path_stop==1: 

            if path_stopped==0: 

                command="STOP\n" 

                path_stopped=1 

            else: 

                command="CONTINUE\n" 

                path_stopped=0 

            serial[0].write(command.encode('utf-8')) 

            serial[1].write(command.encode('utf-8')) 

            path_stop=0 

    else: 

        path_exec_finish() 

 

#FUNCTIONS CONTROL-----------------------------------------------------------------

------------------ 

def control_buttons(n,s):#We can activate/desactivate the control robots of each 

robot using this function 

    if s==0: 

        state=tk.DISABLED 

    else: 

        state=tk.NORMAL 

    send_button[n]['state']=state 

    execute_button[n]['state']=state 

 

def control_accuracy(n):#Whenever we press a precission button this function update 

the accuaricy of the scales buttons 

    global accuracy 

    if ik==0: 

        accuracy=list_accuracy[n] 

    else: 
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        accuracy=list_accuracy_mm[n] 

    for i in range(0,len(list_accuracy)): 

        precis_button[i].config(bd=0) 

    precis_button[n].config(bd=3) 

 

def control_plus(a,b):#Increase slider value in a certain value(accuracy) 

    joint_slider[a][b].set(joint_slider[a][b].get()+accuracy)    

def control_minus(a,b):#Reduce slider value in a certain value(accuracy) 

    joint_slider[a][b].set(joint_slider[a][b].get()-accuracy) 

 

def control_undo(n):#It re-establishes the sliders to the current robot position 

    q=[0,0,0,0,0,0] 

    if ik==0: 

        for i in range (l): 

            joint_slider[n][i].set(current_values[n][i]) 

 

    if ik==1: 

        for i in range (l-3): 

            q[i]=current_values[n][i] 

        for i in range (l-3,l): 

            joint_slider[n][i].set(current_values[n][i]) 

        pos=angle2pos(n,q) 

        for i in range(6): 

            pos[i]=round(pos[i],1) 

            joint_slider[n][i].set(pos[i]) 

def control_plot(n):#It plots the robot with the current sliders values 

    global plot_mode 

    global plot 

    if plot_mode==0: 

        plot_mode=1 

        q=[0,0,0,0,0,0] 

        pos=[0,0,0,0,0,0] 

        if ik==0: 

            for i in range (l-3): 

                q[i]=joint_slider[n][i].get()/180*np.pi 

        else: 

            for i in range (6): 

                pos[i]=joint_slider[n][i].get() 

            q=pos2angle(n,pos) 

            for i in range (l-3): 

                q[i]=round(q[i],0) 

 

                q[i]=q[i]/180*np.pi 

             

        robot[n].plot(q, block=False) 

        canvas = FigureCanvasTkAgg(plt.gcf(), master=control_frame) 

        plot[n]= canvas.get_tk_widget() 

        plt.close() 

        plot[n].config(width=400, height=400) 

        update_pos(n) 

        control_frame_robots[not n].grid_forget() 
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        plot_button[n]['text']='Close' 

        plot[n].grid(row=1, column=1+2*(not n),  padx=5, pady=25, sticky='n') 

        r_lbl[n].grid(row=1, column=1+2*(not n),  padx=5, pady=75, sticky='s') 

    else: 

        plot_mode=0 

        plot[n].grid_forget() 

        r_lbl[n].grid_forget() 

        plot_button[n]['text']='Plot' 

        control_frame_robots[not n].grid(row=1, column=1+2*(not n),  padx=5, 

pady=5, sticky='ns') 

 

def control_send(n):#It add new commands to the strings list that are sent to the 

robot 

    global order 

    global orders 

    global current_values 

    new_values=[[0,0,0,0,0,0,0,4000,4000],[0,0,0,0,0,0,0,4000,4000]] 

    move = False 

    gripper = False 

    pos=[0,0,0,0,0,0] 

    collision=0 

    if ik==0: 

        for i in range (l): 

            new_values[n][i]=joint_slider[n][i].get() 

            collision = check_collisions(ik,n,new_values[n]) 

    else: 

        for i in range (6): 

            pos[i]=joint_slider[n][i].get() 

            collision = check_collisions(ik,n,pos) 

        if not collision: 

            ang=pos2angle(n,pos) 

            q=[0,0,0,0,0,0,0,0,0] 

            for i in range (l-3): 

                q[i]=int(ang[i]+0.5) 

                new_values [n][i]=q[i] 

        for i in range (l-3,l): 

            new_values[n][i]=joint_slider[n][i].get() 

    move,gripper = check_changes(collision,current_values[n],new_values[n]) 

    send_button[n]["state"] = tk.DISABLED 

    execute_button[n]["state"] = tk.DISABLED 

    if move==True: 

        if n==0: 

            movestring="M1" 

        else: 

            movestring="M2" 

        for i in range(l-3): 

            movestring=movestring+" "+ str(new_values[n][i]) 

            current_values[n][i]=new_values[n][i] 

        if (current_values[n][7]!=new_values[n][7]): 

            movestring=movestring+" S "+ str(new_values[n][7]) 

            current_values[n][7]=new_values[n][7] 
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        if (current_values[n][8]!=new_values[n][8]): 

            movestring=movestring+" A "+ str(new_values[n][8]) 

            current_values[n][8]=new_values[n][8] 

        movestring=movestring+"\n" 

        print(movestring) 

        orders.append(movestring) 

        order=order+1 

        print(order) 

        print(movestring) 

    if gripper==True: 

        current_values[n][6]=new_values[n][6] 

        if n==0: 

            gripperstring="G1 " + str(new_values[n][6]) 

        else: 

            gripperstring="G2 " + str(new_values[n][6]) 

        gripperstring=gripperstring+ "\n" 

        print(gripperstring) 

        orders.append(gripperstring) 

        order=order+1    

    if move==False and gripper==False: 

        send_button[n]["state"] = tk.NORMAL 

        execute_button[n]["state"] = tk.NORMAL    

def control_save(n):#Save the current sliders value for the robot, for being used 

in execution mode or in poth creation 

    global exec_order 

    global exec_list 

    global last_saved 

    pos=[0,0,0,0,0,0] 

    new_saved = [0,0,0,0,0,0,0,0,0] 

    if ik==0: 

        for i in range (l): 

            new_saved[i]=joint_slider[n][i].get() 

            collision = check_collisions(ik,n,new_saved) 

    else: 

        for i in range (6): 

            pos[i]=joint_slider[n][i].get() 

            collision = check_collisions(ik,n,new_saved) 

        if not collision: 

            ang=pos2angle(n,pos) 

            q=[0,0,0,0,0,0,0,0,0] 

            for i in range (l-3): 

                q[i]=int(ang[i]+0.5) 

                new_saved[i]=q[i] 

            for i in range (l-3,l): 

                new_saved[i]=joint_slider[n][i].get() 

    move,gripper = check_changes(collision,last_saved[n],new_saved) 

    if move or (exec_order[n]==0 and not collision): 

        last_saved[n]=new_saved 

        movestring="M" 

        for i in range (0,l-3): 

            movestring=movestring+" "+str(last_saved[n][i]) 
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        movestring=movestring+ " S " + str(last_saved[n][7])+" A "+ 

str(last_saved[n][8]) 

        movestring=movestring+"\n" 

        exec_list[n].append(movestring)  

        print(exec_list[n]) 

        exec_order[n]=exec_order[n]+1 

    elif gripper or exec_order[n]<2: 

        last_saved[n][6]=new_saved[6] 

        gripperstring="G" + str(last_saved[n][6]) 

        gripperstring=gripperstring+"\n" 

        exec_list[n].append(gripperstring)  

        exec_order[n]=exec_order[n]+1    

 

def control_execute(n):#Execute all the saved commands 

    global exec_current 

    global execution_mode 

    global normal_mode 

    global current 

    if real_time: 

        control_real_time() 

    if execution_mode[n]==0: 

        exec_current[n]=0 

        normal_mode[n]=0 

        execution_mode[n]=1 

        send_button[n]["state"] = tk.DISABLED 

        execute_button[n]["text"] = 'FINISH' 

    else: 

        execution_mode[n]=0 

        current=order 

        normal_mode[n]=1 

        send_button[n]["state"] = tk.NORMAL 

        execute_button[n]["text"] = 'Execute'  

def control_clear(n):#Clears the execution list of the robot and if we are in 

execution mode it also stops it 

    global exec_current 

    global exec_order 

    global current 

    global normal_mode 

    global exec_list 

    empty=[] 

    exec_list[n]=empty 

    if execution_mode[n]: 

        execution_mode[n]=0 

        exec_order[n]=0 

        exec_current[n]=0 

        current=order 

        normal_mode[n]=1 

        send_button[n]["state"] = tk.NORMAL 

        execute_button[n]["text"] = 'Execute' 
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def change_kinematics():#It updates sliders values and labels when you change 

bewtween Forward and Inverse Kinematics mode 

    global ik 

    global current_sliders 

    global current_sliders_ik 

    global total_change 

    update=[0,0] 

    total_change=1 

    new_sliders=[0,0,0,0,0,0] 

    if ik==0: 

        ik=1 

        control_label.configure(text="Inverse Kinematics Controller") 

        for i in range(2): 

            for j, value in enumerate(list_axis): 

                joint_label[i][j].config(text=value) 

                joint_slider[i][j].configure(from_=axis_joints_min[j], 

to=axis_joints_max[j]) 

            for j in range(l-3): 

                current_sliders[i][j]=joint_slider[i][j].get() 

            current_sliders_ik[i]=angle2pos(i,current_sliders[i]) 

            for j in range(6): 

                current_sliders_ik[i][j]=round(current_sliders_ik[i][j],0) 

                joint_slider[i][j].set(current_sliders_ik[i][j]) 

            for j,value in enumerate(list_accuracy_mm): 

                precis_button[j].configure(text=str(value)+' mm') 

             

    else: 

        ik=0 

        control_label.configure(text="Forward Kinematics Controller") 

        for i in range(2): 

             

            for j in range(l-3): 

                new_sliders[j]=joint_slider[i][j].get() 

                if current_sliders_ik[i][j]!=new_sliders[j]: 

                    update[i]=1 

            for j, value in enumerate(list_joints): 

                joint_label[i][j].configure(text=value) 

                joint_slider[i][j].configure(from_=angle_joints_min[j], 

to=angle_joints_max[j]) 

            for j,value in enumerate(list_accuracy): 

                precis_button[j].configure(text=str(value)+'º') 

            if update[i]==1: 

                update[i]=0 

                current_sliders[i]=pos2angle(i,new_sliders) 

            for j in range(6): 

                joint_slider[i][j].set(current_sliders[i][j]) 

    control_accuracy(0)    

    total_change=0 

 

def pos2angle(n,pos):#It calculates a possible joints configuration and euler 

angles for given end-efffector pose 
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    coord=[0,0,0] 

    eul=[0,0,0] 

    current_q=[0,0,0,0,0,0] 

    for i in range (3): 

        coord[i]=pos[i] 

    for i in range (3,6): 

        eul[i-3]=pos[i] 

    T=SE3((SE3(coord)*eul2tr(eul, 'deg'))) 

    for i in range (6): 

        current_q[i]=current_values[n][i] 

    robot[n].q=current_q 

    q=robot[n].ikine_LM(T).q 

    for i in range(6): 

        q[i]=q[i]*180/np.pi 

    return q 

def angle2pos(n,q):#It calculates the end-efffector position and euler angles for 

given joints values 

    pos=[0,0,0,0,0,0] 

    ang=[0,0,0,0,0,0] 

    for i in range(6): 

        ang[i]=q[i]/180*np.pi 

    T=robot[n].fkine(ang) 

    angles=T.eul() 

    for i in range(3): 

        pos[i]=T.A[i, 3] 

    for i in range(3,6): 

        pos[i]=angles[i-3]*180/np.pi 

    return pos 

def check_collisions(ik,n,q):#It checks if the joint configuration that we want to 

send doesn't collide with the floor 

    if ik==0: 

        pos=angle2pos(n,q) 

    else: 

        pos=q 

    if pos[2]<0: 

        r_lbl_up[n].config(text=robots_labels[n]+"\nERROR: Robot collision", 

bg='#FF0000') 

        return 1 

    else: 

        r_lbl_up[n].config(text=robots_labels[n], bg=color2) 

        return 0 

def check_changes(collision,last_values, new_values):#It checks if the joints 

configuration and/or the gripper value have changed 

    move=False 

    gripper=False 

    if not collision: 

        for i in range(l-3): 

            if (last_values[i]!=new_values[i]): 

                move=True 

 

    if (last_values[6]!=new_values[6]): 



91 

        gripper=True 

    return move,gripper 

 

def update_pos(n): #Update text with the position of the robot in real time 

    q=[0,0,0,0,0,0] 

    real_time_ang=q 

    if ik==0: 

        for i in range (6): 

            q[i]=joint_slider[n][i].get() 

        real_time_pos=angle2pos(n, q) 

        for i in range (6): 

            real_time_pos[i] = str(round(real_time_pos[i], 1)) 

        textt="x="+real_time_pos[0]+"    y="+real_time_pos[1]+"    z="+real_time_po

s[2]+'\n' 

        textt=textt+"Rx="+real_time_pos[3]+"    Ry="+real_time_pos[4]+"    Rz="+rea

l_time_pos[5] 

        r_lbl[n].configure(text=textt) 

    else: 

        for i in range (6): 

            q[i]=joint_slider[n][i].get() 

        ang=pos2angle(n,q) 

        for i in range (6): 

            real_time_ang[i] = int(ang[i]+0.5) 

        textt="J1="+str(real_time_ang[0])+"    J2="+str(real_time_ang[1])+"    J3="

+str(real_time_ang[2])+'\n' 

        textt=textt+"J4="+str(real_time_ang[3])+"    J5="+str(real_time_ang[4])+"   

 J6="+str(real_time_ang[5]) 

        r_lbl[n].configure(text=textt) 

    '''def scale_callback(v,n): 

        if total_change==0: 

            update_pos(n) 

    ''' 

def control_stop(n):#It stops/continues robot movement in any moment you call it 

    global stop 

    if stopped[n]==0 and connected[n]: 

        stop[n]=1 

        stop_button[n].config(bg=color2,text=stop_labels[n+2]) 

    if stopped[n]==1 and connected[n]: 

        stop[n]=0 

        stop_button[n].config(bg='#FF0000',text=stop_labels[n]) 

def control_real_time():#It activates/deactivates real time mode 

    global real_time 

    global normal_mode 

    global execution_mode 

    if real_time==0: 

        real_time=1 

        normal_mode[0]=1 

        normal_mode[1]=1 

        execution_mode[0]=0 

        execution_mode[1]=0 

        real_time_button.config(bd=3,text="Real time:\nOn") 
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    else: 

        real_time=0 

        real_time_button.config(bd=0,text="Real time:\nOff") 

 

#FUNCTIONS PATH--------------------------------------------------------------------

--------------- 

def path_open_file():#It tries to open a text file for loading a path in the app 

    global text_file_dir 

    try: 

        text_file_dir = filedialog.askopenfilename(initialdir='paths/',title='Open 

Path (text file)', filetypes=[('Text Files', '*.txt')]) 

        start_index = text_file_dir.find("paths")   

        if start_index != -1: 

            result_string = text_file_dir[start_index+6:] 

        path_file_label.config(text="File: "+result_string) 

        text_file = open(text_file_dir, 'r') 

        path_text = text_file.read() 

        text_file.close() 

        current_path=path_text.splitlines() 

        path_list.delete(0, 'end') 

        for i, step in enumerate(current_path): 

            path_list.insert(i,str(i+1)+" "+step) 

    except: 

        print('File not open') 

def path_create_file():#It creates a new file with our current path, using as name 

'Path'+current date+current time 

    global text_file_dir 

 

    now = datetime.datetime.now() 

    date_time = now.strftime("Path %Y-%m-%d_%H.%M.%S") 

    directory = "paths/" 

 

    text_file_dir = directory+ f"{date_time}.txt" 

    path_file_label.config(text="File: "+text_file_dir[6:]) 

    path_save_file() 

def path_save_file():#You can save the current path in the last file that you 

openned/created, if not it creates a new file 

    if text_file_dir!= "": 

        with open(text_file_dir, "w") as file: 

 

            for item in path_list.get(0, tk.END): 

 

                words = item.split() 

 

                new_line = " ".join(words[1:]) 

                file.write(new_line + "\n") 

    else: 

        path_create_file() 

 

def path_rename_file(x):#Rename the file you are working on 

    global text_file_dir 
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    if x==0: 

        if not rename_file_entry.grid_info(): 

            rename_file_entry.grid(row=0, column=4, padx=5, pady=5) 

            rename_confirm_button.grid(row=0, column=5, padx=5, pady=5) 

            rename_file_entry.delete(0, tk.END) 

        else: 

            rename_file_entry.grid_forget() 

            rename_confirm_button.grid_forget() 

    else: 

        new_name = rename_file_entry.get() 

        start_index = text_file_dir.find("paths") 

        if start_index != -1: 

            old_name = text_file_dir[start_index+6:] 

        if new_name!="" and new_name!=old_name: 

            new_dir="paths/" + new_name + ".txt" 

            os.rename(text_file_dir, new_dir) 

            text_file_dir=new_dir 

            path_file_label.config(text="File: "+text_file_dir[6:]) 

            rename_file_entry.grid_forget() 

            rename_confirm_button.grid_forget() 

 

def path_edit_step():#It opens an editting menu to edit the step you've clicked on  

    global step_robot_option 

    global edit_item 

    for edit_item in path_list.curselection(): 

        path_frame_edit.grid(row=4, column=0, padx=5, pady=5, 

sticky='w',columnspan=30) 

        path_frame_edit_buttons.grid(row=5, column=0, padx=5, pady=5, 

sticky='w',columnspan=30) 

        if not save_step_button.grid_info(): 

            save_step_button.grid(row=0, column=1, padx=5, pady=5) 

            replace_step_button.grid_forget() 

            insert_step_button.grid_forget() 

        step=path_list.get(edit_item).split() 

        step_order_sel.delete(0, tk.END) 

        step_order_sel.insert(0, step[0]) 

        if step[1][1]=='1': 

            step_robot.set('Black') 

        elif step[1][1]=='2': 

            step_robot.set('Blue  ') 

        if step[1][0]=='M': 

            step_instruction.set('Move') 

            path_edit_regrid(8,0) 

        elif step[1][0]=='G': 

            step_instruction.set('Gripper') 

            path_edit_regrid(1,8) 

        elif step[1][0]=='W': 

            step_instruction.set('Wait') 

            path_edit_regrid(0,8) 

        values = step[2 : ] 

        update_step(values) 



94 

def path_remove_step():#It removes the step you've clicked on from the path 

(reordering the rest of steps) 

    for item in path_list.curselection(): 

        path_list.delete(item) 

        reorder_steps(item,0) 

    finish_edit_step() 

def path_add_step(n):#It opens the editting menu, that allows you to add new steps 

    step_order_sel.delete(0, tk.END) 

    step_order_sel.insert(0, path_list.size()+1) 

    if not replace_step_button.grid_info(): 

        save_step_button.grid_forget() 

        replace_step_button.grid(row=0, column=2, padx=5, pady=5) 

        insert_step_button.grid(row=0, column=3, padx=5, pady=5) 

    path_frame_edit.grid(row=4, column=0, padx=5, pady=5, sticky='w',columnspan=30) 

    path_frame_edit_buttons.grid(row=5, column=0, padx=5, pady=5, 

sticky='w',columnspan=30) 

    if n==0: 

       step_robot.set('Black') 

    else: 

         step_robot.set('Blue  ') 

    update_step(last_saved[n]) 

 

#FUNCTIONS PATH: Edit functions 

def finish_edit_step():#This function re-configure the gui when you finish the 

edition of a step 

    path_frame_edit.grid_forget() 

    path_frame_edit_buttons.grid_forget() 

def reorder_steps(item,x):#This function serves to reorder the paths steps. It is 

used in other functions: remove, replace, insert,... 

    for i in range(item,path_list.size()): 

        step=path_list.get(i).split() 

        if x==0: 

            step[0]=str(int(step[0])-1) 

        else: 

            step[0]=str(int(step[0])+1) 

        line="" 

        for j in range(len(step)): 

            line=line+step[j]+" " 

        path_list.delete(i) 

        path_list.insert(i,line) 

def update_step(val):#It is used to update the step values in the editting menu to 

the last saved in the controller tab 

    current_inst=step_instruction.get() 

    if current_inst=='Move': 

        step_instruction.set('Move') 

        step_complements_lbl[0].config(text = "  J1: ") 

        for i in range(8): 

            step_comp_sel[i].delete(0, tk.END) 

            if i<6: 

                step_comp_sel[i].insert(0, val[i]) 

            else: 
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                step_comp_sel[i].insert(0, val[i+1]) 

        if len(val)==10: 

            step_comp_sel[i].delete(0, tk.END) 

            step_comp_sel[i].insert(0, val[i+2]) 

        path_edit_regrid(8,0) 

         

    elif current_inst=='Gripper': 

        step_instruction.set('Gripper') 

        step_complements_lbl[0].config(text = "  Degrees:") 

        step_comp_sel[0].delete(0, tk.END) 

        if len(val)>6: 

            step_comp_sel[0].insert(0, val[6]) 

        else: 

            step_comp_sel[0].insert(0, val[0]) 

        path_edit_regrid(1,8) 

         

    elif current_inst=='Wait': 

        step_instruction.set('Wait') 

        path_edit_regrid(0,8) 

 

#FUNCTIONS PATH: Edditing steps functions 

def path_instr_sel(v):#It just calls path_update_step() when the instructions menu 

of the editting manu is used 

    path_update_step() 

def path_step_plus(n):#It increase current value in 5 units 

    if n==10: 

        try: 

            number= int(step_order_sel.get()) 

        except: 

            number=0 

        number=number+1 

        step_order_sel.delete(0, tk.END) 

        step_order_sel.insert(0, str(number))  

    else: 

        try: 

            number= int(step_comp_sel[n].get()) 

        except: 

            number=0 

        if n>5: 

            number=number+1000 

        else: 

            number=number+5 

        step_comp_sel[n].delete(0, tk.END) 

        step_comp_sel[n].insert(0, str(number))  

def path_step_minus(n):#It decrease current value in 5 units 

    if n==10: 

        number= int(step_order_sel.get()) 

        number=number-1 

        step_order_sel.delete(0, tk.END) 

        step_order_sel.insert(0, str(number))  

    else: 
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        number= int(step_comp_sel[n].get()) 

        if n>5: 

            number=number-1000 

        else: 

            number=number-5 

        step_comp_sel[n].delete(0, tk.END) 

        step_comp_sel[n].insert(0, str(number)) 

 

def insert(x):#It inserts a new step in the path. It's called from 

path_insert_step() and path_replace_step()  

    collision = 0 

    step=[] 

    step.append(step_order_sel.get()) 

    inst=step_instruction.get()[0] 

    pos = [0,0,0,0,0,0] 

    if step_robot.get()=='Black': 

        n='1' 

    else: 

        n='2' 

    step.append(inst+n) 

    if inst=='M': 

        for i in range(6): 

            step.append(step_comp_sel[i].get()) 

            pos[i]=int(step[i+2]) 

        collision = check_collisions(0,int(n)-1,pos) 

        if not collision: 

            step.append('S') 

            step.append(step_comp_sel[6].get()) 

            step.append('A') 

            step.append(step_comp_sel[7].get()) 

            line="" 

            for i in range(12): 

                line=line+step[i]+" " 

    elif inst=='G': 

        step.append(step_comp_sel[0].get()) 

        line=step[0]+" "+step[1]+" "+step[2] 

    elif inst=='W': 

        line=step[0]+" "+step[1] 

    if not collision: 

        path_label.config(text = "Path Planning", bg=color2) 

        new_item=int(step[0])-1 

        path_list.insert(new_item+x,line) 

        reorder_steps(new_item+1,1) 

    else: 

        path_label.config(text = "Path Planning: ERROR: Robot Collision", 

bg='#FF0000') 

    return not collision 

def path_edit_regrid(n,m):#It changes our editting menu, depending of the command 

we have to edit 

    for i in range(n): 

        if not step_complements_lbl[i].grid_info(): 
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            step_complements_lbl[i].grid(row=1, column=6+i*2) 

            step_comp_sel[i].grid(row=1, column=7+i*2) 

            step_comp_plus[i].grid(row=0, column=7+i*2) 

            step_comp_minus[i].grid(row=2, column=7+i*2) 

    for i in range(n,m): 

        if step_complements_lbl[i].grid_info(): 

            step_complements_lbl[i].grid_forget() 

            step_comp_sel[i].grid_forget() 

            step_comp_plus[i].grid_forget() 

            step_comp_minus[i].grid_forget() 

def path_exec_finish():#It closes the edditting menu 

    global wait 

    global path_mode 

    open_file_button['state']=tk.NORMAL 

    create_file_button['state']=tk.NORMAL 

    save_file_button['state']=tk.NORMAL 

    rename_file_button['state']=tk.NORMAL 

    edit_step_button['state']=tk.NORMAL 

    remove_step_button['state']=tk.NORMAL 

    add_step_button['state']=tk.NORMAL 

    add_step_button_b['state']=tk.NORMAL 

    execute_path_button.config(text='Execute', bg=color1, fg='#000000') 

    stop_path_button.grid_forget() 

    path_mode=0 

    path_list.selection_clear(0, tk.END) 

 

#FUNCTIONS PATH: Edditing frame buttons functions 

def path_cancel_step():#It closes the editting menu 

    finish_edit_step() 

def path_update_step():#It updates the edditing menu variables to the last values 

saved 

    if step_robot.get()=="Black": 

        n=0 

    else: 

        n=1 

    update_step(last_saved[n]) 

def path_save_step():#It saves the step you were editting, with possibility of 

changing the order of the step 

    if edit_item <= int(step_order_sel.get()): 

        if insert(1): 

            path_list.delete(edit_item) 

            reorder_steps(edit_item,0) 

            finish_edit_step() 

    else: 

        if insert(0): 

            path_list.delete(edit_item+1) 

            reorder_steps(edit_item+1,0) 

            finish_edit_step() 

 

def path_insert_step():#It inserts a new step wherever you want, reordering the 

rest of steps 
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    if insert(0): 

        finish_edit_step() 

def path_replace_step():#It replaces an old step to a new one 

    if insert(1): 

        item=int(step_order_sel.get())-1 

        if item+1<path_list.size(): 

            path_list.delete(item) 

            reorder_steps(item,0) 

        finish_edit_step() 

 

#FUNCTIONS PATH EXEC---------------------------------------------------------------

-------------------- 

def path_execute():#It activates the path execution mode, controlling both robots 

    global path_i 

    global path_size 

    global path_mode 

    global wait 

    global path_stopped 

    global path_stop 

    if path_list.size()>0: 

        if not stop_path_button.grid_info(): 

            wait=[0,0] 

            path_i=0 

            path_stopped=0 

            path_stop=0 

            path_list.selection_clear(0, tk.END) 

            path_size=path_list.size() 

            path_mode=1 

            finish_edit_step() 

            open_file_button['state']=tk.DISABLED 

            create_file_button['state']=tk.DISABLED 

            save_file_button['state']=tk.DISABLED 

            rename_file_button['state']=tk.DISABLED 

            edit_step_button['state']=tk.DISABLED 

            remove_step_button['state']=tk.DISABLED 

            add_step_button['state']=tk.DISABLED 

            add_step_button_b['state']=tk.DISABLED 

            execute_path_button.config(text='Finish', bg=color2, fg='#FFFFFF') 

            stop_path_button.config(text='Stop', bg='#FF0000', fg='#000000') 

            stop_path_button.grid(row=1, column=0, padx=5, pady=5, sticky="nw") 

        else: 

            path_exec_finish() 

def path_stops():#It stops/continues the path_execution 

    global path_stop 

    path_stop=1 

    if stop_path_button['text']=='Stop': 

        stop_path_button.config(text='Continue', bg=color2, fg='#FFFFFF') 

    else: 

        stop_path_button.config(text='Stop', bg='#FF0000', fg='#000000') 
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#FUNCTIONS GENERAL USE-------------------------------------------------------------

---------------------- 

def fullscreen_func():#Enables/Disables fullscreen 

    if app.attributes("-fullscreen")==True: 

        fullscreen_button['text']='Turn on\nFullscreen' 

        app.attributes("-fullscreen", False) 

    else: 

        fullscreen_button['text']='Turn off\nFullscreen' 

        app.attributes("-fullscreen", True) 

 

#Initialize app--------------------------------------------------------------------

--------------- 

backend.start() 

app.mainloop() 

 

  



100 

Appendix 2. Robot controller code: Main_controller.ino 

#include <math.h> 

#include <AccelStepper.h> 

#include <MultiStepper.h> 

#include "Config_and_variables.h" 

#include "Nano_communication.h" 

#include "Serial_communication.h" 

#include "Movement.h" 

 

void setup() 

{ 

  pinMode(EN_PIN, OUTPUT); 

  digitalWrite(EN_PIN, LOW); 

  for(int i=0; i<7; i++) 

  { 

    pinMode(STEP_PIN[i], OUTPUT); 

    pinMode(DIR_PIN[i], OUTPUT); 

    digitalWrite(STEP_PIN[i], LOW); 

    digitalWrite(DIR_PIN[i], LOW); 

    motor[i] = AccelStepper(AccelStepper::DRIVER, STEP_PIN[i], DIR_PIN[i]); 

    motor[i].setMaxSpeed(speed); 

    motor[i].setAcceleration(accel); 

    motors.addStepper(motor[i]); 

  } 

  delay(3000); 

  Serial.begin(38400); 

  delay(500); 

  Serial3.begin(38400); 

  feedback(); 

  newTarget=1; 

  Serial.print("blue\n"); 

  MoveToPosition(); 

} 

void loop() 

{ 

 

  read(); 

  if (!stopped)  

  { 

    feedback(); 

    MoveToPosition(); 

    MoveGripper(); 

  } 

} 
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Appendix 3. Robot controller code: Config_and_variables.h 

#define EN_PIN 40 

int STEP_PIN[] = {28,26,22,23,25,27,24}; //2motor de art2 el ultimo 

int DIR_PIN[] = {36,34,30,31,33,35,32}; //2motor de art2 el ultimo 

 

bool moveGripper=0; 

bool stopped=0; 

bool moving=0; 

bool running=0; 

bool runningArt6=0; 

bool newTarget=0; 

float AnglesNext[7]={0,0,0,0,0,0,0}; 

int gripper=0; 

String inString=""; 

int AnglesToSteps[7]={3200/180*2,284.44,3200/180*16,3200/180,3200/180,3200/180,284.44}; 

AccelStepper motor[7]; 

MultiStepper motors; 

int speed = 4000; //MAX 4000 CON 3200 DE STEPSAngles 

int accel = 1000; 

int delayy = 1; 

long time=0; 

long steps[7]={0,0,0,0,0,0,0}; 

long AngleArt5; 

long AngleArt6; 

 

Appendix 4. Robot controller code: Movement.h 

void MoveGripper() 

{ 

  if (moveGripper) 

  { 

    moveGripper=0; 

    Serial3.print("G"); 

    Serial3.print(gripper); 

    Serial3.print("\n"); 

    delay(1000); 

    Serial.print("OK"); 

  } 

} 
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void MoveToPosition(){ 

   

  while (motors.run()) { 

    while (motors.run()){ 

      if (Serial.available()) 

      { 

        read(); 

        while(stopped) read(); 

      } 

    } 

     

    feedback(); 

 

  } 

  if (running && !newTarget) 

  { 

    running=0; 

    Serial.print("OK"); 

    Serial.print("\n"); 

  } 

  else if (runningArt6 && !newTarget) 

  { 

    runningArt6=0; 

    running=1; 

     

    int i; 

    for(i=0; i<7; i++) { 

      if (i!=4 && i!=5) 

      { 

        steps[i]=AnglesNext[i]*AnglesToSteps[i]; 

      } 

      motor[i].setMaxSpeed(speed); 

      motor[i].setAcceleration(accel); 

    } 

    AnglesArt56(); 

    steps[4]+=AnglesNext[4]*AnglesToSteps[4]-AngleArt5; 

    steps[5]+=AngleArt5-AnglesNext[4]*AnglesToSteps[4]; 

    motors.moveTo(steps); 

  } 
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  else if (newTarget) 

  { 

    newTarget=0; 

    running=0; 

    runningArt6=1; 

 

    int i; 

    for(i=0; i<7; i++) { 

      if (i!=4 && i!=5) 

      { 

        steps[i]=motor[i].currentPosition(); 

      } 

      motor[i].setMaxSpeed(speed); 

      motor[i].setAcceleration(accel); 

    } 

    AnglesArt56(); 

    steps[4]+=AnglesNext[5]*AnglesToSteps[5]-AngleArt6; 

    steps[5]+=AnglesNext[5]*AnglesToSteps[5]-AngleArt6; 

     

    motors.moveTo(steps); 

  } 

} 
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Appendix 5. Robot controller code: Nano_communication.h 

void feedback() 

{ 

  bool received=0; 

  const int size = 100; 

  int i; 

  char inChar1='\0'; 

  char inArray1 [size]; 

  String inString1=""; 

  String token1 [7]; 

  //Serial3.print('P'); 

   

  delay(delayy); 

   

  while (Serial3.available() > 0){ 

      inChar1=(char)Serial3.read(); 

    if (inChar1 != '\n') 

    { 

      inString1 += inChar1; 

    } 

    else 

    { 

      float current; 

      float newPos; 

      inString1.toCharArray(inArray1, size); 

      token1[i] = strtok(inArray1, " "); 

      while (token1[i] != NULL) { 

        i++; 

        token1[i] = strtok(NULL, " "); 

      } 

      for(int i=0;i<5;i++) 

      { 

        if (i<4 || (abs(AnglesNext[4])+abs(AnglesNext[5]))<165) 

        { 

          current = motor[i].currentPosition(); 

          newPos = token1[i].toFloat()*AnglesToSteps[i]; 

          if (abs(current-newPos)<2*AnglesToSteps[i]) 

            motor[i].setCurrentPosition(newPos); 

            if (i==1) motor[6].setCurrentPosition(newPos); 

        } 

      } 

      inString=""; 

    } 

  } 

} 
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Appendix 6. Robot controller code: Serial_communication.h 

String output(float v[], String v2) 

{ 

  String output = v2+": x="+String(v[0])+", y="+String(v[1])+", z="+String(v[2])+", 

X="+String(v[3])+", Y="+String(v[4])+", Z="+String(v[5]); 

  return(output); 

} 

void AnglesArt56() 

{ 

  AngleArt6=(motor[4].currentPosition()+motor[5].currentPosition())/2; 

  AngleArt5=motor[4].currentPosition()-AngleArt6; 

} 

void read() 

{ 

  if (Serial.available() > 0) 

  { 

    int i=0; 

    const int size = 100; 

    char inArray [size]; 

    char inChar; 

    String token [15]; 

    while (Serial.available() > 0){ 

      inChar=(char)Serial.read(); 

      if (inChar != '\n') 

      { 

        inString += inChar; 

      } 

      else 

      { 

        inString.toCharArray(inArray, size); 

        token[i] = strtok(inArray, " "); 

        while (token[i] != NULL) { 

          i++; 

          token[i] = strtok(NULL, " "); 

        } 

        switch(token[0].charAt(0)) { 

          case 'M': //MoveRobot 

            for(int i=0;i<6;i++) 

            { 

              AnglesNext[i]=token[i+1].toFloat(); 

            } 

            AnglesNext[6]=AnglesNext[1]; 

            if (token[7] == "S") 

              speed=token[8].toInt(); 

            if (token[7] == "A") 
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              accel=token[8].toInt(); 

            if (token[9]=="A") 

              accel=token[10].toInt(); //Move Angle1 Angle2 Angle3 Angle4 Angle5 Angle6 S speed A 

accel 

            Serial.print("received"); 

            Serial.print("\n"); 

            newTarget=1; 

          break; 

 

          case 'G': //GRIPPER 

            gripper=token[1].toInt(); 

            moveGripper=1; 

            Serial.print(gripper); 

            Serial.print("\n"); 

          break; 

          case 'S': //STOP 

            stopped=1; 

            Serial.print("OK\n"); 

          break; 

          case 'C': //CONTINUE 

            stopped=0; 

            Serial.print("OK\n"); 

          break; 

          case 'P': //Position? 

            feedback(); 

            String output = "Position"; 

            for (int j=0;j<4;j++) 

            { 

              output+=" "; 

              output += motor[j].currentPosition();          

            } 

            AnglesArt56(); 

            output+=" "; 

            output+=AngleArt5; 

            output+=" "; 

            output+=AngleArt6; 

            Serial.print(output); 

            Serial.print("\n"); 

          break; 

          case 'D': //Desactivate Motors 

            stopped=1; 

            digitalWrite(EN_PIN, HIGH); 

            Serial.print("OK"); 

            Serial.print("\n"); 

          break; 

          case 'A': //Activate Motors 
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            stopped=0; 

            digitalWrite(EN_PIN, LOW); 

            Serial.print("OK"); 

            Serial.print("\n"); 

          break; 

        } 

        inString=""; 

      } 

    } 

  } 

   

} 

 

 

Appendix 7. Encoders controller code. 

#include <Servo.h> 

#define GRIPPER 3 

 

int i=0; 

int servo=0; 

int start=0; 

 

int SENSOR[5]= {A2, A3, A4, A5, A6}; 

float angle[5]; 

 

String inString; 

Servo servoMotor; 

 

void setup()  

{ 

  servoMotor.attach(GRIPPER); 

  Serial.begin(38400); 

  for (i=0; i<5; i++)  

  { 

 

    pinMode(SENSOR[i], INPUT); 

 

  } 

} 

void loop()  

{ 

 

  read(); 

 

} 
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void read() 

{ 

  char inChar; 

  if (Serial.available() > 0) 

  { 

    inChar=(char)Serial.read(); 

    switch (inChar) 

    { 

      case 'P': 

      { 

        for (i=0; i<6; i++) 

        {  

          angle[i] = analogRead(SENSOR[i])/1023*333.33-166.67; 

          Serial.print(angle[i]); 

          Serial.print(" "); 

        } 

        Serial.print("\n"); 

      } 

      break; 

      case 'G': 

      { 

        inString=""; 

        delay(1); 

        while(inChar!= '\n' && Serial.available()) 

        { 

          inChar=Serial.read(); 

          if (inChar!= '\n') 

            inString += inChar; 

        } 

 

        servo=140-140*inString.toInt()/100; 

        Serial.print(servo); 

        servoMotor.write(servo); 

      } 

      break; 

    } 

  } 

} 

 


