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A B S T R A C T

Kinetic models are nowadays a basic tool to ensure food safety. Most models used in predictive microbiology have
model parameters, whose precision is crucial to provide meaningful predictions. Kinetic parameters are usually
estimated based on experimental data, where the experimental design can have a great impact on the precision of
the estimates. In this sense, Optimal Experiment Design (OED) applies tools from optimization and information
theory to identify the most informative experiment under a set of constrains (e.g. mathematical model, number
of samples, etc). In this work, we develop a methodology for the design of optimal isothermal inactivation exper-
iments. We consider the two dimensions of the design space (time and temperature), as well as a temperature-de-
pendent maximum duration of the experiment. Functions for its application have been included in the bioOED R
package.We identify design patterns that remain optimum regardless of the number of sampling points for three
inactivation models (Bigelow, Mafart and Peleg) and three model microorganisms (Escherichia coli, Salmonella
Senftemberg and Bacillus coagulans). Samples at extreme temperatures and close to the maximum duration of
the experiment are the most informative. Moreover, the Mafart and Peleg models require some samples at inter-
mediate time points due to the non-linearity of the survivor curve. The impact of the reference temperature on
the precision of the parameter estimates is also analysed. Based on numerical simulations we recommend fixing
it to the mean of the maximum and minimum temperatures used for the experiments. The article ends with a
discussion presenting guidelines for the design of isothermal inactivation experiments. They combine these op-
timum results based on information theory with several practical limitations related to isothermal inactivation
experiments. The application of these guidelines would reduce the experimental burden required to characterize
thermal inactivation.

1. Introduction

Predictive microbiology has become a basic tool for modern food sci-
ence (McMeekin, Mellefont, & Ross, 2007). It develops mathemat-
ical models that can be applied to predict the microbial response (e.g.
microbial growth or inactivation) for each step of the farm-to-fork chain
that can be applied, for instance, in Quantitative Microbial Risk Assess-
ment (Haas, Rose, & Gerba, 2014; Possas, Valdramidis, García-Gi-
meno, & Pérez-Rodríguez, 2019) or shelf-life estimation (García et
al., 2015; González-Tejedor et al., 2017). Moreover, most model pa-
rameters have a biological meaning, which enables statistical inference
to compare microbial responses. This allows, for instance, the identifi-
cation of the most relevant sources of uncertainty and variability (den
Besten, Wells-Bennik, & Zwietering, 2018) or the comparison be-
tween different treatments (Ros-Chumillas, Garre, Maté, Palop, &
Periago, 2017).

Most mathematical models used in the context of predictive micro-
biology contain model parameters whose values are usually unknown
and must be estimated based on experimental data. Due to experimen-
tal error (understood as the uncertainty and variability associated to
data), exact values cannot be calculated for the model parameters (Box,
Hunter, & Hunter, 2005). Instead, a measure of uncertainty must be
reported associated to each model parameter (e.g. standard deviation).
Reviews dealing with the parameter estimation problem (also called “in-
verse problem”) in the context of food science can be found in the re-
cent literature (Dolan & Mishra, 2013; Vilas, Arias-Mendez, Gar-
cia, Alonso, & Balsa-Canto, 2018).

The uncertainty in parameter values is propagated when calculating
predictions using mathematical models based on experimental data (Vi-
las et al., 2018). This uncertainty in the parameter estimates has a
direct impact on risk management (Havelaar et al., 2010; Thomp-
son, 2002; Garre, Boué, Fernández, Membré & Egea, 2019). A reduc-
tion in parameter uncertainty would also reduce the uncertainty of
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the predictions, providing decision makers with more accurate informa-
tion relevant for risk assessment. The usual approach to reduce the un-
certainty of parameter estimates is an increase in the number of sam-
pling points. However, this can be costly in the context of food science,
due to the need of expensive equipment and highly trained personnel,
among other factors. Optimal Experimental Design (OED) has the goal of
identifying the most informative experimental designs given some con-
straints (e.g. mathematical model, number of sampling points, tempera-
ture range…). OED has been applied in a broad range of fields, enabling
to estimate model parameters with higher accuracy than with “classi-
cal” (factorial/uniform) designs when the same number of data points
is taken (Balsa-Canto, Alonso, & Banga, 2008; Balsa-Canto, Ro-
driguez-Fernandez, & Banga, 2007; Schenkendorf, Xie, Rehbein,
Scholl, & Krewer, 2018).

In the context of microbial growth and inactivation, OED has been
successfully applied in several cases, increasing the precision of pa-
rameter estimates with respect to uniform designs (Cunha, Oliveira,
Brandão, & Oliveira, 1997; Frías, Oliveira, Cunha, & Oliveira,
1998; Garre, González-Tejedor, Peñalver-Soto, Fernández, &
Egea, 2018; Longhi, Martins, da Silva, Carciofi, & Laurindo,
2017; Longhi et al., 2018; Paquet-Durand, Zettel, & Hitzmann,
2015; Stamati, Akkermans, Logist, Noriega, & Van Impe, 2016;
van Derlinden, Balsa-Canto, & Van Impe, 2010). However, these
studies were restricted to finding the most informative sampling times
in one (dynamic or static) experiment. Currently, the most popular ap-
proach for this characterization is the application of several isothermal
inactivation treatments at different temperatures. These data is, then,
fitted using preferably a one-step algorithm (den Besten, Berendsen,
Wells-Bennik, Straatsma, & Zwietering, 2017; Fernández, Ocio,
Fernández, Rodrigo, & Martinez, 1999). Therefore, the design space
is two-dimensional, with the sampling time and the treatment tem-
perature as the design variables. To the knowledge of the authors, no
methodology for OED has been developed in this context. This can be
attributed to the fact that isothermal experiments, despite being simpler
from an experimental point of view, are more complex from the point of
view of experimental design. The design space in a set of isothermal de-
signs is two-dimensional design space, whereas the one in dynamic ex-
periments is one-dimensional, increasing the complexity of the optimiza-
tion problem required for OED. Furthermore, the maximum duration
of an inactivation experiment is defined by the detection limit. In dy-
namic experiments, this restriction can easily be implemented, whereas
in isothermal experiments the time required for the microbial count to
reach the detection limit is a function of temperature. This defines a con-
straint that increases the complexity of the optimization problem.

In this work, a methodology based on the optimization of the Fisher
Information Matrix (FIM) is developed for the OED of isothermal inac-
tivation experiments. The methodology is able to handle the complex-
ities inherent to isothermal experiments; i.e. the two-dimensional sam-
ple space and the temperature-dependent detection limit. It is applied
for three different inactivation models commonly used in food science
(Bigelow, Mafart and Peleg) and three different model microorganisms
(Escherichia coli, Salmonella Senftemberg and Bacillus coagulans). Func-
tions for applying this methodology have been included in the bioOED
R package (Garre, Penalver, Fernandez, & Egea, 2017), making
them available for the scientific community. This package is available
on CRAN (https://CRAN.R-project.org/package=bioOED).

2. Materials and methods

2.1. Mathematical modelling of microbial inactivation

The OED has been calculated for three inactivation models com-
monly used in predictive microbiology: Bigelow (1921),

Mafart, Couvert, Gaillard, and Leguerinel (2002) and Peleg and
Cole (1998). Note that, in order to ease the calculations for the OED,
the initial microbial count is not considered as a parameter to estimate.
Therefore, the decimal logarithm of the fraction of survivors is the de-
pendent variable, instead of the (log-)microbial count.

The Bigelow model considers a log-linear relationship between the
fraction of survivors ( ) and the elapsed time ( ), as shown in Eq. (1).

(1)

The D-value at temperature , , represents the time required to
reduce the microbial population by 90% with a thermal treatment at
temperature, T. This model also assumes a log-linear relationship be-
tween the D-value and temperature, as shown in Eq. (2). This equation
introduces the z-value that quantifies the sensitivity of the D-value
to temperature changes, indicating the temperature increase required
for a ten-fold reduction of the D-value. The reference temperature,
, has no biological meaning but can improve parameter identifiability
(Poschet, Geeraerd, Van Loey, Hendrickx, & Van Impe, 2005).

(2)

Both the Mafart and Peleg models belong to the family of weibul-
lian models, which introduce a non-linearity in the isothermal survivor
curve based on the hypothesis that the resistance of individual cells to
the thermal stress follows a Weibull distribution. The Mafart model is
expressed as shown in Eq. (3), where , usually called the -value
at temperature T, can be interpreted as the time required for the first
log-reduction of the microbial density for a treatment at temperature
T. The value is the shape factor of the underlying Weibull distribu-
tion, which describes the concavity direction of the isothermal inactiva-
tion survivor curve. When the shape factor is larger than one, the curve
has downwards concavity, whereas when it is lower than one there is a
tail. If , the shape of the isothermal survivor curve is log-linear and
the results are equivalent to those obtained using the Bigelow model for

.

(3)

The Mafart model, similarly to the Bigelow model, hypothesizes that
the inactivation rate follows an exponential relationship with tempera-
ture, using the secondary model shown in Eq. (4). In this model, the
z-value, , and the reference temperature, , have the same interpreta-
tion as in the Bigelow model. The parameter represents the value of

estimated at the reference temperature.

(4)

The Peleg model uses a different parameterization of the primary
model than the one used by Mafart, using instead of , as shown
in Eq. (5). Both parameters are related via the identity
. In addition, the shape factor is represented by instead of p.

(5)
The Peleg model proposes a different secondary model than Bigelow

or Mafart. It hypothesizes a log-logistic relationship between and
temperature, as shown in Eq. (6). For temperatures much lower than
the critical temperature ( ), b (T) equals zero and no inactivation
takes place. For values of temperature much higher than , has
a linear relation with temperature with slope . This model suggests a

2
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super-linear transition between both regimes.

(6)

In this study, we aim to define design patterns that are applica-
ble to a broad range of microbial responses. Consequently, the micro-
bial responses of three microorganisms with different inactivation kinet-
ics have been extracted from the scientific literature: Escherichia coli in
peptone water (Garre, Clemente-Carazo, Fernández, Lindqvist, &
Egea, 2018), Salmonella enteric subsp. enterica serovar Senftenberg in
peptone water (Huertas, Ros-Chumillas, Esteban, Esnoz, & Palop,
2015) and Bacillus coagulans in nutrient broth supplemented with
oregano oil (Haberbeck, Dannenhauer, Salomão, & De Aragão,
2013). These microorganisms present survivor curves with different
shapes, that include upward and downward concavity, as well as linear
responses. Furthermore, their D (and ) values varies by at least one or-
der of magnitude. Table 1 summarizes the model parameters extracted
and used as nominal parameters for the OED. This table also includes the
parameters and , defining a theoretical, feasible temperature
range for the isothermal inactivation experiments. The calculations have
been repeated for different values of and , without any major
impact on the conclusions of the study. Although the Bigelow model is
not adequate to describe the microbial response of S. Senftemberg and
B. Coagulans due to the non-linearity of the survivor curve, it has been
included in the analysis to analyse how variations in the magnitude of
the D and z-values affect the OED for this model.

2.2. A methodology for OED of isothermal inactivation experiments

We have applied for the OED of isothermal inactivation experiments
an approach based on the optimization of the FIM. A complete descrip-
tion of the problem from a mathematical stand point can be found in
the article by Asprey and Macchietto (2002). Isothermal inactiva-
tion experiments can be fitted using a “two-step” (model parameters
are estimated sequentially) or a “one-step” (every model parameter is
fitted in one step) approach. We have developed our methodology for
the “one-step” fitting algorithm, which has proved more accurate than
the “two-step” approach (den Besten et al., 2017; Fernández et al.,
1999). Under the hypothesis of normality and homoscedasticity of the
residuals, the FIM for an isothermal inactivation experiment with n sam-
pling points can be calculated as shown in Eq. (7).

(7)

The term represents the local sensitivity functions, de-
fined as the partial derivative of the response variable (the log-fraction
of survivors in this study) with respect to the vector of model para-
meters, , evaluated at the sampling point defined by the vector
.Q is a weight matrix, that will be considered as the identity matrix
in this study. Because the local sensitivity functions are evaluated in
the sampling points, the elements of the FIM depend on the experimen-
tal design; i.e. different combinations of time-temperature will result in

different values of the FIM for the same model. This result is usu-
ally referred to as practical identifiability of the experimental design
(Villaverde, 2019; Villaverde, Evans, Chappell, & Banga, 2019),
which describes the ability to estimate the model parameters conditional
to the design. It is, therefore, different to structural identifiability, which
only depends on the mathematical model (Villaverde, Barreiro, & Pa-
pachristodoulou, 2016).

According to the Cramer-Rao inequality, the inverse of the FIM is
a lower bound of the covariance matrix of the model parameters (C),
which is closely related to the precision of the parameter estimates (i.e.,
smaller C implies less uncertainty). Therefore, experimental designs that
maximize the FIM are likely to result in parameter estimates with lower
uncertainty (Nishii, 1993). Because the FIM is a matrix, the optimiza-
tion must be performed based on a metric. Several criteria are available
in the literature, each one with a different interpretation (Balsa-Canto,
Alonso, & Banga, 2008). In this study, we have applied the D-cri-
terion, that has already been successfully applied in similar problems
(Garre, González-Tejedor et al., 2018). This criterion consists on the
maximization of the determinant of the FIM. Because of the Cramer-Rao
inequality, the FIM can be used as an estimator of the variance-co-
variance matrix of the model parameters (de Aguiar, Bourguignon,
Khots, Massart, & Phan-Than-Luu, 1995). Hence, an experimental
design that maximizes the determinant of the FIM also minimizes the
volume of the confidence ellipsoids of the model parameters. Therefore,
it also minimizes the uncertainty associated to each model parameter
(i.e. the size of the confidence intervals). Therefore, the optimization
problem required to calculate the optimal experiments can be written as
shown in Eq. (8), where and define the suitable temperature
range for the experiment and is the maximum treatment time. Note
that is constant and does not consider the relationship between the
time to reach the detectionlimit and the treatment temperature. In Sec-
tion 2.2.2, a modification is included in the optimization problem to
account for this relationship.

(8)

2.2.1. Local sensitivity functions for isothermal inactivation
Local sensitivity functions are central for the OED methodology

based on the optimization of the FIM. For isothermal conditions, the lo-
cal sensitivity functions for the inactivation models considered in this
study (Bigelow, Mafart and Peleg) have an analytical solution.

The Bigelow model has two model parameters ( and z). The local
sensitivity functions corresponding to them are shown, respectively, in
Eqs. (9) and (10). Note that the reference temperature is not estimated
using experimental data, so it is not considered a model parameter to

Table 1
Model parameters used as reference for the calculations.

(°C) (°C −1) (°C) (°C) (°C) a (°C) b

Escherichia coli 11.96 52.5 0.58 56.95 1 5.18 52.5 60
Bacillus coagulans 7.3 90 0.4 99.97 2.04 12.01 90 100
Salmonella Senftemberg 3.17 55 0.3 56.19 0.38 5.84 55 62.5

a Minimum treatment temperature.
b Maximum treatment temperature.
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fit.

(9)

(10)

The Mafart model has three model parameters ( , z and p). Their
local sensitivity functions are reported in Eqs. (11)–(13). As well as for
the Bigelow model, the local sensitivity functions of the reference tem-
perature have not been calculated because it is not a parameter to fit.

(11)

(12)

(13)

The Peleg model has three model parameters (k, n and ). The cor-
responding local sensitivity functions are written in Eqs. (14)–(16).

(14)

(15)

(16)

2.2.2. Consideration of a temperature-dependent detection limit in the OED
Inactivation experiments (in the absence of tail effects) reduce the

microbial count until it is below the detection limit. Therefore, for time
points after a maximum time, the microbial density is too low to pro-
vide any information. We refer to that maximum time in this article as
maximum treatment time ( ). Because the rate of inactivation grows
with the treatment temperature, is temperature-dependent. This in-
troduces a constraint that must be included in the optimization problem
(Eq. (8)), to avoid designs that cannot be carried out in the laboratory
because they require a treatment duration larger than .

Under the hypothesis that the inactivation model is correct, the treat-
ment time ( ) required to reach an arbitrary number of log-reduc-
tions (R) can be calculated from the primary and secondary models,
as shown in Eqs. (17)–(19) for the Bigelow, Mafart and Peleg mod-
els, respectively. These formulas can predict the treatment time required
to reach the detection limit at temperature T, i.e. .We have cal-
culated the experimental designs for different values of the detection
limit, without a major impact on the design patterns. Therefore, only
the results calculated for an experiment duration corresponding to 6
log-reductions (equivalent to, e.g., an initial concentration of 7 log CFU/
ml and a detection limit of 1 log CFU/ml) are reported in this ar-
ticle. Note that this number of log-reductions has not been selected
based on any microbiological criteria, just as an illustration of the re-
sults. Nonetheless, the number of log-reductions does not affect opti-
mal design patterns, so the results reported here are applicable for other

conditions.

(17)

(18)

(19)

Eqs. (17), (18) or (19) have been added as a constraint to the
optimization problem defined in Eq. (8). Then, the optimal solution
has been found applying the Enhanced Scatter Search algorithm (Egea,
Martí, & Banga, 2010), using the implementation in the MEIGO R
package (Egea et al., 2014). This algorithm is a heuristic optimization
method based on evolutionary strategies. The constraint has been imple-
mented through a mapping of the design space. If a point is not
feasible (i.e., it is moved to to make it feasible.
Therefore, the objective function outside the feasible area is “flat” in the
time-coordinate.

2.3. Comparison of the accuracy of experimental designs using numerical
simulations

The improved accuracy of the proposed designs with respect to
“classical” uniform designs has been evaluated using in-silico experi-
ments, according to the two methodologies proposed by Garre et al.
(2019).The first one is based on the properties of the FIM. According to
the Cramer-Rao inequality, the inverse of its determinant can be used as
estimator of the volume of the confidence ellipsoids. The values of the
determinant of the FIM can be plotted for different experimental designs
to compare the amount of information that each one provides.

This approach, although computationally inexpensive, is only valid
under several statistical hypotheses (e.g. linearity of the response, un-
correlated parameters) that are usually not fulfilled in microbial inac-
tivation. Moreover, it is hard to estimate from the determinant of the
FIM the precision (i.e. the standard error) of each model parameter. For
that reason, Garre et al. (2019) also suggest a second approach that
has less restrictive hypotheses than the FIM and provides more detailed
information on the precision of parameter estimates, at the expense of
computational cost. This second approach is based on Monte Carlo sim-
ulations of the observations that could be observed in a laboratory. The
experimental error is modelled as a perturbation of the ideal response
of the microorganism to the stress (the one obtained using the parame-
ters in Table 1). In this work, a normal distribution with mean zero
and has been used. This is repeated to simulate a large number
of experiments (1000) and, then, the distributions of some index of the
parameters. In this study, we have focused in their estimated values to
analyse the bias and their standard errors for parameter precision. The
simulations have been repeated for different values of , without ob-
serving any impact on the optimal design patterns. All the simulations
and the model fits have been carried out using the functions included in
the bioinactivation R package (Garre, Clemente-Carazo et al., 2018;
Garre, Fernández, Lindqvist, & Egea, 2017).

These numerical methods have been used to how the precision in
parameter estimates varies as the number of sampling points is in-
creased. Furthermore, they have been applied to compare between
optimal and uniform experimental designs of different configurations.
For isothermal inactivation experiments, due to the fact that the de-
sign space is two-dimensional, different uniform experiments can be
calculated for the same number of data points. For each microorgan-
ism, uniform experiment designs with two (maximum and minimum),
three (maximum, minimum and intermediate) and four (maximum,

4
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minimum and two intermediate) temperatures have been defined. For
each temperature, the elapsed time has been divided uniformly in three
to six sampling points. Fig. 1 illustrates the three different types of uni-
form designs analysed.

3. Results

3.1. Local sensitivity functions for isothermal inactivation

Local sensitivities are a central part for the calculation of OEDs based
on the FIM. Furthermore, they provide qualitative and quantitative in-
formation about the model analysed. Therefore, a sensitivity analysis
has been carried out before calculating the OED. Fig. 2 illustrates the
local sensitivity functions for the Bigelow, Mafart and Peleg models for
each microorganism. The effect of the reference temperature on the sen-
sitivity functions is illustrated in Supp. Fig. 1. Because the design space
is two-dimensional (time and temperature), each local sensitivity func-
tions is a three-dimensional surface. Solid lines in Fig. 2 and Supp.
Fig. 1 indicate combinations of treatment time and temperature with
the same local sensitivity, whereas the background colour indicates the
magnitude of the sensitivity function (i.e. the “height” of the surface).

The shape of the local sensitivities with respect to the three pa-
rameters of the Mafart model (Fig. 2B, E and H) is affected by the
characteristics of the microorganism and, specially, by the reference
temperature (supp. Fig. 1). The slope of the surface calculated for S.
Senftemberg is higher than for B. coagulans. The one for E. coli is in

between both values. However, the topological shape of the surface is
barely affected by the kinetic parameters of the microorganism. Modifi-
cations on the reference temperature, on the other hand, have a very rel-
evant effect on the local sensitivities with respect to the z-value. Due to
the secondary model used for the Mafart model (Eq. (4)), the local sen-
sitivity with respect to this parameter for a temperature equals
zero. Therefore, fixing to different values shifts the location of this
line with zero sensitivity. Furthermore, the shape of the local sensitivity
function with respect to the z-value is not symmetrical with respect to
the reference temperature. This can be visualized by comparing, for in-
stance, Fig. S1D and F. Because of the crucial role of local sensitivities
on the FIM, it is expected that changes in should modify the preci-
sion of the parameter estimates. This question is further analysed in Sec-
tion 3.2 of this article. Note that the local sensitivity functions for the
Bigelow model are equivalent to those calculated for the Mafart model
when ( equivalent to ). Hence, the observations made for
the Mafart model can be extrapolated for the Bigelow model.

The local sensitivity of parameter n in the Peleg model is similar to
the one of parameter p in the Mafart model. This was expected, because
both parameters represent the shape factor of the underlying Weibull
distribution used as hypothesis for the primary model. Local sensitivi-
ties with respect to are similar in shape to those calculated for the
z-value in the Mafart model. Both parameters are introduced in the sec-
ondary model to describe the relationship between the inactivation rate
and changes in temperature ( is log-linear with slope in Mafart;
b is linear with slope in Peleg). Furthermore, the local sensitivity

Fig. 1. Illustration of the uniform experimental designs considered (A) “Uni 2”, (B) “Uni 3” and (C) “Uni 4”.

Fig. 2. Local sensitivity functions and OEDs calculated (solid points) for (A) B. coagulans and Bigelow model, (B) B. coagulans and Mafart model, (C) B. coagulans and Peleg model, (D) E.
coli and Bigelow model, (E) E. coli and Mafart model, (F) E. coli and Peleg model, (G) S. Senftemberg and Bigelow model, (H) S. Senftemberg and Mafart model, (I) S. Senftemberg and
Peleg model.
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with respect to equals zero when , similar to the relationship
between z and . These similarities in the interpretation of both para-
meters result in similar sensitivity functions. Finally, the local sensitivi-
ties with respect to are similar to those with respect to . Because
of these similarities, it is expected that both the Peleg and Mafart mod-
els, despite their different secondary models, have similar performance
when describing isothermal microbial inactivation.

The methodology for OED based on the FIM tends to locate sam-
pling points in areas of the design space (treatment time/temperature
combinations) with high local sensitivity (Schenkendorf et al., 2018).
According to Fig. 2, the areas with the highest local sensitivity are lo-
cated in the upper right corner of the design space, corresponding to
high treatment times and temperatures. However, for microbial inacti-
vation, the maximum treatment time is constrained by the time required
to reach the detection limit, which is temperature dependent (dashed
green line in these plots). Therefore, without a constraint to relate to the
detection limit, we expect the OED to calculate designs that cannot be
realized in the laboratory. This question is further analysed in Section
3.3.

3.2. Impact of the reference temperature in the uncertainty of the parameter
estimates

The reference temperature is a parameter without a biological inter-
pretation that is included in the Bigelow and Mafart models to improve
parameter identifiability (Dolan, Valdramidis, & Mishra, 2013). As
already discussed in the previous section, changes in the reference tem-
perature affects the local sensitivity functions of the z-value. As de-
scribed in the materials and methods section, we have simulated uni-
form designs with four temperatures and four samples per temperature
tested for all microorganisms to analyse the impact of different values of
the reference temperature in the precision of the parameter estimates.
The precision in the z-value (in both models) and the p-value (in the
Mafart one) was not affected by variations in the reference tempera-
ture. On the other hand, changes in the reference temperature affected
the uncertainty associated to the D-value (Bigelow model) and -value
(Mafart model). Fig. 3 illustrates using boxplots the distribution of the
relative standard deviation (estimated standard error divided by esti-
mated value) of these parameters in 1000 simulated experiments when
the reference temperature is fixed to five different values (90 °C [ ],
92.5 °C, 95 °C, 97.5 °C and 100 °C [ ]). The reference temperature has
a strong influence in the precision of the D-value of the Bigelow model
(Fig. 3A). Fixing it to an extreme value ( or ) results in the low-
est precision, whereas setting it to the mean of the temperature range of
the experiment (95 °C=(90+100)/2; in this case) results in a signifi-
cant reduction in the expected relative standard deviation of this para-
meter. The expected relative standard deviation is reduced from 0.009
to 0.005. Fig. 3A also shows that the effect of the reference temper-
ature on the precision of the parameter estimates is symmetrical. The
distribution of the relative standard deviation when the reference tem-
perature equals the maximum temperature (100 °C) is indistinguishable
from the one obtained for the minimum temperature (90 °C). This is also
observed for other intermediate values, symmetrical with respect to the
mean value (92.5 and 97.5 °C). This results are in-line with those ob-
tained by Poschet et al. (2005).

The results obtained for the Mafart model (Fig. 3B) are similar to
those obtained for the Bigelow model. Again, the lowest uncertainty
is obtained when the reference temperature is fixed to the mean of
the maximum and minimum temperature. As well as for the Bigelow
model, the effect of the reference temperature in the precision of the
parameter estimates of the Mafart model is symmetrical; the same pre-
cision was obtained at 100 and 90 °C, and at 97.5 and 92.5 °C. How-
ever, the impact is much lower for the Mafart model than for

the Bigelow model. The expected relative standard deviation is reduced
from 0.0253 to 0.0249 when the reference temperature is changed from
90° to 95 °C. This could be attributed to the correlation between the
-value and parameter p of the Mafart model. However, an in-deep analy-
sis of the structural and practical identifiability of the Mafart model
would be required to confirm this hypothesis. That study has a high
mathematical complexity (Villaverde, 2019; Villaverde et al., 2016)
and is out of the scope of this article. The computational studied has also
been carried out for other designs (uniform and optimal), as well as for
the other two microorganisms, obtaining qualitatively the same results
(not reported).

Consequently, the selection of the reference temperature influences
the uncertainty of the model parameters in the Bigelow and, to a lesser
extent, the Mafart model. This implies thatthe uncertainty associated to
the model parameters can be reduced by an adequate selection of the
reference temperature, without the need of any additional experimen-
tal effort. According to the numerical results of this investigation, it is
recommended to fix the reference temperature to the mean of the max-
imum and minimum temperatures used for the analysis. On a previous
study Poschet et al. (2005) reached the same conclusion for isother-
mal inactivation when the two-step model fitting algorithm was used.
Dolan, Valdramidis, and Mishra (2013), also applying Monte Carlo
simulations, identified a reference temperature that minimized the cor-
relation between the model parameters for several inactivation models.
In the case of a model similar to the Bigelow model, they identified an
optimum reference temperature close to the mean of the temperature
range, as well as in our study. On the other hand, Datta (1993) pro-
poses a formula to calculate a reference temperature that minimizes the
error of the secondary model with respect to the Arrhenius equation.
This procedure results in a reference temperature that is very close to
the maximum temperature used in the experiments. The reason for this
discrepancy is that the goal of the study by Datta was the minimization
of the error in the model with respect to the Arrhenius model, not the
optimization of the precision in the parameter estimates. The different
target of his investigation is responsible for the differences in the result.

3.3. OED for isothermal inactivation

As a first step, OEDs have been calculated without considering the
constraint regarding the detection limit (i.e. optimizing Eq. (8)). The
optimal experiments calculated had most sampling points at the upper
limits of the treatment time and temperature range (results not shown).
As already discussed, the OED based on the FIM tends to locate sam-
pling points in areas with high local sensitivity. In the cases studied, the
areas with the highest local sensitivity are located on the upper-right
corner of the design space, as shown in Fig. 2. Therefore, in the ab-
sence of a constraint, the optimal solution consists of sampling points
in that area. However, these points are not feasible under actual labora-
tory conditions because the microbial count is well below the detection
limit. These designs, despite optimal from the point of view of informa-
tion theory, are not practical in actual laboratory conditions. Therefore,
there is a need to include a constraint related to the detection limit.

OEDs have been calculated for every case studied (three models and
three microorganisms) for a different number of sampling points (four
to eighteen). The reference temperature has been set to the mean of
the temperature range, according to the conclusions of Section 3.2.
Our results show that the optimal design pattern depends on the inac-
tivation model selected, is slightly affected by the characteristics of the
microorganism, and is not affected by the number of sampling points.
The value of the reference temperature does not affect the optimal de-
sign patter (result not shown). As an illustration, the OEDs calculated
for 10 sampling points are illustrated in Fig. 2. For the Bigelow model,
sampling points are located in two areas: at the values of cor-
responding to and . That configuration would be unable to
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Fig. 3. Boxplots of the relative standard deviation of parameters model in 1000 simulated experiments for the D-value in the Bigelow model (A) and the -value in theMafart model (B)
when the is fixed to different values (see legend).

identify the value of p and n in the Mafart and Peleg models, respec-
tively. Consequently, the OEDs calculated for both models include ad-
ditional sampling points at intermediate treatment times. Nevertheless,
the number of sampling points at intermediate treatment times is lower
than those located for treatment times close to . For the Mafart
model, sampling points are located in two additional locations with re-
spect to the Bigelow model. These areas are also at the maximum and
minimum temperature, but at an intermediate time instead of
. The exact sampling time of these points depends on the value of the
parameter p. For (B. coagulans), the optimum configuration has
points closer to than for (S. Senftemberg), when the inter-
mediate points are closer to the beginning of the treatment. Finally,
for the Peleg model, one additional area is identified with respect to
the Bigelow model. In this case, the additional sampling points are
also located at an intermediate treatment time. Whereas in the Mafart

model the additional points were located at and , the optimal
design pattern in the Peleg model uses experiments at an intermedi-
ate temperature. The value of the couplet time-temperature of the addi-
tional sampling points depends on the characteristics of the microorgan-
ism. For (B. coagulans), the optimum configuration is above the in-
termediate temperature and closer to the detection limit than when
(S. Senftemberg). In the latter case, the intermediate points are further
from the detection limit and it has a temperature below the intermedi-
ate one. These optimum patterns were stable when the total number of
sampling points was changed.

3.4. Comparison between optimal and uniform designs

In this section we compare the precision in parameter estimates
that is attained with the proposed OEDs (considering the temperature-
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dependent restriction in the treatment time) with respect to uniform de-
signs. Because the sampling space is two-dimensional (time and tem-
perature), for a given number of sampling points, several uniform de-
signs are possible. We have considered uniform designs with two differ-
ent treatment temperatures (“Uni 2”), three temperatures (“Uni 3”) and
four temperatures (“Uni4”). In every design, the same number of sam-
ples has been used for each temperature. For instance, a “Uni 3” design
with 12 sampling points has four samples at , four at and four
at . Fig. 1 shows an illustrative comparison of these
designs.

Fig. 4 plots the inverse of the determinant of the FIM calculated for
experimental designs (uniform and optimal) for four to twenty sampling
points. Note that, as justified in the materials and methods section, the
inverse of the determinant of the FIM is an estimate of the volume of
the confidence ellipsoids of the model parameters. In every case, an in-
crease in the number of sampling points reduces the uncertainty of the
model parameters. The relationship between the inverse of the determi-
nant of the FIM and the number of sampling points is close to log-lin-
ear. This implies that, when the number of samples is low, an increase
in the number of sampling points has a strong, positive influence in un-
certainty. This impact, however, is reduced as the number of samples is
increased. This result is in agreement with those reported by Garre et
al. (2019) for dynamic inactivation experiments.

In every case studied, the OED provides parameter values with lower
uncertainty than uniform designs with a similar number of sampling
points. Regarding the uniform designs, the number of temperatures con-
sidered has a significant influence on the results. Designs with two tem-
peratures (“Uni 2”) are more informative than those with three (“Uni
3”), which are more informative than those with four temperatures
(“Uni 4”). This can be explained based on the patterns identified for
optimal experiments in this context. For the Bigelow and the Mafart
model, the OED identifies sampling points at the maximum and min-
imum temperatures as the most informative ones. A uniform experi-
ment design with more than two different temperatures places sam-
pling points at intermediate temperatures, less informative than the ex-
treme ones. Consequently, because they are closer to the pattern defined
by the optimal one, uniform experiments with two temperatures are

more informative than those with more temperatures for the same num-
ber of sampling points.

Monte Carlo simulations have been used to further compare the pre-
cision and accuracy of different experimental designs, extending the
conclusions drawn from the observation of the values of the FIM. An
OED with 12 sampling points has been compared against a uniform de-
signs with the same number of sampling points. Namely, we have con-
sidered uniform designs with two different temperatures and six sam-
pling points per temperature (“Uni_2_6”), three different temperatures
and four samples per temperature (“Uni_3_4”), and four different tem-
peratures and three samples per temperature (“Uni_4_3”). The compari-
son has been made for the three microorganisms and three inactivation
models studied in this investigation. For every experimental design and
case studied, the mean of the parameter estimates matched the value
used for the simulations, indicating a lack of bias. However, the preci-
sion varied between experimental designs. Fig. 5 shows density plots
of the relative standard deviations estimated in 1000 Monte Carlo sim-
ulations. For most cases, the OED systematically estimates parameters
with a lower standard deviation than the uniform designs; i.e. with less
uncertainty. This result is in line with the predictions made based on
the values of the determinant of the FIM. The improvement is depen-
dent on the mathematical model and the microorganism studied. For the
Bigelow model, a 52% reduction in uncertainty for every microorgan-
ism and inactivation model is attained (for example with B. coagulans
and Bigelow (Fig. 5A) the expected relative standard deviation for
is reduced from 0.011 to 0.007 and z is reduced from 0.015 to 0.007).
For the Mafart model, the improvement for the parameters and p is
only noticeable for the simulations on S. Senftemberg. This can be due
to the high correlation between these two model parameters. Neverthe-
less, the OED significantly reduces the uncertainty of the estimate for
the z-value in every case studied. For the Peleg model, the OED again
results in a noticeable reduction in the uncertainty of every parameter
estimate. The magnitude of this improvement, however, depends on the
microorganism, being the improvement the biggest for the simulations
in S. Senftemberg.

There are also differences between the precision attained for dif-
ferent uniform experimental designs. Uniform designs with two tem-
peratures result in parameter estimates with lower standard deviations

Fig. 4. Inverse of the determinant of the FIM with respect to the number sampling points for different experimental designs. (A) B. coagulans and Bigelow model, (B) B. coagulans and
Mafart model, (C) B. coagulans and Peleg model, (D) E. Coli and Bigelow model, (E) E. coli and Mafart model, (F) E. coli and Peleg model, (G) S. Senftemberg and Bigelow model, (H) S.
Senftemberg and Mafart model, (I) S. Senftemberg and Peleg model and fixing the reference temperature as the intermediate.
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Fig. 5. Boxplots of the relative standard deviations estimated in 100 simulated experiments with different experimental designs (OED and uniform). (A) B. Coagulans and Bigelow model,
(B) B. Coagulans and Mafart model, (C) B. Coagulans and Peleg model, (D) E. coli and Bigelow model, (E) E. coli and Mafart model, (F) E. coli and Peleg model, (G) S. Senftemberg and
Bigelow model, (H) S. Senftemberg and Mafart model, (I) S. Senftemberg and Peleg model and fixing the reference temperature as the intermediate.
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than designs with treatments at three or four different temperatures for
every case studied. These results are in-line with the predictions made
based on the determinant of the FIM. Again, they can be justified based
on the fact that uniform designs with only two temperatures are more
similar to the optimal design patterns.

4. Discussion

The importance of kinetic parameters for food science is hinted by
the large number of scientific articles published during the last years
dedicated to review them (Doyle & Mazzotta, 2000; Doyle, Maz-
zotta, Wang, Wiseman, & Scott, 2001). Although some studies have
tried to provide tools to extrapolate the kinetic parameters already avail-
able in the literature (den Besten et al., 2018; van Asselt & Zwi-
etering, 2006), in most cases, experimental data is required to estimate
their values. Considering that inactivation experiments require specific
equipment and media, as well as highly trained personnel, describing
the microbial inactivation kinetics is a costly process. OED has the po-
tential to reduce the experimental work (and the associated economic
cost) required for this task. However, its application to food science re-
mains mostly theoretical. Most applied studies use uniform designs or
“optimal” designs based on heuristics and personal experience, rather
than on a proper mathematical analysis. This can be attributed to the
complexities associated to the calculation of an optimal design, which
requires advanced concepts of statistics, numerical optimization and in-
formation theory. Moreover, experimental designs that may be optimal
from the point of view of information theory may not be feasible from
an experimental point of view, despite including some constraints in the
optimization (e.g. the detection limit).

The results of this investigation enable the definition of several
guidelines that would result in isothermal inactivation experiments that
are optimal (or near optimal). Designs adhering to these guidelines are
likely to results in more precise parameter estimates than uniform de-
signs and designs based on experience. These guidelines combine the
results obtained in this investigation based on information theory with
several practical limitations related to experimental settings for inacti-
vation experiments:

1. The use of an appropriate reference temperature can reduce the un-
certainty associated to the parameter estimates. This is especially in-
teresting, because it does not require any modification in already ex-
isting laboratory protocols. According to the results of this investiga-
tion, it is recommended to set the reference temperature to the mean
of the temperature range used for the experiments.

2. Data points taken at the minimum and maximum treatment temper-
atures are the most informative ones. Therefore, experimental efforts
shall concentrate at these temperature treatments. Nonetheless, this
result is valid as long as the mathematical models are valid. It is en-
couraged the performance of, at least, one repetition at an intermedi-
ate temperature to validate the assumptions of the secondary model
(e.g. the log-linearity between the D-value and temperature).

3. For every model tested, the most informative points correspond to
treatments time close to the one where the detection limit is reached.
Taking samples close to the detection limit can be challenging in
laboratory conditions, because the actual microbial kinetics are un-
known. We recommend researchers to design experiments focusing
experimental efforts at treatment times close to the maximum treat-
ment time based, for instance, on kinetic data already available in
the literature. Then, the experimental design can be updated after the
first repetitions of the experiment. Note that sample times taken at
sub-optimal treatment times, although less informative, will certainly
reduce parameter uncertainty and will contribute to the validation of
the hypotheses of the primary model. Therefore, the initial, subopti-
mal repetitions of the experiments are not a waste of resources.

4. The selection of the mathematical model more suitable to describe
microbial inactivation remains an open research question in predic-
tive microbiology. Based on the results of this investigation, we dis-
courage to design experiments starting with the hypothesis that inac-
tivation is log-linear. The OED for this mathematical model does not
include samples at intermediate treatment times, so deviations from
log-linearity would pass unnoticed. Consequently, the Peleg or Ma-
fart model should be used as starting hypothesis. Both models include
a parameter to describe the curvature of the survivor curve, so a sta-
tistical test can be performed after model fitting to assess the signifi-
cance of the non-linearities of the survivor curve.

5. The OEDs calculated in this study have identified few areas where
data points should be collected (two for Bigelow, four for Mafart and
three for Peleg). However, this does not imply that one sample taken
in each one of those areas should suffice for model fitting. The char-
acterization of the microbial response is subject to experimental er-
ror, so the parameter estimates are always affected by uncertainty
(Chik, Schmidt, & Emelko, 2018; EFSA Scientific Committee
et al., 2018; Garcés-Vega & Marks, 2014; Garre et al., 2019;
Jarvis, 2008). As a lower threshold, experiments shall be designed
with a sufficient number of data points to consider the uncertainty in
the parameter estimates and the predictions (e.g. an estimate of the
standard deviation).

5. Conclusions

A methodology for the calculation of optimal experiments for
isothermal inactivation has been developed. This methodology, based on
the optimization of the FIM, is able to consider a two-dimensional de-
sign space (time and temperature), as well as a temperature-dependent
detection limit. It has been applied to identify design patterns that are
optimal from the point of view of information theory. These patterns
are stable with respect to the number of sampling points. Furthermore,
the effect of the reference temperature has been studied, concluding that
the average of the temperature range tested is optimum from the point
of view of the precision of parameter estimates. Numerical simulations
have demonstrated that the proposed experimental designs are signifi-
cantly more informative than uniform designs with the same number of
sampling points. Based on these results, we define guidelines for the de-
sign of isothermal inactivation experiments that combine these optimal
results with several known experimental limitations. Their application
would enable a reduction of the experimental work required to charac-
terize the microbial response to static stresses.
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