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Abstract. Teleoperated robots are used to perform hazardous tasks
that human operators cannot carry out. The purpose of this paper is
to present a new architecture (ACROSET) for the development of these
systems that takes into account the current advances in robotic architec-
tures while adopting the component-oriented approach. The architecture
is currently being used, tested and improved in the development of an
heterogeneous family of robots in the context of the EFTCoR project. It
is also presented the Ada’95 implementation of ACROSET for a climbing
robot.

1 Introduction

Teleoperated robots are used for extending human capabilities in hazardous and
inaccessible environments. Recent progress in mechatronics, perception and com-
puting is opening up a number of new application domains for tele-robotics, but
at the same time, the complexity of the applications grows due to the domain
characteristics: high variability of functionality and physical characteristics, large
variety of execution infrastructures, sensors, actuators, control algorithms, de-
grees of autonomy, etc.

Despite these differences, teleoperated systems are normally similar from a
logical point of view, having many common requirements in their definition and
many common components, both logical or physical, in their implementation.
As stated in [1], one way of dealing with this complexity is to use architectural
frameworks and tools that embody well defined concepts to enable effective re-
alization of systems to meet high level goals. Such an architectural framework
allows rapid development of systems and reuse of a large variety of components,
with concomitant savings in time and money. There are numerous efforts to
provide developers with architectural frameworks of this nature, such as [2,3,4].

The objects of this paper are twofold: to present an architectural approach
to the development of control units for these kind of systems and to present
an example of its use in the development of a real system. The architectural
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approach, ACROSET, is based on the latest advances in robotic architectures
and adopts a component-oriented approach. ACROSET offers a way to re-use the
same components in very different systems by separating the functionality from
the interaction patterns. It also provides a common framework for developing
robot systems and for integrating intelligent behaviours. ACROSET has been
implemented and tested in different systems, such as a PLC of Siemens (series
300) and a small FPGA (Field Programmable Gate Array), which is a kind of
re-programmable hardware. Actually, it is being implemented in Ada’95.

2 A Climbing Vehicle in the EFTCoR Project

The Environmental Friendly and Cost-Effective Technology for Coating Removal
(EFTCoR) project [5,6] is part of the European Industry current effort to intro-
duce environmental friendly ship maintenance. It addresses the development of a
solution to the problem of retrieval and confinement of the subproducts obtained
from the ship maintenance operation (oxide, paint and adherences mainly). A
glance at Fig. 1 shows the difficulty of designing a general purpose system, or
even defining a common body of general requirements that could be applied to
all systems because: hull dimensions and shapes differ widely, the different areas
of any given hull impose very different working conditions for robotic devices,
working areas differ in different shipyards or even within the same shipyard and
the particular businesses and cultures of shipyards impose different requirements
and priorities.

a) Vertical Surfaces b) Bottoms c) Bows

Fig. 1. Different hull shapes in the operational domain

This tremendous variety generates very different problems, which require
different robotic systems, each adapted to the specific problem. To solve these
problems, a common design pattern has been followed for every robot of the
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EFTCoR family: they generally consist of a primary positioning system capa-
ble of covering large hull areas and a secondary positioning system mounted on
the primary system that can position a tool over a relatively small area (4 to
16 m2). Different combinations of primary/secondary/tool have been considered
and tested. Finally, it is important to stress that the EFTCoR is an industrial
project and as such should use components that are common in industrial facil-
ities (PLCs rather than work-stations, field buses rather LANs).

One of the members of the EFTCoR family is the Lázaro vehicle. Lázaro
is a caterpillar vehicle capable of scaling a hull thanks to permanent magnets
(see Fig. 2), carrying a manipulator that holds a cleaning tool. Like all members
of the EFTCoR family, the vehicle can be driven by a human operator and
also performs some autonomous tasks, such as obstacle avoidance and simple
pre-programmed sequences.

The execution platform is an on-board embedded PC with a PC/104 expan-
sion bus. Its based on an Intel, ultra low voltage Celeron microprocessor. The
PC/104 bus is a widely used industrial standard with many advantages, such
as vibration-resistance, modularity, mechanical robustness, low power consump-
tion, etc., so its an excellent bus for embedded systems. The expansion system is
formed by an analog and digital I/O board featuring 8 analog inputs, 4 analog
outputs, 3 timer/counter and 24 general pourpose digital lines, and a PCMCIA
expansion interface.

The Lázaro robot has two servomotors to move along the ship hull. The con-
trol of each servomotor is performed with the help of both incremental encoders.
Besides this, the robot also has a ring of bumpers and infrared sensors to stop
in case it gets near an obstacle or collides with it.

a) CAD model b) Real model

Fig. 2. Different views of the Lázaro vehicle

The chosen operating system is Real-Time Linux [7], which makes it possi-
ble to have a real-time application running while retaining all the power of a
Linux distribution (though with some restrictions) underneath. The Industrial
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IT Group at the Universidad Politécnica de Valencia has made a GNAT Ada
compiler port for the RTLinux operating system [8].

3 The ACROSET Reference Architecture

Considering the differences among systems as noted in sections 1 and 2, a central
objective of the proposed architecture must clearly be to deal with such vari-
ability. A more precise analysis of the differences among systems [9] reveals that
most of them relate not only to the components of the system but to the in-
teractions among these components. Therefore, when designing the architecture
the following points (architectural drivers, AD) should be borne in mind:

AD1: Very different instances of the architecture should be able to share the
same virtual components.

AD2: The designer should adopt policies that allow a clear separation between
the components as such and their patterns of interaction.

AD3: The implementation of such virtual components may be software or
hardware; it is highly advisable that such components can be Commer-
cial off the Shelf (COTS) components.

AD4: It should be possible to derive concrete architectures for both deliber-
ative (operator-driven) and reactive (autonomous intelligent) systems.

ACROSET (Arquitectura de Control para Robots de Servicio Teleoperados1)
was designed as a solution to the variability problem found on the EFTCoR
project that takes account of the already mentioned architectural drives. It aims
to be a reference architecture for teleoperated service robot control units. The
architecture emerged from previous works at the DSIE (División de Sistemas e
Ingenieŕıa Electrónica, Universidad de Cartagena, Spain) [10,11] and is currently
being used, tested and improved in the EFTCoR project.

ACROSET (see Fig. 3) is supposed to make it possible for very different
systems to use the same components. Therefore, the first step was to define the
rules and common infrastructure that would allow components to be assembled
or connected. To that end, the concepts of component, port and connector were
adopted as defined in [12] and they are the keypoints of ACROSET. A brief
description of these concepts is given in section 5.1. The notation followed to de-
scribe components, ports and connectors is inspired by the 4 views of Hofmeis-
ter [12] and ROOM [13], which extends the UML notation with stereotyped
classes and special symbols.

The first subsystem of the architecture is the Coordination, Control and Ab-
straction Subsystem (CCAS). The CCAS abstracts and encapsulates the func-
tionality of the physical devices of the robot. The CCAS is composed of virtual
components, which can be implemented in either software or hardware. The
CCAS breaks down into several components, distributed in hierarchical layers
(see 3.1). Many of the components used in a robot control unit can be found on

1 Control Architecture for Teleoperated Service Robots
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Fig. 3. An overview of ACROSET subsystems

the market either as hardware devices and control cards or software packages for
a given platform. Where COTS components are used, ACROSET offers the de-
signer two possible solutions: he can define its virtual counterpart or he can use
the Bridge pattern to map an existing virtual component to the actual COTS
interface.

To deal with operator-driven and semi-autonomous systems an Intelligence
Subsystem (IS) is proposed. This way, autonomous intelligence can be added if
necessary, to act as another user of the CCAS functionality. This separation of
intelligence and functionality enhances the modifiability and adaptability of the
system to new missions and behaviours. The intelligence can be combined with
the operator commands depending on the application or mode of operation.

A User Interaction Subsystem (UIS) is proposed to interpret, combine and
arbitrate between orders that may come simultaneously from different users of
the system functionality (CCAS), since the system does not concern itself with
the source of the order.

Other important aspects besides the functionality or the intelligence of the
system include the safety and the possibilities of configuration and management
of the application. To differentiate between functionality per se and the moni-
toring of such functionality, a Safety, Management and Configuration Subsystem
(SMCS) is proposed. Another function of this subsystem is to manage and con-
figure the initialisation of the application.

A complete description of ACROSET and one of its instantiations is too
extensive to be included in this paper, so only details from one of the sub-
systems will be presented in the remaining sections. The CCAS has been the
selected subsystem because its the most representative and complex subsystem
of ACROSET, since it abstracts the robot functionality.
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3.1 Components of the Coordination, Control and Abstraction
Subsystem (CCAS)

Figure 4 depicts the diagrams of the main components of the CCAS, which are
defined and grouped in four layers of granularity:

Layer 1: Composed by the abstraction of the characteristics of atomic compo-
nents, such as sensors and actuators.

Layer 2: Simple Unit Controller (SUC). SUCs model the control over one ac-
tuator of the robot (e.g. a joint).

Layer 3: Mechanism Unit Controller (MUC). MUCs model the control over a
whole mechanism (e.g. vehicle, manipulator, end effector).

Layer 4: Robot Unit Controller (RUC). RUCs model the control over a whole
robot (e.g. a vehicle with an arm and several interchangeable tools).

strConfig

+ / MUC_Control~

Coordinator

+ / MUC_DataOut

MUC

+ / SUC_Control~+ / SUC_DataOut

<<data>>

<<data>> <<control>>

+ / sensorDataIn~ + / actuatorControl

+ / sensorDataOut + / actuatorControl~
<<data>> <<control>>

ActuatorSensor
n 1

Strategy
1

SUC
n

Strategy

RUC_Control~

Coordinator

RUC_DataOut

RUC

MUC_ControlMUC_DataOut

SUC_DataOut SUC_Control~

strConfig~

<<data>>

<<data>> <<control>>

<<control>><<data>>

Strategy

sensorDataIn~ actuatorControl

<<data>> <<control>>

ActuatorSensor
n 1

SUC

MUC

1

n

n

a) MUC and SUC b) RUC

Fig. 4. CCAS components diagrams

Every component of the CCAS is composed of two similar objects. On the
one hand, it contains a statechart manager. This statechart manager decides,
depending on the component current state, whether a recently issued command
should be executed or not or if the state of the component should change in
response to an external signal. It also controls every task created by the com-
ponent. On the other hand, the object that carries out the component main
purpose is interchangeable. This object follows a Strategy pattern, so the com-
ponent behaviour can be modified even at runtime to adapt to a new state and
new behaviours can be added later.

Figure 4-a depicts the SUC component. SUCs are meant to control actu-
ators, so the ControlStrategy is the interchangeable object in this case; for
example, the ControlStrategy of a given joint may be a traditional control
algorithm (PID) or may be changed for a fuzzy logic one. SUCs usually need to
accomplish hard real-time requirements and are therefore generally implemented
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in hardware. When they are implemented in software, they impose severe real-
time constraints on operating systems and platforms. In such case, SUCs also
need a task to periodically generate the control signal according to the algorithm
present in the ControlStrategy object.

Figure 4-a also depicts the MUC component. MUC components are logical
entities composed of an aggregation of SUCs and a coordinator, which coordi-
nates SUC actions according to the commands and information it receives. The
interchangeable object of the MUC is the CoordinationStrategy; for example,
the CoordinationStrategy of a given manipulator may be a particular solution
for its inverse kinematics. Although the architecture defines MUCs as relational
aggregates, they can actually become components (hard or soft) when the ar-
chitecture is instantiated to develop a concrete system. ACROSET allows the
designer decide whether the MUC interface provides access to its inner compo-
nents or not. In fact, although MUCs may be implemented in either hardware
or software, they are very commonly commercial motion control cards that con-
strain the range of possible commands to its internal components.

Finally, Fig. 4-b shows the RUC component. RUCs are an aggregation of
MUCs and a global coordinator that generates the commands for its MUCs and
coordinates their actions. As in the case of MUCs, the CoordinationStrategy is
the interchangeable object. For example, the CoordinationStrategy of a robot
composed of a vehicle with a manipulator could be a generalised kinematics
solution that contemplates the possibility of moving the vehicle to reach a given
target. Like MUCs, RUCs are logical components that can become physical
components depending on the concrete instantiation. In general, RUCs are quite
complex, comprise both hardware and software elements and can expose a wide
variety of interfaces.

4 Instantiation for the Lázaro Vehicle

Figure 5 shows the CCAS instantiated for this system. As can be seen in the
figure, two different MUCs have been implemented: one to control the vehicle and
another to control the manipulator. The first contains one SUC to control each of
the electrical motors that move the vehicle. The manipulator MUC coordinates
two SUCs, one for each manipulator axis. The vehicle uses a tool that consists
of an enclosed nozzle for making the blasting and recovering of residues.

The motion controllers have been implemented by means of Ada packages
that implement the interfaces defined by ACROSET. In this case, the imple-
mentation allows direct access to the hardware without the mediation of any
SUC. Two different intelligent behaviours have been added to the IS: obsta-
cle avoidance and simple pre-programmed sequences. The components of the
IS that implement these behaviours obtain the information they need from the
vehicle sensors and generate commands to the CCAS. Integration between these
commands and the operator commands is resolved by an arbitrator in the UIS.
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5 Implementation of the Architecture

In the implementation phase, the conceptual view must be mapped to a module
view [12]. We have chosen the object-oriented paradigm and Ada95 to implement
the architecture, so components, ports and connector will be mapped to classes,
objects, associations and dependencies. In this section, some important aspects
of the implementation will be presented.

5.1 Ports and Connectors

As mentioned in section 3, ACROSET follows a component-oriented approach.
Two important concepts when talking about components are the concepts of
port and connector. Connectors communicate two compatible ports of two com-
ponents. Only the functionality offered by the ports of the component can be
invoked, using for that the communication protocol encapsulated by the connec-
tor. This way, the content of the message is separated from how it is sent.

The concept of port is similar to that of interface, but with two differences:
ports involved both the operations offered and required by the component and
they implement the necessary services to fulfil the communication protocol ap-
propriate to its connector. Connectors allow the flow of information between
components, and can be as simple as pipes and events or as complex as the
client-server protocol.

Changing a connector basically implies the change of the communication
protocol between the ports it connects. This variation should be reflected in the
modification of the port services referred to the communication, but not of those
referred to the component functionality, which is accessed through the port.
To separate these concepts (separation of concerns strategy [12]), ACROSET
defines as many port types as possible communication ways exist. Port types
are defined according to the functionality that they must fulfil (Control Input
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Port for a SUC, Out Data Port and Input Data for a sensor, etc). Defining the
communication protocol for these last ports is as simple as inheriting from the
desired protocol port, as showed in Fig. 6.

Simple_OP
connPort

connect(inport) : Boolean
disconnect(inport) : Boolean
event()

<<OutPort>>
Subject_OP

observerList

attach(observer) : Boolean
detach(observer) : Boolean
notify()

<<OutPort>>

MotorCtrl_OP

moveP() : void
moveN() : void
stop() : void
setParam(param) : void
doAction(action) : void

(from SUC)

<<OutPort>>
MotorCtrl_OP

moveP() : void
moveN() : void
stop() : void
setParam(param) : void
doAction(action) : void

(from SUC)

<<OutPort>>

Fig. 6. Ports and connectors implementation

5.2 SUC Implementation

For the same reason that a complete description of ACROSET cannot be de-
scribed in this paper, only an example of a component implementation is pre-
sented in this section. The chosen component is a SUC to control one motor as
a representative part of the system (see Fig. 7).

The Motor SUC class contains the ports showed in Fig. 6 with stereotypes
�InPort� and �OutPort�, to get data (Data) or produce control (Ctrl) and
to configure the SUC (Config). Ports belong to the component and they are
created and destroyed with it, so they have a composite relation, as Fig. 7 shows.
The operations offered by the control ports match with the events sent by other
components to the SUC. Data ports are implemented as generics, showing the
same interface to any component. Besides ports, class Motor SUC contains the
interchangeable ControlStrategy object (the control algorithm).

In case of a Tool SUC, all the classes shown in Fig. 7 remain with the same
interface, excepting control ports (Ctrl). These ports must be adapted to the
control events related to this particular tool.

The rest of components of the instantiation of ACROSET for Lázaro have
been built in a similar manner, extending their interfaces to the needs of the sys-
tem. Notice that the SUC interface remains similar in every component thanks
to the method processCommand(), which process any incoming event in its par-
ticular control inport, of course, the implementation of that method is different
for SUC, MUC and RUC.

5.3 Execution View

Following the 4 views of Hofmeister [12] notation, the execution view describes
the structure of a system in terms of its runtime platform elements (tasks, pro-
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Data_OP

data :  Data

getData() :  Boo lean
setData(data) : vo id

setAlarm(alarm ) : void
setError(error) : vo id

(from CCAS)

<<OutPort>>
Config_IP

config(param, value) : void
reference(man_auto) : void
calibrate(man_auto) : void

(from CCAS)

<<InPort>>

Da ta_IP

da ta : Data

setData (data) : void
setAlarm(al arm ) : voi d
setError(erro r) : void
ge tData() : Data

(from CCAS)

<<InPo rt>>

Cntrl_Strategy

currPos : Position
targetPos : Position

setCurrPos(currPos) : void
setTargetPos() : Position
doControl() : ControlAction

<<Algorithm>>

MotorSucCtrl_IP

moveP() : void
moveN() : void
moveTo(pos, abs_rel) : void
sto p() :  vo id

ab ort() : voi d
resume () : void
chan ge MoveParam (param , value) : void
en ab le() : void
di sable () : void
reset() : void

<<InPo rt>>

MotorCtrl_OP

moveP() : void
moveN() : void
stop() : void
setParam(param) : void
doAction(action) : void

<<OutPort>>

Motor_SUC

status : Status
currentState : State
stateList : Array
currentCommand : Command
errorQueue : Buffer
alarmQueue : Buffer
controlThread : Task

getDataOP()
getSensorDataIP()
getConfigIP()
getSucCtrlIP()
getMotorCtrl_OP()
getState()
getStatus()
processCommand()
processData()

processError()
processAlarm()
isFeasible()

<<Control>>

Fig. 7. Class diagram of the Motor SUC

cesses, address spaces, etc). In this view, the objects identified in the module view
of the system are mapped to a concurrent tasking architecture, where concurrent
tasks, task interfaces and interconnections are defined. The driving forces behind
the decisions for designing the execution architecture view are performance, dis-
tribution requirements and the runtime platform, which includes the underlying
hardware and software platforms.

Too many tasks in a system can unnecessarily increase its complexity be-
cause of greater inter-task communication and synchronisation, and can lead
to increased overhead because of additional context switching. The system de-
signer has to make tradeoffs between introducing tasks to simplify and clarify
the design and keeping their number low so that the system is not overloaded.

To help the designer determine the concurrent tasks and to make these trade-
offs, the COMET method [14] provides a set of heuristics which capture expert
designer knowledge in the software design of concurrent and real-time system,
so called task structuring criteria.

Hofmeister proposes as a good starting point to begin by associating each
high-level conceptual component with a set of execution elements. Considering
that the main objects of the system have been proposed as an instantiation
of ACROSET (see Fig. 5), the task structuring criteria might be applied to
determine which of the components in the IS, CCAS and SMCS may execute
concurrently, and which need to execute sequentially and therefore are grouped
into the same task. In a second stage, the task clustering criteria are applied,
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with the objective of reducing the number of tasks. Figure 8 depicts the task
diagram obtained by applying the following task clustering criteria:

Temporal clustering. Since the tasks involved in controlling the I/O show no
sequential dependency and their activation periods are multiples, they have
been grouped in one task.

Task inversion. Instead of using a task for each SUC, all identical tasks of the
same type have been replaced by one task that performs the same service.
Each object state information is captured in a separate protected object.
Although SUCs have been grouped, the tasks that perform their concurrent
control activities (e.g. a periodic control algorithm) remain as separate tasks,
with the task type Cmd Control. The same happens with MUC and SUC
command control.

Sequential clustering. To avoid overloading the system, all the *UC state
control tasks have been grouped in the CCAS task because the information
flows up and down always in a sequential order.

 

HW / SW Boundary 
 

SUC_State

MUC_State

RUC_StateTCCAS_Control

TSens_Act_Updating

 : Sensors_State

 : Actuators_State

TRUC : 
Cmd_Control

TMUC : 
Cmd_Control

TSUC : 
Cmd_Control

 : Digital_IO_Card  : Encoders_Card

3: read
4: data

1: read

2: data

Fig. 8. Task diagram after clustering

6 Conclusions

The use of a common architecture for a domain or family of systems allows
rapid developments and the reuse of components. This paper has presented a
common architectural framework for the development of teleoperated service
robots control units (ACROSET) and also an application example in the context
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of the EFTCoR project (the Lázaro vehicle), that shows the ability of ACROSET
to cope with the needs and requirements of very different systems.The separation
of the conventional functionality of the systems (CCAS) from the intelligent
behaviours (IS) greatly facilitates the addition of new functionalities and the
maintenance of applications.

Perhaps, the main contribution of ACROSET to the current state of the art
is the conceptual component oriented approach, which makes the components
independent to the implementation language or hardware/software partition.
This has allowed implementing those components as PLC blocks, not only as
objects and classes, e.g. as CLARAty [2] does.
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