
foods

Review

Interactions between Microbial Food Safety and Environmental
Sustainability in the Fresh Produce Supply Chain

Francisco López-Gálvez 1,2, Perla A. Gómez 2 , Francisco Artés 1,2, Francisco Artés-Hernández 1,2

and Encarna Aguayo 1,2,*

����������
�������

Citation: López-Gálvez, F.; Gómez,

P.A.; Artés, F.; Artés-Hernández, F.;

Aguayo, E. Interactions between

Microbial Food Safety and

Environmental Sustainability in the

Fresh Produce Supply Chain. Foods

2021, 10, 1655. https://doi.org/

10.3390/foods10071655

Academic Editor: Susana Casal

Received: 10 June 2021

Accepted: 16 July 2021

Published: 17 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA),
Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
francisco.lopezgalvez@upct.es (F.L.-G.); fr.artes@upct.es (F.A.); fr.artes-hdez@upct.es (F.A.-H.)

2 Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar,
30202 Cartagena, Spain; perla.gomez@upct.es

* Correspondence: encarna.aguayo@upct.es

Abstract: Improving the environmental sustainability of the food supply chain will help to achieve
the United Nations Sustainable Development Goals (SDGs). This environmental sustainability is
related to different SDGs, but mainly to SDG 2 (Zero Hunger), SDG 12 (Responsible Production and
Consumption), SDG 13 (Climate Action), and SDG 15 (Life on Land). The strategies and measures
used to improve this aspect of the food supply chain must remain in balance with other sustainability
aspects (economic and social). In this framework, the interactions and possible conflicts between food
supply chain safety and sustainability need to be assessed. Although priority must be given to safety
aspects, food safety policies should be calibrated in order to avoid unnecessary deleterious effects
on the environment. In the present review, a number of potential tensions and/or disagreements
between the microbial safety and environmental sustainability of the fresh produce supply chain are
identified and discussed. The addressed issues are spread throughout the food supply chain, from
primary production to the end-of-life of the products, and also include the handling and processing
industry, retailers, and consumers. Interactions of fresh produce microbial safety with topics such as
food waste, supply chain structure, climate change, and use of resources have been covered. Finally,
approaches and strategies that will prove useful to solve or mitigate the potential contradictions
between fresh produce safety and sustainability are described and discussed. Upon analyzing the
interplay between microbial safety and the environmental sustainability of the fresh produce supply
chain, it becomes clear that decisions that are taken to ensure fresh produce safety must consider
the possible effects on environmental, economic, and social sustainability aspects. To manage these
interactions, a global approach considering the interconnections between human activities, animals,
and the environment will be required.

Keywords: fruits; vegetables; life cycle assessment; food losses; pathogens; foodborne disease;
One Health

1. Introduction

Fresh produce is being increasingly recognized as a source of foodborne outbreaks [1,2].
The burden of such outbreaks includes economic losses, healthcare costs, loss of produc-
tivity, reductions in the quality of life, and mortality [3]. Using data from foodborne
outbreaks that occurred between 1998 and 2018 in the USA, the Centers for Disease Con-
trol and Prevention linked a significant proportion of the illnesses caused by three key
pathogens (Salmonella, Escherichia coli O157, and Listeria monocytogenes) to produce (in-
cluding fruits, sprouts, vegetable row crops, and seeded vegetables) [4]. According to
a report from World Health Organization (WHO) and Food and Agriculture Organiza-
tion (FAO) [5], fruits and vegetables are among the main identified vehicles of foodborne
Shiga-toxin-producing E. coli (STEC) illness. Regarding the economic losses, the study by
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Mackenzie and Apte attributed the costliest food recalls in the USA, involving losses of
hundreds of millions of dollars, to fresh produce (tomato, spinach) [6]. As a consequence
of such a situation, the fresh produce industry, governmental institutions, and researchers
all around the world are seeking ways to guarantee the microbiological safety of such
products. The Center for Produce Safety (Woodland, CA, USA) is an example of an organi-
zation managing this collaboration to fill knowledge gaps in the food safety of produce
(https://www.centerforproducesafety.org/ accessed on 16 July 2021). In the present work,
the term fresh produce includes fresh (not subjected to thermal treatment) unprocessed
and minimally processed fruits and vegetables. Frozen or dried fruits and vegetables are
not within the scope of this work, although some of the concepts and discussions presented
are to a certain extent applicable to those food items.

The impact that all human activities (including efforts to ensure food safety) have
on environmental, social, and economic sustainability needs to be assessed [7]. In the
framework of the present review, the term “sustainability” refers mainly to environmental
sustainability. However, whenever possible, information regarding other aspects of sus-
tainability (economic, social) has been included. The topic of food safety is related to most
of the United Nations Sustainable Development Goals (SDGs) [1], especially with SDG3,
which deals with good health and well-being [8].

Unfortunately, the fresh produce supply chain stakeholders on certain occasions
receive conflicting recommendations concerning environmental sustainability and guar-
anteeing food safety [9]. The hierarchy between safety and sustainability is clear, with
priority for the former [10]. However, numerous studies have suggested that taking de-
cisions considering only food safety leads to inefficient strategies that do not achieve the
proposed goals and can have negative consequences in other aspects such as environmen-
tal sustainability [11–13]. A global approach including co-management for food safety
and sustainability (not only environmental but also economic and social) is put forward
as the best strategy to deal with the potential conflicts [8]. For example, in the primary
production step, keeping areas with natural vegetation in the agricultural lands could
help to maintain an equilibrium between food safety and environmental and economic
concerns [12]. Decision-making tools that integrate the different aspects involved (food
safety, food quality, energy and water consumption, and environmental and economic
impacts) are needed for optimum management of the supply chain [11,14].

The present study aims to point out a number of potential conflicts between microbial
food safety and environmental sustainability in the fresh produce supply chain. Further-
more, strategies and approaches with the potential to reconcile these two aspects—when
needed—are presented. The main sources of information used for identifying such in-
teractions and their potential solutions were the scientific literature and documents from
international and governmental institutions.

2. Pre-Harvest Measures Taken for the Sake of Fresh Produce Microbial Safety:
Efficacy and Consequences Regarding Sustainability

The potential conflicts between microbial food safety and environmental sustainability
at the pre-harvest level will be illustrated using mainly examples of food safety measures
undertaken in the USA in the last two decades and their consequences. Particularly since
the E. coli O157:H7 outbreak linked to California-grown spinach from 2006, fresh produce
growers in the USA have faced conflicting demands regarding food safety and environmen-
tal preservation, with priority being given to the former [15–17]. The measures taken for
the sake of fresh produce microbial safety included the elimination of natural vegetation,
reduction of the presence of wild animals in agricultural areas, avoidance of the use of
manure-based amendments, and, more recently, the disinfection of irrigation water [18–20].
The following paragraphs provide details on the food safety measures applied and the
conflicts with sustainability and detail current opinions regarding the outcomes and the
way forward.

Farmers have been encouraged to remove natural vegetation to reduce the risks of
wildlife intrusion [12]. However, it has not been confirmed whether the elimination of
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non-crop vegetation reduces the presence of pathogenic bacteria in the crops. For example,
Karp et al. [16] did not find an increased prevalence of pathogenic (enterohemorrhagic
E. coli, Salmonella spp.) and indicator bacteria (generic E. coli) on leafy green vegetables
grown near areas with non-grazed non-crop vegetation. Sellers et al. [21], analyzing
fecal samples from wildlife intruders (rodents), did not observe a higher risk of the pres-
ence of pathogenic microorganisms in agricultural fields (walnut, tomato) surrounded
by hedgerows, compared to fields with controlled field edge vegetation. Smith et al. [22]
detected a higher presence of Campylobacter spp. in avian fecal samples from crop farms
(brassica plants) located in landscapes with high mammalian livestock densities, compared
to farms located in landscapes with larger areas of natural habitat. Fonseca et al. [23],
analyzing local birds that inhabited near leafy green growing fields in the U.S. southwest,
reported the absence of Salmonella spp. and E. coli O157:H7. The presence of vegetation
barriers surrounding agricultural fields can have benefits for the environment and also
limit the wind dispersion of pathogenic bacteria [24]. Therefore, recent studies raise doubts
as to whether limiting the presence of non-crop vegetation in farmlands does lead to safer
fresh produce.

The use of organic amendments has positive effects on the health of agricultural soils
(e.g., on soil microbiota functional diversity) [25,26]. On the other hand, the use of raw
manure has been linked to a higher prevalence of pathogenic microorganisms in agricul-
tural soils compared to the use of synthetic fertilizers [27]. Avoiding the use of biological
soil amendments is one of the preventive strategies that has been proposed and used to
reduce the food safety risk of fresh produce [20]. However, recent studies suggest that
using properly treated animal-based manure should be reconsidered. Devarajan et al. [28],
analyzing corn growing fields, concluded that the application of appropriately managed
poultry litter could lead to a lower risk of the presence of Salmonella spp. and Listeria
monocytogenes in farms. Those authors suggest that this organic manure would stimulate
the presence of a thriving pathogen-inhibiting microbiota in the soil. Gu et al. [27] did
not detect Salmonella spp. in samples from tomato fields fertilized using poultry litter
ash. Further research should confirm whether the use of properly managed animal-based
manure can enable the combination of waste reuse, the preservation of soil health, and an
adequate level of food safety.

Current evidence does not demonstrate that organic farming provides produce that
is less safe than that grown using conventional practices [29]. However, the higher envi-
ronmental sustainability of organic farming is questioned. Although it can achieve a local
reduction in the environmental impact, the economic and social aspects (e.g., food security)
make organic farming an inadequate alternative to the predominant conventional farming
systems [30]. To maintain current produce supply levels using mainly organic agriculture
would demand a substantial increase in the area of land devoted to agricultural activities,
with the risk of leading to an increase in greenhouse gas emissions [31].

Irrigation water is an important vector for the contamination of fresh produce (e.g.,
leafy crops) with pathogenic microorganisms [32,33]. Disinfection of irrigation water
can be used as a preventive measure in those settings in which water presents a higher
microbiological risk (e.g., when reclaimed urban wastewater is used for irrigation) [34–36].
However, risk–benefit assessments should consider potential negative effects regarding
the presence of disinfection by-products (DBPs) in the crop. For example, the presence
of chlorate (ClO3−) has been reported in leafy greens irrigated with water treated with
chlorine [37], chlorine dioxide [38], and electrolyzed water [39]. In the mentioned studies,
the levels of ClO3− in the crop were above the current maximum residue levels (0.7 mg/kg
for leaf vegetables) allowed in the European Union [40] only when the irrigation water was
treated with chlorine dioxide. The accumulation of disinfection residues in the soil and the
potential alterations in the soil microbiota should also be considered. Truchado et al. [41],
for example, observed no relevant changes in the crop and soil microbiota in a baby
spinach field irrigated with water treated using chlorine dioxide, suggesting that this
treatment (as applied in their study) would be eco-compatible. Martínez-Sánchez and
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Aguayo [42] studied the effect of irrigation with ozonated water (0.35–0.40 mg/L of O3)
on the quality of capsicum seedlings grown in the nursery and found a reduced microbial
load in the water (E. coli and total Enterobacteria) as well as a decrease in the mesophilic
load of capsicum seedlings.

Figure 1 summarizes the topics covered in this section. In conclusion, the effectiveness
and the side-effects of the microbial food safety measures taken in the primary produc-
tion step should be carefully assessed to determine opportunities for co-management of
microbial safety and environmental sustainability.
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3. Post-Harvest Management in the Fresh Produce Supply Chain and Interactions
between Safety and Sustainability
3.1. Structure of the Fresh Produce Supply Chain

Some studies assign an important share of the environmental impact of fresh produce
(e.g., tomato, apple) to the transport stage [43,44]. Current food transport systems cause
the emission of greenhouse gases (e.g., methane, carbon dioxide, nitrous oxide), which
are implicated in global warming. Transportation is also involved in other environmental
impacts such as non-renewable energy use, terrestrial acidification, and freshwater eu-
trophication [43]. Consequently, shortening the food supply chains has been proposed
as a strategy to increase the sustainability of the food industry [45]. However, while the
positive effects of short food supply chains in social sustainability are clear, the impacts on
economic and environmental sustainability are questionable [46]. Furthermore, concerns
have also been raised about the safety standards of local supply chains [47]. According
to Schmitt et al. [48], food safety is more closely monitored in products managed in large
quantities in the global supply chains compared to that in local products. In the fresh fruit
and vegetable supply chain, the size of the customer affects the safety management, with
major retailers putting pressure on wholesalers regarding private certifications, thereby
leading to greater safety [49]. In contrast, some consumers attribute higher food safety to
short supply chains [50]. In developing countries, fresh produce companies oriented to the
export market (therefore, involved in global supply chains) have more advanced manage-
ment regarding food safety issues, as compared to smallholdings, which are oriented to
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the local market [51]. In many countries around the world, farmers’ markets or local food
markets are popular settings that facilitate consumer access to local fresh produce. Despite
concerns regarding the food safety procedures in such markets [52], the potential higher
prevalence of microbial contamination in the products sold in farmers’ markets compared
with other retailers remains controversial [47,53].

3.2. Water Reuse and Food Safety in the Fresh Produce Industry

The industrial handling, conditioning, and processing of fresh produce have an
important water footprint, due to their considerable water demand and the generation of
large quantities of wastewater [54,55]. Water can be used for cleaning, washing, disinfection
and rinsing, transportation, blanching, cooling, or even heating the products [56–60].
Apart from water consumption, the use of water also involves the consumption of energy
for cooling, heating, or pumping [61]. Mundi et al. [62] indicated that one kilogram of
processed fruit and vegetables entails the generation of 5 L of wastewater; its characteristics
depend on factors such as the type of processed product, and the configuration and
management of the processing lines. In the case of fresh-cut produce processing plants,
2 to 11 m3 of good-quality water is consumed per ton of product [63], although a significant
part of this water is commonly reconditioned and reused to reduce water consumption
and wastewater generation [64]. However, environmentally beneficial water reuse can
have consequences from the microbial food safety point of view, due to potential cross-
contamination between batches [61]. Furthermore, it can also lead to the accumulation of
disinfection by-products in the wash water [65]. Water treatment needs to be optimized
to enable water reuse, whilst reducing the microbial and chemical safety risks [66,67].
In particular, reconditioning the water using physical treatments can be a sustainable
alternative [55,68]. In any case, the presence of chemical antimicrobials is required to
reduce the risk of cross-contamination by maintaining continuous disinfection processes in
the washing tanks [69]. Apart from water reuse, the recovery of useful compounds from
the fresh fruit and vegetable processing wastewater has been suggested as an approach
to increase the sustainability of the industry [70]. However, the implementation of such a
strategy faces different obstacles, including safety issues such as the potential presence of
pathogenic microorganisms in the material recovered [71].

3.3. Packaging of Fresh Produce

Packaging is another aspect of the fresh produce supply chain in which conflicts
between food safety and sustainability can appear. Guaranteeing food safety is one of
the benefits of fresh produce packaging [72]. Nevertheless, packaging can also have
drawbacks regarding microbial safety, such as the increased survival of pathogens in high-
moisture environments (e.g., bagged lettuce) [73]. Regarding the packaging/sustainability
interaction, the recommendations and regulations aimed at guaranteeing food safety tend
to promote the utilization of single-use packaging [12], although multiple-use containers
can be more sustainable. For example, the utilization of reusable plastic containers (RPCs)
for the handling, transport, and commercialization of fruits and vegetables has the potential
to improve the sustainability of the fresh produce supply chain [74]. However, although the
use of these RPCs has never been linked directly with any fresh produce outbreak, a lack
of hygiene can lead to unwanted risks [75–77]. On the other hand, at the consumer level,
Barbosa et al. [78] detected diverse microorganisms, including pathogens, in multiple-use
plastic bags utilized for food transportation. In the specific case of the controversial plastic
packaging, it helps to reduce food waste in the fresh produce supply chain, thus improving
sustainability [72]. However, the current life cycle of plastic packaging does not fit a
circular economy approach. Consequently, policymakers should promote the utilization
of alternative and sustainable packaging options, due to the importance of the packaging
sector in the sustainability of the food supply chain [79,80].
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3.4. Temperature Control

Control of storage temperatures during preservation is essential for maintaining the
quality of fresh produce and, thereby, avoiding food waste and the associated impact on
sustainability [56]. It also helps in guaranteeing the microbial safety of such products (e.g.,
leafy greens) [81]. However, storage temperature control entails a cost in energy consump-
tion that affects the sustainability of the supply chain [11]. Tools for the optimization of
temperature control in the fresh produce supply chain must consider safety, spoilage, and
energy consumption [14]. New technological developments (e.g., Internet of Things, Artifi-
cial Intelligence, Big Data, Blockchains, etc.) are expected to improve the control of food
cold-chain logistics in the coming years, with positive impacts on the safety and quality of
fresh produce, reducing food waste and the environmental impact [82,83]. Wu et al. [84]
suggested that a holistic approach combining life cycle assessment with virtual cold chains
could help to design more sustainable fresh fruit cold chains. However, simpler changes
could also have a significant impact. For example, the study by Xie et al. [85] suggests the
use of closed displays for refrigerated fresh-cut leafy greens in retail shops as a solution that
combines keeping the quality (avoiding food waste), microbial safety, and energy savings.

4. Relationship between Food Loss/Waste and Food Safety

Food loss is the decrease in the quantity or quality of food resulting from decisions
and actions by food suppliers in the chain, excluding retailers, food service providers, and
consumers. Food waste refers to the decrease in the quantity or quality of food resulting
from decisions and actions by retailers, food service providers, and consumers [86]. The
reduction of food loss/waste is included in the United Nations Sustainable Development
Goals from the 2030 Agenda for Sustainable Development (SDG 12, Target 12.3) [1]. Food
is lost/wasted in many ways: fresh produce that deviates from what is considered optimal,
for example in terms of shape, size, and color, is often removed from the supply chain
during sorting operations. Foods that are close to, at, or beyond the “best before” date
are often discarded by retailers and consumers. Large quantities of wholesome edible
foodstuffs are often unused or left over and discarded from household kitchens and eating
establishments. Around one-third of the world’s food is lost or wasted every year [87].
This 2011 estimate by the FAO is in the process of being replaced by two separate indices:
the Food Loss Index (FLI) and the Food Waste Index (FWI). The FLI provides new loss
estimates from post-harvest up to, but not including, the retail stage.

The significant amount of the food produced that is lost or wasted entails an un-
necessary environmental impact (greenhouse gas emissions, use of land and water re-
sources) [88]. Food loss and waste includes not only the organic material but also the water
and energy utilized for the production and the components of the packages [89]. A reduc-
tion in food loss/waste could improve the sustainability of fresh food, adding a sizable
quantity to the global food supply, thereby reducing the need to intensify production in
the future [90]. Less food loss and waste would lead to more efficient land use and better
water resource management, with positive impacts on climate change and livelihoods
(http://www.fao.org/food-loss-and-food-waste/flw-data accessed on 16 July 2021).

The recommendations to reduce food loss/waste should consider their viability (tech-
nical and economic), the constraints due to food quality and safety requisites, the point
of view of society, and the environmental impacts [91]. Fresh produce supply chain stake-
holders are receiving messages on the topics of food loss/waste and food safety that are, to
a certain extent, contradictory [14,92]. On the one hand, measures that help to reduce food
loss/waste could increase the food safety risk for the consumers [93]. On the other hand,
the food safety policy should be well calibrated to avoid unnecessary food loss/waste [12].
For example, the confusion of consumers regarding the relationship between food safety
and food date labels can lead to food waste [94]. In the European Union, perishable foods
after the “use by” date shall be deemed to be unsafe and, consequently, their marketing is
prohibited [95]. Conversely, the “best before” label informs about quality, not safety, but up
to a quarter of the population thinks that food should not be eaten after that date [96].

http://www.fao.org/food-loss-and-food-waste/flw-data
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Food waste management methods include (in order of priority) prevention (e.g., pre-
diction of demand by consumers, planned food shopping), redistribution (for human
consumption), valorization (e.g., industrial recycling of waste, its use to produce animal
feed), and food waste treatment (e.g., composting, incineration) [93]. The redistribution of
excess food for human consumption (e.g., donation) or its use to produce animal feed can
help to reduce food waste [97]. Decentralization, lack of professionalization, insufficient or
non-existent regulation, and lack of monitoring by authorities have been identified as impor-
tant problems that make the optimization of food safety within food donation/acceptation
chains difficult [98,99]. Hecht and Neff [100] indicated that future studies aimed at perform-
ing a risk–benefit assessment of food redistribution interventions need to include the effects
on health, the environment, and the economy. Safety requirements are also essential when
assessing the feasibility of the valorization of food waste [101]. To prevent microbial safety
issues, food waste could require treatment (e.g., pasteurization) to enable its valorization as
a food-grade ingredient [102]. The option of food waste treatment is appropriate for a wider
range of food waste categories than redistribution and valorization [103], because fruits
and vegetables recovered and reintroduced into the supply chain for human consumption
constitute higher safety risks [104].

In the case of fresh produce, the use of different pre- and post-harvest tools can
help to decrease food loss/waste. The effects of proper management, such as storage in
well-ventilated rooms, storage in a controlled atmosphere, modified atmosphere, ethylene
scavengers, proper temperature and relative humidity (RH), heat treatment, and others,
plus different sustainable pre- and post-harvest treatments (i.e., natural compounds, ozone,
ultraviolet irradiation, biocontrol agents), and their combinations are sustainable treatment
methods that help to reduce the decay of fresh fruits and vegetables (e.g., carrot, spinach,
peach, nectarine) [42,105–110].

5. Climate Change and Fresh Produce Safety

Modifications in the Earth’s atmospheric composition caused by human activities are
driving climate change [111]. Increases in the mean air temperature and the frequency of ex-
treme weather events are among the expected consequences of climate change [112]. These
changes are associated with a potential risk of an increased presence of certain pathogenic
microorganisms and toxins in food [113–115], including vegetables [116]. The work by
Liu et al. [116] focusing on pre-harvest leafy green vegetables concluded that the rise in
temperatures and modifications in precipitation patterns will affect the contamination
sources and the pathways of pathogens, likely leading to an increase in the contamination
of these products with pathogenic microorganisms. Foodborne pathogens are among the
most climate-sensitive human pathogenic microorganisms [117]. Holvoet et al. [118] ob-
served a positive correlation between the presence of pathogenic microorganisms in lettuce
irrigation water and temperature. Extreme precipitation can cause flooding in agricultural
fields, and the risks of using open-air areas after a flood event, where potential exposure
to infective microbial contamination exists, must be evaluated [119]. Flooding has been
associated with pathogenic contamination of leafy green vegetables [120]. Droughts are
also expected to be more frequent and intense in the future in some areas of the planet that
are currently affected by that phenomenon [121], and drought-stressed plants (e.g., lettuce)
could be more susceptible to the internalization of pathogenic bacteria [122]. The potential
impacts of climate change on the contamination of food with pathogenic microorganisms
are complex, and knowledge gaps are numerous [123,124]. In any case, adaptation and
mitigation strategies will need to be implemented to reduce the negative impacts of climate
change on fresh produce safety [125,126]. The work by Kirezieva et al. [125] used experts’
opinions to evaluate potential responses to the impacts of climate change on fresh produce
safety, concluding that strengthened control activities (e.g., water microbial quality moni-
toring, personal hygiene requirements) and improved guidance and training for farmers
will be needed.
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6. Approaches, Strategies and Solutions to Solve Conflicts between Fresh Produce
Microbial Safety and Environmental Sustainability

Co-management at the farm level comprises balancing environmental protection with
food safety and productivity goals [127]. Certain types of agricultural management, such as
organic agriculture and, particularly, biodynamic agriculture, which fosters the diversity of
plant and animal life, increase the health and resilience of the organism farm. Biodynamic
farms aspire to generate their fertility through composting, integrating animals, cover
cropping, and crop rotation [128].

The work by Crohn and Bianchi [129] identified the assessment of the fate of pathogenic
microorganisms in farmlands as the most urgent research topic regarding the co-management
of food safety and surface water quality. In the last two decades, the information available
on the behavior of pathogenic microorganisms in agricultural settings has increased signifi-
cantly, mainly based on controlled tests with the inoculation of lab-prepared pathogens [130].
The development of methods for the large-scale affordable detection of pathogenic microor-
ganisms in the agricultural environment would be of enormous help in tracking the sources
of produce-borne outbreaks, as well as in the assessment of the fate of pathogens [131].
Information obtained directly from the environment would provide us with a more reliable
picture of the situation, which could then be used as a background for the development
of recommendations and legislation. Currently, one of the tools assessed to detect fecal
contamination in fresh produce in the growing fields is hyperspectral imaging. Cho et al.
evaluated this technique for the on-site detection of fecal contamination in romaine lettuce,
with positive results [132]. Until more detailed and complete information on this topic be-
comes available, a conservative approach is likely to be taken by the competent authorities
and by supply-chain stakeholders to avoid outbreaks and the subsequent consequences on
public health and the agrifood sector [133,134].

In many cases, the experimental studies focus on a topic with a narrow approach,
without considering interactions with other aspects. For example, over the years, nu-
merous studies have assessed the efficacy of antimicrobial treatments that are applicable
to fresh produce, without considering aspects such as the economic and environmental
sustainability of their usage. However, in the last decade, studies with a more global
perspective have been performed. Vigil et al. [68] assessed sanitation and decontamination
techniques for fresh-cut produce using a life cycle approach. Papoutsis and Edelenbos [106]
reviewed different sustainable post-harvest treatments for carrots (considering both human
health and the environment). On the topic of food-waste reduction, Tromp et al. [135]
assessed the potential reuse of salads in salad bars considering safety and quality. Yam
and Takhistov [136] also considered microbial safety, as well as economic and environmen-
tal sustainability, when assessing an alternative packaging technology for fresh produce.
Looking to the future, both available and innovative technologies (e.g., nanotechnology)
will help to make fresh produce safety and sustainability compatible [137].

Proper traceability is crucial in the management of the fresh produce supply chain
to ensure safety and avoid loss and waste [34]. Being able to quickly trace back any
contamination to its source can reduce food loss/waste by defining precisely which lots
should be disposed of, thereby avoiding the unnecessary elimination of uncontaminated
batches [6]. The suitability of the use of blockchain technology to enhance traceability (and
therefore the safety and sustainability) of fresh produce is being assessed [83].

In the conflicts between sustainability and safety, from the political organization’s
standpoint, there is a lack of a global perspective. Different departments, agencies, etc.
have different and narrow-sighted ideas on how to deal with the issues of safety and sus-
tainability (environmental, economic, and social) of the food supply chain [12,13]. Multiple
criteria decision analysis has been suggested as a structured tool for decision-making in this
complicated framework [14]. Regarding the concept of food safety, Leib and Pollans [12]
proposed a more global view that should include not only the current concept (acute risks
linked to ingestion of pathogens or toxins) but also other issues such as the health risks
associated with cumulative ingestion and the health risks linked to the life cycle of food



Foods 2021, 10, 1655 9 of 16

from production to end of life. Furthermore, measures aimed at improving fresh produce
safety should be adapted taking the diversity of agrifood systems into account [7]. The
One Health approach, based on the concept of the interconnection between human beings,
animals, and the environment, promotes the formation of multidisciplinary teams that
can work to obtain solutions to challenges that involve health, social, and environmental
issues [8,138]. Finally, to promote the safety, security, and sustainability of the produce
supply chain, the training and education of all the stakeholders are crucial [139]. Table 1
summarizes the topics covered, the potential implications on fresh produce microbial safety
and environmental sustainability, and the optimization options covered in this review.

Table 1. Summary of topics covered, potential implications on fresh produce microbial safety and environmental sustain-
ability discussed, and optimization options.

Topic Sub-Topic Microbial Safety Environmental Sustainability Optimization Options

Fresh produce
safety at primary

production

Elimination of
natural habitat

Avoidance of
animal intrusion

Affects wildlife and
ecosystem services Find co-management options

Avoidance of
animal-based

organic
amendments

Avoidance of input
of pathogens

Loss of positive effects on
soil health

Use of appropriately treated
animal-based manure

Irrigation water
disinfection Safer irrigation water

Input of chemicals in the
agricultural environment
(disinfectants and DBPs)

Use of environmentally
friendly disinfection

methods (e.g.,
ultraviolet irradiation).

Food waste

Food date labels
“Use by” date labels

are needed for
safety reasons

Misinterpreting “use by” and
“best before” dates can increase

food waste

Clarifying the meaning of
food date labels;

consumer education

Food
redistribution

Fruits and vegetables
reintroduced into the

food supply chain
can increase the risk

Redistribution is an important
food waste

management method

Development of regulations;
monitoring by authorities

Supply chain
structure

Short
supply chains

Concerns over safety
standards of

shorter chains

Potentially more sustainable
due to reduced transport

Scientific statements on the
safety in short versus global
supply chains; development
of regulations; monitoring

by authorities

Climate change
Potential increments
in the prevalence of

some pathogens

Caused by unsustainable
human activities

Research to fill knowledge
gaps on the safety
consequences of
climate change

Water reuse
Requires water

treatment to avoid
microbial safety risks

Potential to increase the
sustainability of the fresh

produce industry

Optimization of process
water management;

identification of
sustainable options

Temperature
control

Needed for some
products

(e.g., fresh-cut)

Avoids food waste but
demands energy

Strategies for energy saving
to reduce environmental

impact (e.g., supply chain
optimization using IoT a,

AI b, Big Data)

Packaging Single-use
packaging Safer Less sustainable Renewable single-use

packaging if needed

a: Internet of Things; b: Artificial Intelligence.

7. Conclusions

Clear conflicts arise when analyzing the interactions between environmental sustain-
ability and microbial safety of the fresh produce supply chain. Although the safety aspect
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has priority, the decisions taken for the sake of fresh fruit and vegetable safety ought to
consider the potential impacts on the whole sustainability (environmental, economic, and
social). The present work provides examples of frictions between microbial safety and
environmental sustainability in the fresh produce supply chain. The stated issues are
present throughout the supply chain (pre- and post-harvest) and affect all the different
stakeholders (from primary producers to consumers). A global approach to deal with
these safety/sustainability interactions is required. Widening the concept of food safety,
co-management, multicriteria decision analysis, technological advances (e.g., cold chain
management), working in multidisciplinary teams, and training the stakeholders are some
of the strategies and approaches that will help to deal with sustainability/safety conflicts.
In this context, the concept of One Health applied to the fresh produce supply chain appears
as a correct approach to analyze and make decisions aimed at solving these challenges.
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