
Journal of Computational Physics 444 (2021) 110579
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A new isosurface extraction method on arbitrary grids

Joaquín López a,∗, Adolfo Esteban b, Julio Hernández b, Pablo Gómez b,
Rosendo Zamora a, Claudio Zanzi b, Félix Faura a

a Dept. de Ingeniería Mecánica, Materiales y Fabricación, ETSII, Universidad Politécnica de Cartagena, E-30202 Cartagena, Spain
b Dept. de Mecánica, ETSII, UNED, E-28040 Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 21 July 2021

Keywords:
Volume of fluid method
Interface reconstruction
Isosurface extraction
Non-convex polyhedra
Unstructured irregular grids
Signed distance

The development of interface-capturing methods (such as level-set, phase-field or volume
of fluid (VOF) methods) for arbitrary 3D grids has further highlighted the need for more
accurate and efficient interface reconstruction procedures. In this work, we propose a new
method for the extraction of isosurfaces on arbitrary polyhedra that can be used with
advantage for this purpose. The isosurface is extracted from volume fractions by a general
polygon tracing procedure, which is valid for convex or non-convex geometries, even with
non-planar faces. The proposed method, which can be considered as an extension of the
marching cubes technique, produces consistent results even for ambiguous situations in
polyhedra of arbitrary shape. To show the reproducibility of the results presented in this
work, we provide the open source library isoap, which has been developed to implement
the proposed method and includes test programs to demonstrate the successful extraction
of isosurfaces on several grids with polyhedral cells of different types. We present results
obtained not only for isosurface extraction from discrete volume fractions resulting from
a volume of fluid method, but also from data sets obtained from implicit mathematical
functions and signed distances to scanned surfaces. The improvement provided by the
proposed method for the extraction of isosurfaces in arbitrary grids will also be very useful
in other fields, such as CFD visualization or medical imaging.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Isosurface extraction is a procedure often used in various applications, such as data visualization and numerous phys-
ical and engineering problems (see, for example, [1,2]). It is increasingly common to develop codes capable of simulating
different physical phenomena using complex unstructured grids with cells without any predetermined geometric configu-
ration. The complex geometry and topology of this type of grids makes extremely difficult the extraction of isosurfaces to
visualize or reconstruct material volumes. This difficulty also appears in the simulation of multiphase flows using VOF-type
methods and arbitrary convex or non-convex grids, when trying to reconstruct the interface using advanced schemes based
on the extraction of isosurfaces from the distribution of the volume fraction of fluid. Examples of these schemes can be
found, for example, in [3–6]. López et al. [3] developed several piecewise linear interface calculation (PLIC) methods to
represent the interface in a given grid cell by a plane whose position is obtained to match the fluid volume contained in
the cell and its orientation is obtained by a weighted-average procedure. This procedure is based on triangulated surfaces

* Corresponding author.
E-mail address: joaquin.lopez@upct.es (J. López).
https://doi.org/10.1016/j.jcp.2021.110579
0021-9991/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.jcp.2021.110579
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110579&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:joaquin.lopez@upct.es
https://doi.org/10.1016/j.jcp.2021.110579
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 1. 2D example of an ambiguous situation produced in the isosurface extraction from discrete data.

constructed from the extraction of generally non-planar isosurfaces corresponding to a 0.5 value of the fluid volume frac-
tion distribution. In particular, the LLCIR (local level-contour interface reconstruction) method constructs the triangulated
surface by joining the vertices and centroid of the extracted isosurface in the cell. The ELCIR (extended level-contour in-
terface reconstruction) method constructs the triangulated surface by joining the centroid of the isosurface extracted in the
cell with those of the isosurfaces extracted in adjacent cells. The CLCIR (conservative level-contour interface reconstruction)
method translates the above mentioned centroids to the corresponding PLIC geometric centers, and the CLC-CBIR (conserva-
tive level-contour cubic-Bézier-based interface reconstruction) improves the orientation obtained from the CLCIR method by
constructing a cubic-Bézier patch over each triangle of the triangulated surface. Results obtained using these reconstruction
methods were presented in [3] for cubic grids and results obtained using the CLC-CBIR method were presented in [4] for
grids with deformed hexahedral cells. Roenby et al. [5] proposed an advanced VOF method, referred to as isoAdvector, based
on the extraction of isosurfaces corresponding to a non-fixed value of the fluid volume fraction that is adjusted in each cell
to enforce volume conservation without the need for PLIC reconstructions. Later, Scheufler and Roenby [6] improved the
isoAdvector method by using reconstructed distances to PLIC interfaces (isoAdvector-plicRDF). Results obtained using these
isosurface-based methods were presented in [5,6] for general grids with arbitrary polyhedral cells. Shin and Juric [7] also
used an isosurface extraction technique, referred to as level contour reconstruction, which enables front-tracking methods
to robustly merge and breakup interfaces in three-dimensional flows (later enhancements and applications can be found in
references [8–11]).

The following describes the problem posed in this work and discusses the background to the issue. Given a scalar field
φ :R3 →R and a value φ̃ ∈R, the goal is to extract the set {(x, y, z) : φ(x, y, z) = φ̃}, which is usually called an isosurface.
The scalar field can be given, for example, by implicit mathematical functions, thresholded data obtained by computer fluid
dynamics simulations or by computer tomography, which is of particular relevance in medical applications, or unorganized
points obtained, for example, by scanning systems (which usually requires creating a distance function from the unorganized
points). In this work, with an approach that could also be used in applications other than the reconstruction of interfaces
in VOF methods, it will be assumed that φ is defined by discrete data, generally in the form of experimental or computed
volumetric datasets, available only at the cell vertices of a grid. Therefore, the location of the extracted isosurface points
must be approximated by interpolation, and the reconstructed isosurface can be represented, for example, with linear edges
constructed by sequentially connecting the obtained isosurface points ordered by some tracing procedure. It should be
mentioned that the use of discrete data may introduce ambiguities like that shown in the example of Fig. 1. These situations
can produce inconsistencies in isosurface extraction and can be solved by increasing the number of sample points.

There are several methods that use polygons to reconstruct isosurfaces from discrete data; among them, the “marching
cubes” algorithm, originally introduced by Lorensen and Cline [12] for 3D medical data disposed in a cubic grid, is one of
the best known. This algorithm creates a triangular surface of a given φ̃ level. In an individual cube there are 28 different
configurations based on the relative values of the φ-sampled data assigned to its 8 vertices with respect to φ̃ . The original
algorithm proposed in [12] uses two different symmetries to reduce the number of distinctive configurations to only 14
(see Fig. 3 in [12]), which are stored in a lookup table to speed up execution of the algorithm. However, this reduction
introduces a topological inconsistency in the vertex data when at least one face of the cube contains two opposite vertices,
one on one side of the isosurface, and the other on the other side (similar to the ambiguous situation shown in Fig. 1). This
inconsistency produces isosurfaces that may have holes and may not be a 2-manifold (see the example of Fig. 2). Several
efforts have been made to avoid this inconsistency and to extend the use of the original marching cubes algorithm to other
grid types (see, for example, References [13–20]).

Many codes, such as OpenFOAM [21] or STAR-CCM+ [22], are capable of simulating different physical phenomena using
complex unstructured grids. However, isosurface extraction to visualize or reconstruct material volumes has not been solved
in a fully satisfactory way for such complex grids. The marching tetrahedra algorithm, originally introduced by Doi and
Koide [15], is one of the most widely used isosurface extraction algorithms to deal with inconsistencies. It can also be
2

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 2. Inconsistency of the original marching cubes algorithm. A combination of cells with (a) configuration 3 of Fig. 3 in [12] and (b) the complementary
symmetric case produces (c) the hole observed on the bottom picture.

applied to unstructured grids, although with the added cost of an extra step to decompose complex polyhedral cells into
tetrahedra. A promising neural network-based approach to efficiently reconstruct and visualize interfaces using square, cubic,
triangular or tetrahedral grids has been recently proposed by Ataei et al. [23] in the context of VOF methods.

In this work, we propose a method, described in Section 2, that avoids the above mentioned inconsistencies by using
general rules that do not rely on predefined configurations and can be applied to any polyhedral cell, either convex or non-
convex, even with non-planar faces, without using cell decompositions. To the best of our knowledge, there is no similar
published method that provides this generalization. In Section 3, different tests on several grids are considered to extract
polygonal isosurfaces from implicit mathematical functions, signed distances to a scanned surface, and volume fraction
data obtained from a VOF scheme. Results obtained with an extension to arbitrary meshes of the CLCIR method based
on the proposed isosurface extraction method will be compared with those obtained by other authors. The method has
been implemented in the isoap library, publicly available in the Mendeley Data repository [24], under the terms of GPLv3
license [25].

2. Method for isosurface extraction on arbitrary polyhedral cells

The new method proposed in this work aims to efficiently and consistently extract the isosurface corresponding to a
value φ̃ from the distribution of values φip of the scalar variable φ assigned to every vertex ip of an arbitrary polyhedral
cell. As already mentioned, the φip values may be obtained, for example, from implicit functions or discrete data such as
signed distances or volume fractions, among other sources. The isosurface is approximated locally at each cell by a polygonal
surface, which will be referred to as an isopolygon, using a general polygon tracing procedure. The vertices of the isopolygon
will be called φ̃-vertices. The following additional considerations will be made:

• the φ̃-vertices are located at cell edges connecting cell vertices with assigned φ values above and below φ̃ ,
3

Algorithm 1 Isosurface extraction.
1: Tag cell vertices
2: Call to Algorithm 2 to insert the φ̃-vertices
3: Call to Algorithm 3 to define the isopolygons by sequentially arranging the φ̃-vertex indices
4: Calculate the position vectors xφ̃ of the φ̃-vertices from interpolation

Table 1
Array IPV of index ip assigned to every vertex i of face
boundary j of the polyhedra of Fig. 3.

Vertex index Face boundary j

i 1 2 3 4 5 6

Cube of Fig. 3(a)
1 1 2 3 4 1 6
2 2 1 2 3 4 5
3 3 5 6 7 8 8
4 4 6 7 8 5 7

Non-convex pentapyramid of Fig. 3(b)
1 1 1 2 3 4 5
2 5 2 3 4 5 1
3 4 6 6 6 6 6
4 3 − − − − −
5 2 − − − − −

• at most, one φ̃-vertex is inserted at each cell edge, and
• the φ̃-vertices inserted at cell edges are sequentially joined by line segments, forming polygons that may be non-planar.

The extracted polygonal surface for the whole domain can be used in the implementation of advanced PLIC schemes in VOF
methods (examples of such schemes can be found, for example, in [3]), but also for visualization with conventional graphics-
rendering tools, among other purposes. The construction of the polygonal isosurface may be followed by a decomposition
procedure to convert each isopolygon into triangles, but this is beyond the scope of the present work. In any case, most
visualization applications can handle non-planar polygons, as can be seen in the results presented in Section 3.

Algorithm 1 performs the proposed isosurface extraction procedure, which basically consists of the following four steps:

(1) The cell vertices are tagged according to their relative assigned value of φ with respect to φ̃.
(2) A φ̃-vertex is inserted on every cell edge connecting cell vertices with different tags.
(3) The inserted φ̃-vertices are sequentially ordered by a polygon tracing procedure. An anticlockwise order is chosen to

sequentially connect all the φ̃-vertices when the isosurface is viewed from the outside of the region with positive scalar
field (reference medium whose surface is represented). This is the most complex step of the algorithm and is somehow
similar to the capping procedure valid for convex or non-convex regions presented in [26].

(4) The φ̃-vertices are finally positioned on cell edges by interpolation.

Each of these steps is detailed in the next four subsections. The following arrangement of vertices, similar to that used
in [26], is considered for a polyhedral cell. Let us consider a generic (convex or non-convex) polyhedron � with NIPV(j)
vertices on each face boundary j, either planar or non-planar. Note that a face may be defined by a simple polygon with
holes, with its non-simply connected interior delimited by two or more face boundaries. The vertices of each face boundary
are arranged sequentially, so that the vector joining two consecutive vertices leaves the face boundary to the left when
viewed from outside the polyhedron. The vertex with index ip , assigned to vertex i of face boundary j, is stored using the
two-dimensional array IPV(j, i) = ip . The notation used in the description of the algorithms considers that the vertices for
each face boundary are ordered to form a closed loop. More details about the arrangement of vertices of � can be found
in [26]. As an example, Table 1 presents the arrangement of vertices in the cube and non-convex pentapyramid of Fig. 3,
showing the index ip assigned to every vertex i of face boundary j (x j,i ≡ xip). For ease of explanation, many examples of
surface extraction on these polyhedra will be presented below in this section. Illustrative examples of the application of the
algorithm to more complex polyhedral cells will be presented throughout the paper.

2.1. Cell vertex tagging

At every cell vertex with index ip , the array element IA(ip) is set equal to 1 if φip > φ̃, or 0 otherwise. From now on,
cell vertices with assigned IA element values equal to 1 and 0 will be depicted with • and ◦ symbols, respectively, as in
Fig. 4.
J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
4

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579

Fig. 3. Vertex coordinates of (a) a cube and (b) a non-convex pentagonal pyramid.

Fig. 4. Examples of vertex tagging for the cells shown in Fig. 3.
5

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Algorithm 2 Insertion of the φ̃-vertex indices.
1: iφ̃ = 0
2: for face boundaries j intersected by the isosurface do
3: i′ = 0
4: for i = 1 to NIPV(j) do
5: ip1 = IPV(j, i) and ip2 = IPV(j, i + 1)

6: if IA(ip1) �= IA(ip2) then
7: if edge defined by ip1 and ip2 was previously visited then
8: Identify the previously inserted vertex with index iφ̃
9: else

10: Insert a new φ̃-vertex, with index iφ̃ = iφ̃ + 1
11: end if
12: i′ = i′ + 1 and IPVINT(j, i′) = iφ̃
13: if IA(ip2) = 1 then IPVINT(j, i′) is marked as “key vertex”
14: end if
15: end for
16: NIPVINT(j) = i′
17: end for

Fig. 5. Key (red cross) and previous (blue cross) φ̃-vertices for j = 2 (boundary of the shaded face) in the example of Fig. 6(a). The isoedges are depicted in
green. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

2.2. φ̃-Vertex insertion

Algorithm 2 inserts a φ̃-vertex at each cell edge intersected by the isosurface. To illustrate the procedures used here and
in the next section, the inserted φ̃-vertices are depicted with × symbols at the middle of the corresponding intersected cell
edges (the final location of the φ̃-vertices will be obtained from the interpolation procedure described in Section 2.4). Each
of these intersected edges is defined by the two vertices of the edge, with different IA element values. A cell is considered
to be intersected by the isosurface if any of its edges is. The procedure goes in sequential order over the NIPV(j) vertices
of each intersected face boundary j (lines 4-15 in Algorithm 2) to obtain the array IPVINT(j, i′) that stores the index iφ̃
assigned to every intersected edge i′ of j (line 12 in Algorithm 2). The array NIPVINT(j) stores the total number of edges
of the face boundary j intersected by the isosurface (line 16 in Algorithm 2). Note that each intersected edge is shared by
two face boundaries, and index iφ̃ is increased by one only if the corresponding edge was not previously visited in this
sequential procedure over all the intersected face boundaries (line 10 in Algorithm 2). Otherwise, the index iφ̃ identified in
a previous “visit” to the edge (line 8 in Algorithm 2) is assigned to the array IPVINT.

On every intersected face boundary, the inserted φ̃-vertices will be marked as follows (see the example in Fig. 5):

• A φ̃-vertex inserted at an intersected edge i′ , defined by vertices with indices ip1 = IPV(j, i) and ip2 = IPV(j, i + 1),
of face boundary j will be marked as a “key φ̃-vertex” if IA(ip2) = 1 (line 13 in Algorithm 2; vertices denoted by red
cross symbols in the example of Fig. 5).

• If IPVINT(j, i′) stores an index corresponding to a key φ̃-vertex in the face boundary j, the edge joining it to the
previously inserted φ̃-vertex, whose index is stored as IPVINT(j, i′ − 1) (blue cross symbols in the example of Fig. 5),
is part of an isopolygon (each of the green lines in the example of Fig. 5). Note that the previous φ̃-vertex of index
IPVINT(j, i′ − 1) must be a key φ̃-vertex at the other face boundary of the cell that shares the cell edge in which
this φ̃-vertex is inserted. The array IPVINT is considered to form a closed loop; thus, for i′ = 1, IPVINT(j, i′ − 1) =
IPVINT(j, NIPVINT(j)).
6

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 6. Examples of the application of the insertion procedure of Algorithm 2 for the two polyhedra of Fig. 3. Symbols • and ◦ denote cell vertices with
assigned IA element values equal to 1 and 0, respectively, and symbol × denotes φ̃-vertices (the same notation will be used in other figures).

Table 2
Array IPVINT of indices iφ̃ of the vertices inserted on the intersected face bound-

aries of the polyhedra of Fig. 6. The key φ̃-vertices inserted on every face boundary
are boundboxed.

Intersected edge Face boundary j

index i′ 1 2 3 4 5 6

Cube
1 1 1 2 6 7 4
2 2 3 5 7 3 6
3 − 4 − − − −
4 − 5 − − − −
Non-convex pentapyramid
1 1 4 3 2 1 5
2 2 5 6 6 7 7
3 3 − − − − −
4 4 − − − − −

Fig. 6 illustrates the application of Algorithm 2 to the polyhedra of Fig. 3. Table 2 shows the resulting array IPVINT of
indices iφ̃ , of the vertices inserted at the intersected face boundaries of the polyhedra (the key φ̃-vertices inserted on each
face boundary are highlighted in the table by a box).

2.3. φ̃-Vertex arrangement

Algorithm 3 sequentially arranges all the indices of the inserted φ̃-vertices in anticlockwise order when viewed from
outside the region with positive scalar field (fluid or another medium considered as reference), to form one or more closed
isopolygons. The isopolygons constructed to approximate the isosurface are identified with index k. The array NIPVISO(k)

is used to store the number of φ̃-vertices on each isopolygon k, and the two-dimensional array IPVISO(k, ik) is used to
store every φ̃-vertex index iφ̃ assigned to vertex ik of isopolygon k.

The proposed vertex arrangement procedure consists of the following steps:

1. Assign the φ̃-vertex index corresponding to the first vertex of isopolygon k (line 2 in Algorithm 3).
The first vertex (ik = 1) of the first isopolygon (k = 1) is assumed to be the first vertex (iφ̃ = 1) obtained in the

insertion procedure of Section 2.2 (line 1 in Algorithm 3). Note, however, that a different choice could have been made
with no loss of generality.

2. Apply the following recursive procedure (lines 3-6 in Algorithm 3):

2.i. For the φ̃-vertex index previously assigned to IPVISO(k, ik), find the intersected face boundary j for which
IPVINT(j, i′) = IPVISO(k, ik) is a key φ̃-vertex (line 3 in Algorithm 3).

2.ii. If the previous φ̃-vertex index stored at IPVINT(j, i′ − 1) is not coincident with IPVISO(k, 1), increase index ik
by one, assign IPVINT(j, i′ − 1) to IPVISO(k, ik) and go to 2.i (lines 4-6 in Algorithm 3).
7

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Algorithm 3 Arrangement of the φ̃-vertices.
1: k = 1 and iφ̃ = 1
2: ik = 1 and IPVISO(k, ik) = iφ̃
3: Find j and i′ for which IPVINT(j, i′) = IPVISO(k, ik) is a “key φ̃-vertex”
4: if IPVINT(j, i′ − 1) �= IPVISO(k, 1) then
5: ik = ik + 1 and IPVISO(k, ik) = IPVINT(j, i′ − 1)

6: Go to line 3
7: else
8: NIPVISO(k) = ik

9: if there are still unassigned φ̃-vertices then
10: Pick an unassigned φ̃-vertex iφ̃ and k = k + 1
11: Go to line 2 to construct a new isosurface k
12: end if
13: end if

3. If there are still unassigned φ̃-vertices, pick one of them, increase index k by one and go to Step 1 to construct a new
isopolygon (lines 9-12 in Algorithm 3).

Figs. 7 and 8 illustrate the sequence of application of Algorithm 3 to the examples of Figs. 4(a) and 4(b), respectively.
The edge of the isopolygons are depicted with thick green lines.

Examples of the construction of multiple isopolygons in polyhedral cells can be seen in Figs. 9(a) (four isopolygons) and
9(b) (eight isopolygons).

2.4. Positioning the ̃φ-vertices by interpolation

Finally, the position vectors xφ̃ of the φ̃-vertices are obtained from the following linear interpolation (line 4 in Algo-
rithm 1):

xφ̃ = xip2
− φip2

− φ̃

φip2
− φip1

(
xip2

− xip1

)
. (1)

Note that, due to the use of strict inequalities (line 6 in Algorithm 2) to determine the φ values involved in Eq. (1), it
is guaranteed that φip2

�= φip1
, and, therefore, the divide by zero issue never occurs and the consistency of the isosurface

extraction is maintained in cases where the isosurface coincides with a face, edge, or vertex of the cell. It should be
mentioned that high-order interpolations based, for example, on the gradient of φ could have been considered (see, for
example, Reference [27]), but this will be the subject of future works.

Fig. 10 shows the resulting isopolygons for the cells of Fig. 3 and the φ-node values indicated, which are obtained by
using the interpolation of Eq. (1) with φ̃ = 0 to compute the position vectors xφ̃ .

2.5. Software description

The implemented algorithm extracts, from discrete data, isosurfaces on arbitrary, convex or non-convex polyhedra, even
with non-planar face boundaries. The software package [24] also includes a user manual and routines for writing the geom-
etry of polyhedra and isosurfaces in external files. Tests programs are included to extract isosurfaces on single polyhedral
cells and grids of any type, either from implicit mathematical functions or discrete data such as volume fractions or signed
distances to scanned surfaces. The implemented routines can be used in FORTRAN and C, with C interfaces. To speed up
the operations performed over grids, the OpenMP application programming interface is used.

3. Results and discussion

A comparison in terms of consistency and computational efficiency between the proposed and the marching cubes
algorithms is presented in Section 3.1. Results for isosurfaces constructed from implicit mathematical functions, signed
distances to scanned surfaces and volume fraction data obtained from a volume of fluid scheme, using several grids with
convex and non-convex cells, are presented in Section 3.2. The results presented in these sections are visualized using the
ParaView program [28].

3.1. Comparison between the proposed algorithm and the marching cubes algorithm

Fig. 11 shows the isosurfaces extracted using the proposed method for the pre-defined cubic cell configurations consid-
ered in [12]. Note that the results for ambiguous configurations, like those shown in Fig. 1, differ from those obtained in
[12]. The inconsistency observed in Fig. 2 when using the original marching cubes algorithm [12] is produced because the
φ̃-vertices lying on the isoedges on an ambiguous cell face are connected using rules that may be different in the two cells
8

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 7. Construction sequence (from top to bottom and from left to right) of the isopolygon for the example of Fig. 4(a). The cell face boundary involved in
each step of the sequence is depicted gray filled.

that share the face. Note that the extracted isosurface separates the black circles on the left cell in Fig. 2, but the empty
circles on the right cell, producing a hole at the shared face. The proposed method avoids this inconsistency because all the
face boundaries are treated systematically, using the same rules presented in Algorithms 2 and 3. The extracted isopolygons
obtained using the proposed method always separate the cell vertices with IA values equal to zero, as shown in the exam-
ple of Fig. 12. Bloomenthal [29], Wyvill and Jevans [30] or Delibasis et al. [31], among others, also used a polygon tracing
technique to avoid these inconsistencies, although only for cubic cells.
9

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 8. Same isopolygon construction sequence as in Fig. 7, but for the example of Fig. 4(b).

Note that the proposed method relies on general rules which are able to extract isosurfaces on arbitrary polyhedral
cells, while the marching cubes technique is restricted to a list of standard configurations for cubic cells. For comparison
purposes, Fig. 13 presents the isosurfaces of two tests described in [19], where the marching cube algorithm with an
extended modified lookup table with 21 patterns is used. The use of lookup tables in the marching cubes algorithm speeds
up the surface extraction, making our more general algorithm to be, on average, 1.8 times slower (the tests were run
for the algorithm in [19] and the proposed algorithm on an iMac Pro (2017) with a 2.3 GHz Intel Xeon W processor
using the gcc compiler with -O3 compilation option; a ×6 speedup is achieved for the proposed algorithm using the
-fopenmp compilation option and all the available threads). However, our method is not constrained to using a given cell
geometry. Obviously, to accelerate the CPU-time and obtain a computational efficiency similar to that of the marching cubes
algorithm, the φ̃-vertex connectivity could have been pre-computed with the proposed method for each of the possible 28

cube configurations and stored in a lookup table for rapid access. The same applies for other cell types.
10

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 9. Examples of multiple isopolygons constructed on (a) a cubic cell and (b) a dodecahedral cell.

Fig. 10. Resulting isopolygons defined by the position vectors xφ̃ computed from the interpolation given by Eq. (1) with φ̃ = 0.

3.2. Application to several grid types

In this section, the following grids in a unit domain are used:

1. Structured grid with cubic cells (Fig. 14(a)).
2. Unstructured grid with tetrahedral cells (Fig. 14(b)), obtained using TetGen [32] (version 1.5) by typing

tetgen option domain.poly

where the content of file domain.poly is included in Appendix A and the values of the parameter option, used to
generate the grids with different resolutions considered in this work, are shown in Table 3.

3. Structured grid with non-convex cells (Fig. 14(c)), obtained by distorting cubic cells as follows. Each of the eight corner
vertices of the initial uniform cubic grid of cell size h is randomly moved to the surface of a sphere with radius 0.25h
and centered in the corresponding vertex. Each face of the distorted cell, which is generally non-planar, is triangulated
by joining its center with two consecutive vertices of the face, resulting in a non-convex polyhedron of 14 vertices and
24 triangular faces.

4. Unstructured grid with non-convex irregular polyhedral cells (Fig. 14(d)), obtained with the aid of TetGen [32] and
OpenFOAM’s tetgenToFoam and polyDualMesh tools (see [21] for information on how to use these tools) by typing

tetgen option domain.poly
tetgenToFoam domain.1
polyDualMesh 75 -concaveMultiCells
11

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 11. Results obtained with the proposed method for the 14 pre-defined cell configurations considered in [12].

It should be mentioned that the faces of these cells are generally non-planar. For the VOF simulation carried out in
Section 3.2.3, each cell face has additionally been triangulated by joining its geometric center with two consecutive face
vertices.

The isosurfaces extracted from φ values obtained in different ways are presented below for grids with n 	 803 cells, in order
to demonstrate the versatility of the proposed algorithm.

3.2.1. Scalar field given by implicit functions
The scalar field φ is defined at each cell vertex ip by the following implicit functions:

φip = 0.3252 − (xip − xc)
2 − (yip − yc)

2 − (zip − zc)
2 (2)
12

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 12. The proposed approach avoids the inconsistency of Fig. 2.

Table 3
Details of the tetrahedral and non-convex irregular polyhedral grids of different resolutions used to assess the proposed
methods. The numbers of grid vertices and faces obtained after triangulating the faces of the non-convex irregular poly-
hedral grids used in the VOF simulation are included in parenthesis.

Approx. tetgen Grid Grid Grid Avg. vertices Avg. faces
n1/3 option cells, n vertices faces per cell per cell

Tetrahedral grids
20 -pq1.2a0.00031k 7 923 1 831 16 907 4 4
32 -pq1.2a0.00007k 33 010 6 823 69 080 4 4
40 -pq1.2a0.000034k 63 988 12 400 132 550 4 4
64 -pq1.2a0.0000079k 261 051 47 201 534 515 4 4
80 -pq1.2a0.0000039k 513 711 89 902 1 046 584 4 4
128 -pq1.2a0.00000093k 2 094 575 351 874 4 239 540 4 4
160 -pq1.2a0.00000047k 4 138 041 687 618 8 360 839 4 4

Non-convex irregular polyhedral grids
20 -pq1.2a0.000056k 8 077 48 947 56 673 22.8 13.4
32 -pq1.2a0.000012k 32 887 201 401 233 551 23.6 13.8

(434 952) (1 201 904) (37.4) (70.8)
40 -pq1.2a0.0000056k 64 207 396 276 459 748 24.1 14.0
64 -pq1.2a0.00000127k 262 122 1 638 789 1 899 408 24.6 14.3

(3 538 197) (9 819 651) (38.9) (73.9)
80 -pq1.2a0.00000063k 510 961 3 210 090 3 719 548 24.8 14.4

(6 929 638) (19 247 250) (39.3) (74.5)
128 -pq1.2a0.000000147k 2 101 279 13 312 234 15 410 474 25.2 14.6

(28 722 708) (79 847 053) (39.7) (75.5)
160 -pq1.2a0.0000000745k 4 081 207 25 935 456 30 013 624 25.3 14.6

for a sphere,

φip = 0.12 −
{

0.2 −
[
(xip − xc)

2 + (yip − yc)
2
]1/2

}2

− (zip − zc)
2 (3)

for a torus,
13

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 13. Extracted isosurfaces obtained from the 2003 volumetric data provided by Masala et al. [19] for two tests, using a grid with 1993 cubic cells: (a)
‘visual’ (φ̃ = 0.5) and (b) ‘net’ (φ̃ = 1.05) tests.

Fig. 14. Cell types: (a) cube, (b) tetrahedron, (c) distorted cube and (d) non-convex irregular polyhedron (note that this cell has non-planar faces).

φip = 1 −
(

xip − xc

0.4

)2

−
(

yip − yc

0.3

)2

−
(

zip − zc

0.2

)2

(4)

for an ellipsoid, and
14

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 15. Extracted isosurfaces of ̃φ = 0 for the sphere of Eq. (2), obtained using the (a) cubic, (b) tetrahedral, (c) distorted cubic and (d) non-convex irregular
polyhedral grids with n 	 803.

φip = − 1√
3
(xip − xc) − 1√

3
(yip − yc) − 1√

3
(zip − zc) (5)

for a half-space, where xc = 0.525, yc = 0.464 and zc = 0.516, and xip , yip and zip are the position vector coordinates of
vertex ip .

Figs. 15, 16 and 17 show the extracted isosurfaces of φ̃ = 0 for the sphere of Eq. (2), the torus of Eq. (3) and the
ellipsoid of Eq. (4), respectively, obtained using the (a) cubic, (b) tetrahedral, (c) distorted cubic and (d) non-convex irregular
polyhedral grids.

To quantify the accuracy of the isosurface extraction, the error norms

E L∞
φ̃

= max
(∣∣∣φ(xφ̃)

∣∣∣) (6)

and

E L1

φ̃
=

∑∣∣∣φ(xφ̃)

∣∣∣
Nφ̃

(7)

are considered, where the max operator and the summation extend over all the Nφ̃ φ̃-vertices, and φ(xφ̃) is obtained from
Eqs. (2), (3), (4) or (5) by replacing xip , yip and zip with the corresponding coordinates of each extracted φ̃-vertex xφ̃ .
The values of these error norms, along with the corresponding convergence orders, are shown in Tables 4, 5, 6 and 7 for
the sphere, torus, ellipsoid and half space, respectively. As expected for the linearly approximated isosurface of Eq. (1)
[33], it can be observed from these table, for any of the grids considered, a second-order convergence for the sphere, torus
and ellipsoid, and errors on the order of the machine precision for the half-space. The test programs supplied with the
software package use an interval-based approach to create the list of cells over which the algorithms presented in this
work are applied (i.e., cells with maximum and minimum scalar values greater and lower, respectively, than φ̃). The user
could incorporate more sophisticated search approaches, such as those described, for example, in [34]. The execution times
consumed to identify these cells, ti , and extract the isosurface on them, tφ̃ , have also been included in the tables. It can
be seen that, for a particular combination of grid type and implicit function, the variation of ti and tφ̃ with respect to the
total number of grid cells, n, and identified cells, nφ̃ , respectively, is roughly linear (see the example of Fig. 18). The slopes
of these variations decrease as the number of threads used in the simulation execution increases. Using the maximum
15

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 16. Same results as in Fig. 15, but for the torus of Eq. (3).

Fig. 17. Same results as in Fig. 15, but for the ellipsoid of Eq. (4).

number of threads allowed by the processor used for this test, instead of only one, the execution can be speed up in some
cases by a factor of around 10 for ti and 20 for tφ̃ . Also note that, as expected, for a particular implicit function and grid
size n, the execution times tend to increase as the grid cell complexity increases (the high complexity of the non-convex
irregular polyhedral grids becomes evident from the high values of the average number of vertices and faces per cell shown
in Table 3).

The E L∞
φ̃

values obtained for φip = 1 − (xip − 4)2 − (yip − 4)2 − (zip − 4)2 in a domain 83 using grids with cubic cells
of size h, are compare in Fig. 19 with those reported in [33] and obtained with six different isosurface extraction codes:
16

Table 4
E L∞

φ̃
, E L1

φ̃
, convergence order (O) and execution time values for the isosurface corre-

sponding to the sphere of Eq. (2) extracted on different grids.

n nφ̃ E L∞
φ̃

O E L1

φ̃
O ti (μs) tφ̃ (μs)

Cubic cells
203 786 6.25 × 10−4 4.07 × 10−4 354 252
403 3174 1.56 × 10−4 2.0 1.05 × 10−4 2.0 543 317
803 12720 3.91 × 10−5 2.0 2.59 × 10−5 2.0 2965 562
1603 50936 9.77 × 10−6 2.0 6.50 × 10−6 2.0 20022 2153
Tetrahedral cells
203 883 9.14 × 10−3 2.72 × 10−3 308 218
403 3847 2.10 × 10−3 2.1 6.17 × 10−4 2.1 453 272
803 16158 5.17 × 10−4 2.0 1.49 × 10−4 2.0 2656 640
1603 66642 1.35 × 10−4 1.9 3.63 × 10−5 2.0 20842 3123
Distorted cubic cells
203 827 1.30 × 10−3 3.48 × 10−4 274 277
403 3297 3.31 × 10−4 2.0 8.71 × 10−5 2.0 509 549
803 13264 8.47 × 10−5 2.0 2.20 × 10−5 2.0 2866 1830
1603 53030 2.13 × 10−5 2.0 5.48 × 10−6 2.0 22831 7247
Non-convex irregular polyhedral cells
203 555 4.50 × 10−4 1.13 × 10−4 309 273
403 2523 7.20 × 10−5 2.6 2.44 × 10−5 2.2 780 621
803 11033 2.18 × 10−5 1.7 5.70 × 10−6 2.1 5280 3275
1603 45263 5.60 × 10−6 2.0 1.38 × 10−6 2.0 78783 16057

Table 5
Same results as in Table 4, but for the torus of Eq. (3).

n nφ̃ E L∞
φ̃

O E L1

φ̃
O ti (μs) tφ̃ (μs)

Cubic cells
203 460 6.25 × 10−4 3.52 × 10−4 315 226
403 1820 1.56 × 10−4 2.0 8.93 × 10−5 2.0 570 304
803 7296 3.91 × 10−5 2.0 2.13 × 10−5 2.1 2803 415
1603 29256 9.77 × 10−6 2.0 5.47 × 10−6 2.0 20326 1448
Tetrahedral cells
203 498 7.25 × 10−3 1.88 × 10−3 316 209
403 2264 2.21 × 10−3 1.7 4.73 × 10−4 2.0 489 247
803 9643 4.56 × 10−4 2.3 1.14 × 10−4 2.1 2540 493
1603 39439 1.22 × 10−4 1.9 2.79 × 10−5 2.0 20421 1884
Distorted cubic cells
203 468 1.27 × 10−3 2.80 × 10−4 292 220
403 1888 3.25 × 10−4 2.0 6.85 × 10−5 2.0 642 388
803 7856 8.29 × 10−5 2.0 1.69 × 10−5 2.0 2577 1200
1603 30779 2.17 × 10−5 1.9 4.27 × 10−6 2.0 22835 4521
Non-convex irregular polyhedral cells
203 335 2.90 × 10−4 8.23 × 10−5 290 251
403 1543 7.22 × 10−5 2.0 1.87 × 10−5 2.1 679 467
803 6435 1.91 × 10−5 1.9 4.43 × 10−6 2.1 5052 2019
1603 27053 4.98 × 10−6 1.9 1.06 × 10−6 2.1 81421 9710

vtk Marching Cubes [12], SnapMC [35], Macet [36], Dual Contouring [37], Afront [38] and DelIso [39]. As expected, the E L∞
φ̃

values obtained with the proposed method almost coincide with the vtk Marching Cubes and Snap MC codes since both use
the same linear approximation of Eq. (1). As mentioned in Section 2.4, higher-order interpolations must be used to obtained
more accurate results.

3.2.2. Scalar field given by signed distances to scanned surfaces
In this section, the scalar field φ is obtained from the scanned surface of two objects. The first corresponds to the

well-known Stanford bunny [40] and the second to an automobile part available in our laboratory.
The scanned Stanford bunny is available in [40] for download in polygon (PLY) format. We used the file composed by

35947 vertices and 69451 triangles. The scalar field φ is assigned to each grid point from its signed distance (negative
inside the surface and positive outside) to the triangulated bunny surface. This signed distance is computed using the
dist3d routine presented in [41,42]. Fig. 20 shows the extracted isosurfaces of φ̃ = 0 for the four grid types considered.

An aluminum alloy A413 automobile part (Fig. 21(a)) was scanned to provide a triangulated surface in PLY format
composed of 156229 vertices and 312458 triangles (Fig. 21(b)). As in the previous case, the scalar field φ at each grid
point is obtained from the signed distance to the triangulated surface. Fig. 22 shows the extracted isosurfaces of φ̃ = 0 for
J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
17

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579

Fig. 18. Execution times ti (top picture) and tφ̃ (bottom picture) as a function of n and nφ̃ , respectively, for the sphere of Eq. (2) and tetrahedral grids of
different sizes.

Fig. 19. Error E L∞
φ̃

as a function of cell size, h, obtained for a cubic grid and φip = 1 − (xip − 4)2 − (yip − 4)2 − (zip − 4)2, in a domain of size 83. Comparison
of the proposed method with different isosurface extraction methods.
18

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Table 6
Same results as in Table 4, but for the ellipsoid of Eq. (4).

n nφ̃ E L∞
φ̃

O E L1

φ̃
O ti (μs) tφ̃ (μs)

Cubic cells
203 664 1.56 × 10−2 6.76 × 10−3 365 269
403 2616 3.91 × 10−3 2.0 1.70 × 10−3 2.0 584 305
803 10436 9.77 × 10−4 2.0 4.29 × 10−4 2.0 2265 490
1603 41808 2.44 × 10−4 2.0 1.07 × 10−4 2.0 19210 1717
Tetrahedral cells
203 707 1.75 × 10−1 3.71 × 10−2 337 236
403 3227 4.26 × 10−2 2.0 9.57 × 10−3 2.0 395 260
803 13646 1.07 × 10−2 2.0 2.25 × 10−3 2.1 2763 573
1603 55745 3.18 × 10−3 1.8 5.47 × 10−4 2.0 18920 2399
Distorted cubic cells
203 697 2.98 × 10−2 5.44 × 10−3 248 238
403 2762 7.83 × 10−3 1.9 1.32 × 10−3 2.0 583 443
803 10939 2.04 × 10−3 1.9 3.32 × 10−4 2.0 2615 1536
1603 43858 5.43 × 10−4 1.9 8.39 × 10−5 2.0 21396 6008
Non-convex irregular polyhedral cells
203 478 8.59 × 10−3 1.69 × 10−3 307 278
403 2144 1.75 × 10−3 2.3 3.68 × 10−4 2.2 803 580
803 9203 4.50 × 10−4 2.0 8.65 × 10−5 2.1 5143 2734
1603 38088 1.13 × 10−4 2.0 2.08 × 10−5 2.1 77255 13453

Table 7
Same results as in Table 4, but for the half-space of Eq. (5) (obviously, the
convergence orders are dropped).

n nφ̃ E L∞
φ̃

E L1
φ̃

ti (μs) tφ̃ (μs)

Cubic cells
203 898 5.55 × 10−17 8.24 × 10−18 323 273
403 3598 5.55 × 10−17 8.05 × 10−18 596 296
803 14398 5.55 × 10−17 8.73 × 10−18 2540 578
1603 57598 6.25 × 10−17 9.71 × 10−18 21066 2130
Tetrahedral cells
203 995 1.11 × 10−16 2.25 × 10−17 334 235
403 4041 1.11 × 10−16 2.30 × 10−17 570 273
803 16442 1.11 × 10−16 2.41 × 10−17 2888 656
1603 66130 1.67 × 10−16 2.39 × 10−17 21560 2792
Distorted cubic cells
203 903 1.39 × 10−16 2.37 × 10−17 265 289
403 3603 1.67 × 10−16 2.38 × 10−17 576 511
803 14401 1.67 × 10−16 2.38 × 10−17 3178 1494
1603 57605 1.77 × 10−16 2.41 × 10−17 23151 6443
Non-convex irregular polyhedral cells
203 660 1.11 × 10−16 2.27 × 10−17 300 273
403 2729 1.63 × 10−16 2.43 × 10−17 730 629
803 11106 1.67 × 10−16 2.40 × 10−17 5329 3429
1603 45499 1.67 × 10−16 2.40 × 10−17 79377 16192

the four grid types considered. The resolution of the tetrahedral grid was increased to N = 128 to avoid losing too much
detail.

It should be mentioned that the accuracy of the extraction of isosurfaces using signed distances to scanned surfaces
obviously depends, apart from the factors discussed in the previous section, on the surface scanner and signed distances
accuracies. A detailed assessment of the procedure used in this work to computed signed distances can be found in [43].

3.2.3. Scalar field given by volume fractions
For dealing with the complex interfacial shapes that typically arise in simulations of multiphase fluid flows using VOF

methods, the evolution equation for an indicator function χ(x, t), which is equal to 1 if x is inside the fluid and 0 otherwise,

∂χ(x, t)

∂t
+ ∇ · [vχ(x, t)] − χ(x, t)∇ · v = 0, (8)

is integrated over a given cell, �, of volume V� , and the time interval �t = tn+1 − tn, to obtain, at each time step,
19

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 20. Same results as in Fig. 15, but for the scanned Stanford bunny.

Fig. 21. Aluminum alloy A413 automobile part: (a) real and (b) scanned.

F (tn+1) = F (tn) − 1

V�

tn+1∫
tn

∫
�

∇ · [vχ(x, t)] dx dt

+ F (tn+1) − F (tn)

2V�

tn+1∫
tn

∫
�

∇ · v dx dt,

(9)

where F is a discretized version of function χ , whose value in each cell of the computational grid is the fraction of the
cell occupied by the fluid. In the test described below, a spherical fluid volume is subjected to advection in a prescribed
20

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 22. Same results as in Fig. 15, but for the scanned automobile part of Fig. 21(b). To avoid losing too much detail, the grid resolution for the tetrahedral
grid has been increased from 803 to 1283 cells.

velocity field. At the initial time step, F (tn=0) is obtained in each cell using a grid refinement procedure [44,45], extended
to non-convex grid cells in [26], for a spherical fluid body of radius 0.15 and centered at (0.5, 0.75, 0.25) in a unit box
domain. For subsequent time steps, F (tn+1) is obtained from the solution of Eq. (9) assuming that the interface was previ-
ously reconstructed at the instant tn using an extension to arbitrary grids of the CLCIR method proposed in [3], which has
been implemented with the aid of the isosurface extraction procedure presented in this work to estimate the PLIC interface
orientation on every cell where 10−12 < F (tn) < (1 − 10−12), and is described in Appendix B. The first integral in Eq. (9)
represents the net volume of fluid advected out of the cell and will be solved geometrically using the extension to 3D [46]
of the edge-matched flux polygon advection (EMFPA) method proposed by López et al. [47], which avoids the over/under-
lapping between flux regions constructed at cell faces with common vertices. The repeated intersection operations required
by this method over polyhedra that are generally non-convex, even with self-intersecting faces, are performed with the aid
of the tools proposed in [26,48], thus avoiding the use of decomposition techniques. Note that the last term in Eq. (9) must
be null if the velocity vector field v is discretely solenoidal.

3D vortex in a box test The solenoidal velocity field v = (u, v, w), defined by

u = sin2(πx) sin(2π y) cos(πt/3)

v = − sin2(π y) sin(2πx) cos(πt/3)

w =
{

1 − 2
[
(x − 0.5)2 + (y − 0.5)2

]1/2
}2

cos(πt/3),

(10)

corresponds to a combination of the classical vortex-in-a-box test of Rider and Kothe [49] with a laminar pipe flow in the
z-direction, as in the work of Liovic et al. [50] (variants of this single-vortex test can also be found, for example, in [51,52],
among many other references). Figs. 23 and 24 show the extracted isosurfaces for φ̃ = 0.5 at different instants using the
cubic and tetrahedral grids, and the distorted cubic and non-convex irregular polyhedral grids, respectively, with n 	 803

cells. Note that the fluid interface reaches its maximum deformation at instant 1.5 and should return to its initial state at
instant 3 (any visual difference with the spherical body shape at t = 0 is due to numerical errors in the solution of Eq. (9)).
21

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 23. Extracted isosurfaces for φ̃ = 0.5 at different instants in the 3D vortex in a box test, using the EMFPA and CLCIR methods and the (a) cubic and (b)
tetrahedral grids with n 	 803.

To assess the performance of the implemented algorithms, results obtained using grids of different types and resolutions
are compared with the exact solution at the end of the VOF simulation (t = tend). Fig. 25 shows an example of this compar-
ison (the pictures are depicted in semitransparent colors to better see the comparison) for cubic grids. The EMFPA method
was used in combination with two PLIC methods: the CLCIR method (left pictures) and the well-known method of Youngs
(right pictures). Although some differences can be qualitatively perceived from the figure, especially for the coarser grids,
the quantitative differences can be estimated using the following error norm:

E L1
shape =

n∑
i=1

V�i

∣∣F e
i (tend) − Fi(tend)

∣∣ , (11)

where F e
i (tend) and Fi(tend) are, respectively, the exact and computed fluid volume fraction in cell i at instant tend = 3.

It should be mentioned that results obtained using unstructured grids are very scarce in the literature, and the few that
can be found do not allow a rigorous comparison due to the lack of information about the grid generation. Scheufler and
Roenby [6] and Jofre et al. [53] provide results on tetrahedral grids with similar number of cells, although not generated
in the same way. Results on unstructured polyhedral grids for this test can also be found in [6], although details on the
degree of complexity of the polyhedral cells are not provided. As mentioned, detailed information about the grids used
in this work is included at the beginning of Section 3.2, which will allow for more rigorous future comparisons. Table 8
compares results obtained in this work using a Courant-Friedrich-Levy (CFL) number equal to 0.5 and grids of n 	 323, 643

and 1283 cells, with those obtained in [6] using an improved version (isoAdvector-plicRDF, which reconstructs a distance
function from PLIC interfaces) of the method based on isosurface extractions proposed by Roenby et al. [5], and with those
22

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 24. Same results as in Fig. 23, but using the (a) distorted cubic and (b) non-convex irregular polyhedral grids with n 	 803.

obtained in [53] using an EMFPA-like advection method combined with the LVIRA (least-squares volume-of-fluid interface
reconstruction algorithm) method. The time step �t is determined at each instant t from

�t = min

[
min(hxi)

max(u j)
,

min(hyi)

max(v j)
,

min(hzi)

max(w j)

]
CFL (12)

where the min and max operators inside the square brackets involve, respectively, all the cells and faces for cubic grids
and only cells and faces near the interface for unstructured grids; hxi , hyi and hzi are the sizes along the corresponding
coordinate axis of the minimum-size rectangular parallelepiped that encloses cell i (note that, for cubic grids with n cells,
min(hxi) = min(hyi) = min(hzi) = 1/n1/3); and u j , v j and w j are the components of the velocity vector at the center of grid
face j. The average execution time per time step, ̃tcpu, is also included in the table (execution times can also be found in
[6] for this test, although using different resources to execute the simulations, therefore these values should only be used
as an approximated reference). For all the grids used, the results obtained with EMFPA-CLCIR methods show second-order
convergence and lower error values than those obtained using the EMFPA and Youngs methods, although with a slightly
higher CPU time consumed. For the cubic and tetrahedral grids, the EMFPA-CLCIR methods also show error values lower
than those obtained in [6] and [53]. For the non-convex irregular polyhedral grids, the isoAdvector-plicRDF method provides
lower errors on grids with n 	 643 and 1283. Fig. 26 shows the PLIC interfaces at t = 1.5 and 3 using the cubic, tetrahedral
and non-convex irregular polyhedral grids. A visual comparison with the results obtained using the isoAdvector-plicRDF
method can be seen in Fig. 13 of reference [6]. It is clear from this comparison that the unstructured grids used in [6] are
not identical to those used in this work and therefore, as mentioned above, conclusions about this comparison must be
viewed with certain reservations.
23

Fig. 25. Extracted isosurfaces for ̃φ = 0.5 (semitransparent light blue color) at the end of the VOF simulation of the 3D vortex in a box test, using the EMFPA
method in combination with the CLCIR (left pictures) and Youngs (right pictures) methods and cubic grids of different sizes (the exact solution is depicted
in semitransparent red color).

4. Conclusions

In this paper we have proposed a novel method for isosurface extraction from a discrete data field, which can be advan-
tageously used for interface reconstruction in volume of fluid methods on arbitrary grids. The performance and versatility
of the new method, which can be applied not only to the simulation of multiphase flows but also in fields such as CFD
visualization and medical imaging, among others, have been assessed through several tests using different grids with poly-
hedral cells, either convex or non-convex, with planar or non-planar faces, where the discrete values assigned to the grid
nodes are obtained from different sources, such as implicit mathematical functions, signed distances to scanned surfaces or
volume fractions obtained from a VOF scheme. The main novelties and advantages of the proposed method with respect to
the existing ones are the following:

1) It maintains the local character of the marching cubes algorithm (only discrete data in the vertices of the considered cell
are involved in the isosurface extraction), which has the advantage of allowing for easy parallelization, and avoids the
J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
24

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579

Table 8
E L1

shape error obtained with the VOF simulation using the EMFPA method in combination with the
CLCIR and Youngs reconstruction methods using different grids. Comparison with results from [6]
and [53]. The convergence orders are included in parenthesis between the corresponding error val-
ues and the averaged execution times, ̃tcpu (s), are included on the right in square brackets.

Grid EMFPA EMFPA isoAdvector Jofre
size CLCIR [̃tcpu] Youngs [̃tcpu] plicRDF [6] et al. [53]

Cubic cells
323 3.21 × 10−3 [0.0088] 3.73 × 10−3 [0.0067] 4.06 × 10−3 4.08 × 10−3

(1.9) (1.8) (1.9) (1.5)
643 8.80 × 10−4 [0.028] 1.10 × 10−3 [0.023] 1.08 × 10−3 1.46 × 10−3

(2.0) (1.9) (2.1) (2.0)
1283 2.14 × 10−4 [0.13] 2.91 × 10−4 [0.11] 2.44 × 10−4 3.53 × 10−4

Tetrahedral cells
323 5.60 × 10−3 [0.018] 6.92 × 10−3 [0.015] 8.43 × 10−3 5.97 × 10−3

(1.9) (1.7) (1.5) (1.9)
643 1.46 × 10−3 [0.063] 2.15 × 10−3 [0.054] 2.88 × 10−3 1.64 × 10−3

(2.1) (1.8) (2.4) (1.6)
1283 3.51 × 10−4 [0.37] 6.00 × 10−4 [0.25] 5.50 × 10−4 5.37 × 10−4

Distorted cubic cells
323 3.64 × 10−3 [0.069] 4.00 × 10−3 [0.062] −− −−

(1.8) (1.7)
643 1.02 × 10−3 [0.23] 1.23 × 10−3 [0.21] −− −−

(2.0) (1.9)
1283 2.60 × 10−4 [0.93] 3.41 × 10−4 [0.84] −− −−
Non-convex irregular polyhedral cells
323 4.66 × 10−3 [0.089] 4.92 × 10−3 [0.076] 5.99 × 10−3 −−

(1.9) (1.8) (2.4)
643 1.29 × 10−3 [0.36] 1.38 × 10−3 [0.31] 1.17 × 10−3 −−

(1.9) (1.9) (2.2)
1283 3.44 × 10−4 [2.19] 3.76 × 10−4 [1.81] 2.59 × 10−4 −−

Fig. 26. PLIC interfaces at t = 1.5 and 3 for the VOF simulation using (a) cubic, (b) tetrahedral and (c) non-convex irregular polyhedral grids with (from the
left to the right) n 	 323, 643 and 1283 cells.
25

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
associated inconsistencies. It is also important to emphasize that this is achieved not only when the algorithm is applied
to the extraction of isosurfaces on cubic cells but also over convex or non-convex arbitrary polyhedral cells.

2) The method not only allows the systematic extraction of isosurfaces in any type of grid, but can also be applied to
generate “lookup tables” like those used in the marching cubes algorithm, but with two important advantages: a) the
tables are consistent and b) they can be obtained not only for cubic cells but for any type of cells used in grids with
predefined cell types. Having “lookup tables” previously generated by using the proposed algorithm would reduce the
calculation time for the extraction of isosurfaces.

A new software that implements the proposed method has been released as open-source [24], allowing the results
presented in the paper to be reproduced.

CRediT authorship contribution statement

Joaquín López: Conceptualization, Methodology, Software, Writing – original draft. Adolfo Esteban: Formal analysis, Re-
sources, Validation. Julio Hernández: Conceptualization, Methodology, Writing – review & editing. Pablo Gómez: Software,
Writing – original draft. Rosendo Zamora: Resources, Visualization. Claudio Zanzi: Investigation, Resources. Félix Faura:
Project administration, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The authors gratefully acknowledge the support of the Spanish Ministerio de Ciencia, Innovación y Universidades - Agen-
cia Estatal de Investigación and FEDER through projects DPI2017-87826-C2-1-P and DPI2017-87826-C2-2-P.

Appendix A. Content of file domain.poly

Part 1 - node list
Node count, 3 dim, no attribute, no boundary marker
8 3 0 0
Node index, node coordinates
1 0.0 0.0 0.0
2 1.0 0.0 0.0
3 1.0 1.0 0.0
4 0.0 1.0 0.0
5 0.0 0.0 1.0
6 1.0 0.0 1.0
7 1.0 1.0 1.0
8 0.0 1.0 1.0
Part 2 - facet list
Facet count, no boundary marker
6 0
Facets
1 # 1 polygon, no hole, no boundary marker
4 1 2 3 4 # front
1
4 5 6 7 8 # back
1
4 1 2 6 5 # bottom
1
4 2 3 7 6 # right
1
4 3 4 8 7 # top
1
4 4 1 5 8 # left
Part 3 - hole list
0 # no hole
Part 4 - region list
0 # no region

Appendix B. Extended CLCIR PLIC reconstruction method

For each interfacial cell, the interface is represented by a plane as

n · x + C = 0, (B.1)
26

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Algorithm 4 Extended CLCIR method.
1: Obtain φ at the grid vertices from Eq. (B.2)
2: for every grid cell do
3: Maximum (φmax) and minimum (φmin) values of φ at the cell vertices
4: if φmax > 0.5 and φmin < 0.5 then
5: Call Algorithm 1 with φ̃ = 0.5 to extract the isosurface
6: if there is only one extracted isopolygon then
7: Mark the grid cell as valid isosurface cell
8: Construct the ‘local triangulated surface’
9: Compute nl from Eq. (B.3)

10: end if
11: end if
12: end for
13: for every interfacial cell do
14: if it is a valid isosurface cell then
15: Construct the ‘extended triangulated surface’ T
16: Compute ne from the equation equivalent to Eq. (B.3)
17: if arccos(ne · nl) < 1.2 rad then
18: n = ne

19: else
20: n = nl

21: end if
22: else
23: Compute n from the LSGIR method
24: end if
25: Compute C to locate the PLIC
26: end for
27: for every interfacial cell marked as valid isosurface cell do
28: Update the vertices of T with the corresponding PLIC centers
29: end for
30: for every interfacial cell marked as valid isosurface cell do
31: Compute nc from the equation equivalent to Eq. (B.3) using the updated T
32: if arccos(nc · n) < 1.2 rad then
33: Update n with nc

34: Compute C to relocate the PLIC
35: end if
36: end for

where the unit-length vector n, normal to the interface and pointing to the fluid, is determined from the PLIC reconstruction
method presented in the Algorithm 4 described below, which has been implemented with the aid of the proposed isosurface
extraction procedure. The PLIC position is defined by the constant C , which is computed so that the interface splits cell �,
of volume V� , into two sub-cells of volumes F (tn)V� and (1 − F (tn))V� . In this work, the CIBRAVE (coupled interpolation-
bracketed analytical volume enforcement) method of López et al. [46] is used to compute C , except when using grids with
cubic cells, for which the efficient analytical method of Scardovelli and Zaleski [54] is used. The implementation of these
two volume conservation enforcement methods is included in the VOFTools package [41,42,48].

The scalar field φ at each instant tn and cell vertex ip of the computational domain is obtained from

φip =
∑

l
Fl(tn)wl∑

l
wl

, (B.2)

where the summations extend to all cells l containing the vertex ip and wl = 1/|xip − xl|, where xip and xl are the position
vectors of the ip vertex and geometric center of cell l, respectively (line 1 in Algorithm 4). For grid cells whose maximum
and minimum interpolated φ values satisfy the condition (line 4) φmin < 0.5 < φmax, the isosurface corresponding to φ̃ = 0.5
is extracted by calling Algorithm 1 (line 5). When the extracted isosurface consists of a single isopolygon (line 6), the grid
cell is marked as a valid isosurface cell (line 7). A ‘local triangulated surface’ is then constructed around the geometric
center of the extracted isosurface in such a way that each triangle is formed by this geometric center and two consecutive
φ̃-vertices (line 8). The unit vector normal to the PLIC interface is obtained as

nl =

Nt∑
t=1

wtnt/
Nt∑

t=1
wt∣∣∣∣∣

Nt∑
t=1

wtnt/
Nt∑

t=1
wt

∣∣∣∣∣
, (B.3)

where the summation extends over the Nt = NIPVISO(1) facets of the triangulated surface, nt is the unit-length vector
normal to the triangular facet t and wt is a weighting factor (line 9). For cubic grids, wt is defined as the ratio of the sine of
27

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
the angle between the two inner edges of each triangular facet t and the product of their lengths [55] (an inner edge joins
a φ̃-vertex with the geometric center of the extracted isosurface), and for the rest of grids, wt = 1. To increase the accuracy
of the PLIC reconstruction, the initial triangulated surface is substituted by an ‘extended triangulated surface’ obtained by
connecting its geometric center to those of the isosurfaces extracted at adjacent cells (line 15) and the corresponding vector
ne is obtained from the equation equivalent to Eq. (B.3) (line 16). If arccos(ne · nl) < 1.2 rad, n = ne and otherwise n = nl

(line 17-21). For interfacial cells that are not valid isosurface cells, situations that frequently occur in regions of low grid
resolution, n is computed using a least-squares gradient interface reconstruction (LSGIR) method [56] (line 23), which can be
considered as an extension of the Youngs’ finite difference approximation for the gradient of the fluid volume fraction [57]
to arbitrary grids [49,58]. Once n is obtained, the constant C is computed to locate the PLIC (line 25). Finally, the vertices
of the extended triangulated surfaces are moved to the corresponding PLIC centers (lines 27-29). For every interfacial cell
which is considered as a valid isosurface cell, nc is computed from the equation equivalent to Eq. (B.3) using the updated
extended triangulated surface (line 31). If arccos(nc ·n) < 1.2 rad, n is updated with nc and the constant C is again computed
to relocate the PLIC (lines 32 to 35).

Appendix C. Nomenclature

C = PLIC interface constant in Eq. (B.1)
E L1

shape = L1 error norm to quantify interface shape accuracy in a VOF simulation

E L1

φ̃
= L1 error norm to quantify the accuracy of isosurface extraction

E L∞
φ̃

= L∞ error norm to quantify the accuracy of isosurface extraction

F = fluid volume fraction in a grid cell
F e = exact fluid volume fraction in a grid cell

h = size of a cubic cell
i = index of each vertex of a face boundary; index of a grid cell

i′ = edge index of intersected cell
ik = index of each φ̃-vertex of an isopolygon
ip = vertex index
iφ̃ = φ̃-vertex index

j = face boundary index
k = isopolygon index
l = index of a grid cell containing a given grid vertex ip

n = number of grid cells
n = unit vector normal to the PLIC interface

nc = unit normal vector averaged on the updated surface T
ne = unit normal vector averaged on surface T
nl = unit normal vector averaged on the local triangulated surface
Nt = number of facets of the triangulated surface
nt = unit vector normal to the triangular facet t
nφ̃ = number of grid cells where the isosurface is extracted

Nφ̃ = number of φ̃-vertices on the grid
O = order of convergence

t = time; triangular facet index
T = extended triangulated surface

t̃cpu = average execution time per time step in the VOF simulation
tend = time at the end of VOF simulation

ti = execution time consumed to identify the grid cells over which the isosurface is extracted
tφ̃ = execution time consumed to extract the isosurface on the grid

u, v, w = Cartesian components of v
v = velocity vector

V� = volume of the grid cell �
w = weighting factor

x, y, z = Cartesian coordinates
x = position vector of a grid point or of a generic point in the PLIC plane

xip = position vector of vertex ip
xl = position vector of the geometric center of grid cell l

xφ̃ = position vector of φ̃-vertex

Greek characters

�t = time interval
28

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
φ = scalar field
φ̃ = isovalue of φ

φip = scalar value assigned to vertex ip

φmax = maximum φ value at cell vertices
φmin = minimum φ value at cell vertices

� = polyhedron; grid cell
χ = indicator function

Arrays

IA(ip) = tag value (1 or 0) assigned to vertex ip

IPV(j, i) = polyhedron vertex with index ip assigned to vertex i of face boundary j
IPVINT(j, i′) = φ̃-vertex index iφ̃ corresponding to the intersected edge i′ of face boundary j

IPVISO(k, ik) = φ̃-vertex index iφ̃ corresponding to vertex ik of isopolygon k
NIPV(j) = number of vertices of each polyhedron face boundary j

NIPVINT(j) = number of intersected edges of face boundary j
NIPVISO(k) = number of φ̃-vertices of isopolygon k

References

[1] T.J.R. Hughes, J.T. Oden, M. Papadrakakis (Eds.), Isogeometric analysis, Comput. Methods Appl. Mech. Eng. 284 (2015) 1–1182 (special issue).
[2] T.J.R. Hughes, J.T. Oden, M. Papadrakakis (Eds.), Isogeometric analysis: progress and challenges, Comput. Methods Appl. Mech. Eng. 316 (2017) 1–1270

(special issue).
[3] J. López, C. Zanzi, P. Gómez, F. Faura, J. Hernández, A new volume of fluid method in three dimensions. Part II: Piecewise-planar interface reconstruction

with cubic-Bézier fit, Int. J. Numer. Methods Fluids 58 (2008) 923–944.
[4] J. López, J. Hernández, Analytical and geometrical tools for 3D volume of fluid methods in general grids, J. Comput. Phys. 227 (2008) 5939–5948.
[5] J. Roenby, H. Bredmose, H. Jasak, A computational method for sharp interface advection, R. Soc. Open Sci. 3 (11) (2016) 160405.
[6] H. Scheufler, J. Roenby, Accurate and efficient surface reconstruction from volume fraction data on general meshes, J. Comput. Phys. 383 (2019) 1–23.
[7] S. Shin, D. Juric, Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity, J.

Comput. Phys. 180 (2002) 427–470.
[8] S. Shin, S.I. Abdel-Khalik, V. Daru, D. Juric, Accurate representation of surface tension using the level contour reconstruction method, J. Comput. Phys.

203 (2005) 493–516.
[9] S. Shin, Computation of the curvature field in numerical simulation of multiphase flow, J. Comput. Phys. 222 (2007) 872–878.

[10] S. Shin, I. Yoon, D. Juric, The Local Front Reconstruction Method for direct simulation of two- and three-dimensional multiphase flows, J. Comput. Phys.
230 (2011) 6605–6646.

[11] S. Shin, J. Chergui, D. Juric, L. Kahouadji, O.K. Matar, R.V. Craster, A hybrid interface tracking - level set technique for multiphase flow with soluble
surfactant, J. Comput. Phys. 359 (2018) 409–435.

[12] W.E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface construction algorithm, Comput. Graph. 21 (1987) 163–168.
[13] R. Wenger, Isosurfaces: Geometry, Topology and Algorithms, A K Peters/CRC Press, Boca Raton, 2013.
[14] T.S. Newman, H. Yi, A survey of the marching cubes algorithm, Comput. Graph. 30 (2006) 854–879.
[15] A. Doi, A. Koide, An efficient method of triangulating equi-valued surfaces by using tetrahedral cells, IEICE Trans. Inf. Syst. E74-D (1991) 214–224.
[16] E. Chernyaev, Marching cubes 33: construction of topologically correct isosurfaces, CERN Report, CN/95-17, 1995.
[17] Y. Zhang, J. Qian, Dual contouring for domains with topology ambiguity, Comput. Methods Appl. Mech. Eng. 217–220 (2012) 34–45.
[18] Y. Zhang, J. Qian, Resolving topology ambiguity for multiple-material domains, Comput. Methods Appl. Mech. Eng. 247–248 (2012) 166–178.
[19] G.L. Masala, B. Golosio, P. Oliva, An improved marching cube algorithm for 3D data segmentation, Comput. Phys. Commun. 184 (2013) 777–782.
[20] J.L. Barrera, K. Maute, Ambiguous phase assignment of discretized 3D geometries in topology optimization, Comput. Methods Appl. Mech. Eng. 369

(2020) 113201.
[21] https://www.openfoam .com.
[22] https://mdx .plm .automation .siemens .com /star-ccm -plus.
[23] M. Ataei, M. Bussmann, V. Shaayegan, F. Costa, S. Han, C.B. Park, NPLIC: a machine learning approach to piecewise linear interface construction,

arXiv:2007.04244, 2020.
[24] J. López, J. Hernández, isoap: A software for isosurface extraction on arbitrary polyhedra, Mendeley Data, V1, https://doi .org /10 .17632 /4rcf98s74c .1.
[25] https://www.gnu .org /licenses /gpl .html.
[26] J. López, J. Hernández, P. Gómez, F. Faura, Non-convex analytical and geometrical tools for volume truncation, initialization and conservation enforce-

ment in VOF methods, J. Comput. Phys. 392 (2019) 666–693.
[27] S. Fuhrmann, M. Kazhdan, M. Goesele, Accurate isosurface interpolation with Hermite data, in: 2015 International Conference on 3D Vision, Lyon, 2015,

pp. 256–263.
[28] A. Henderson, J. Ahrens, C. Law, The ParaView guide, 2004.
[29] J. Bloomenthal, Polygonization of implicit surfaces, Comput. Aided Geom. Des. 5 (1988) 341–355.
[30] B. Wyvill, D. Jevans, Table driven polygonization, in: SIGGRAPH Course Notes (Modeling and Animating with Implicit Surfaces), 1990, pp. 7.1–7.6.
[31] K.K. Delibasis, G.K. Matsopoulos, N.A. Mouravliansky, K.S. Nikita, A novel and efficient implementation of the marching cubes algorithm, Comput. Med.

Imaging Graph. 25 (2001) 343–352.
[32] H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw. 41 (2015) 1–36.
[33] T. Etiene, C. Scheidegger, L.G. Nonato, R.M. Kriby, C.T. Silva, Verifiable visualization for isosurface extraction, IEEE Trans. Vis. Comput. Graph. 15 (2009)

1227–1234.
[34] Y. Livnat, H.W. Shen, C.R. Johnson, A near optimal isosurface extraction algorithm using the span space, IEEE Trans. Vis. Comput. Graph. 2 (1996) 73–84.
[35] S. Raman, R. Wenger, Quality isosurface mesh generation using an extended marching cubes lookup table, Comput. Graph. Forum 27 (2008) 791–798.
[36] C.A. Dietrich, C. Scheidegger, J. Schreiner, J.L.D. Comba, L.P. Nedel, C. Silva, Edge transformations for improving mesh quality of marching cubes, IEEE

Trans. Vis. Comput. Graph. 15 (2008) 150–159.
[37] T. Ju, F. Losasso, S. Schaefer, J. Warren, Dual contouring of Hermite data, in: SIGGRAPH’02, ACM, 2002, pp. 339–346.
29

http://refhub.elsevier.com/S0021-9991(21)00474-5/bib784EB5E390388DD548BDB1C71749DBC2s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib64D6855B3065CB0A714F0E75026DFF20s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib64D6855B3065CB0A714F0E75026DFF20s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibDA4109AFB10FFD3C91BE2788B380A9E9s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibDA4109AFB10FFD3C91BE2788B380A9E9s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibE7E7C32D189504EEC5BCA03563388376s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibB0BFE9A36D0BEC7D459C5D7805331211s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib2F6E4E04250ED98CFC502DB11EFE0A21s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibA623DF9381AC214D426EA1F26898D3C0s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibA623DF9381AC214D426EA1F26898D3C0s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibA409F078B87739DEFD75C52445358D5Ds1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibA409F078B87739DEFD75C52445358D5Ds1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibA2081AC389BB9E56CA9B96AB9D42F457s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib4E9C05D6C1723093A25323362BF515C8s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib4E9C05D6C1723093A25323362BF515C8s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib15E01B4CEE43A053F34A8DF8247DA55As1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib15E01B4CEE43A053F34A8DF8247DA55As1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib7D0727E449F3E3318B17A41A6798A56As1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib856D61240F5B3AEF22A67CB975BAD2BBs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib4BC9C680338221E1BFEC4FAC9F8ECF10s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibAECC2850D6B7C19AB9218E5485DF7434s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib48DF88785D7A5DF91B466022EE41F8B1s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib75754CFE8D1B4B8819094CDC2B29C97As1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib14A69D0358277D9B33AC169BA13849A8s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib8F6EE7317B07AC560C2FDB1659D73300s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib2E012A7DA46C37DE6B4BCA6D17B46EB3s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib2E012A7DA46C37DE6B4BCA6D17B46EB3s1
https://www.openfoam.com
https://mdx.plm.automation.siemens.com/star-ccm-plus
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib08F5E066E6B7258D80EF4F8170A0AFFDs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib08F5E066E6B7258D80EF4F8170A0AFFDs1
https://doi.org/10.17632/4rcf98s74c.1
https://www.gnu.org/licenses/gpl.html
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibACBD283484F08F00E246337A03108A03s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibACBD283484F08F00E246337A03108A03s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibC83D020D03077CB44E468E24D78AC27As1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibC83D020D03077CB44E468E24D78AC27As1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibFACDE99E319122BB00F959F46BBC7B06s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibE129E13E185B1B983FEADD5E558E19EEs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib37981F2B33C27D87BC38E74B62DAC89Ds1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib80F86A2CF18FC2338107A581CBE61F8Fs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib80F86A2CF18FC2338107A581CBE61F8Fs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibEF71E32CAC2CA923579D3DCD80AFC061s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibF73B2092DE1703D0BDB5469E362615CAs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibF73B2092DE1703D0BDB5469E362615CAs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib007835CA71289114541C3EE9D17E091Fs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib5B50BD3D03E79BA3B2863B4E7B1DA40Cs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib3A9C51B104FC93ECCD68D4EBB15926D0s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib3A9C51B104FC93ECCD68D4EBB15926D0s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib178CED09A7D788A57539659596913293s1

J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
[38] J. Schreiner, C. Scheidegger, C. Silva, High-quality extraction of isosurfaces from regular and irregular grids, IEEE Trans. Vis. Comput. Graph. 12 (2006)
1205–1212.

[39] T.K. Deyand, J.A. Levine, Delaunay meshing of isosurfaces, in: SMI’07: Proceedings of the IEEE International Conference on Shape Modeling and Appli-
cations 2007, IEEE Computer Society, 2007, pp. 241–250.

[40] Stanford University Computer Graphics Laboratory, Stanford Bunny, 1994, http://graphics .stanford .edu /data /3Dscanrep/.
[41] J. López, J. Hernández, P. Gómez, F. Faura, VOFTools - a software package of calculation tools for volume of fluid methods using general convex grids,

Comput. Phys. Commun. 223 (2018) 45–54.
[42] J. López, J. Hernández, P. Gómez, C. Zanzi, R. Zamora, VOFTools 3.2: added VOF functionality to initialize the liquid volume fraction in general convex

cells, Comput. Phys. Commun. 245 (2019) 106859.
[43] J. López, P. Gómez, J. Hernández, F. Faura, A two-grid adaptive volume of fluid approach for dendritic solidification, Comput. Fluids 86 (2013) 326–342.
[44] S.J. Cummins, M.M. Francois, D.B. Kothe, Estimating curvature from volume fractions, Comput. Struct. 83 (2005) 425–434.
[45] J. López, C. Zanzi, P. Gómez, R. Zamora, F. Faura, J. Hernández, An improved height function technique for computing interface curvature from volume

fractions, Comput. Methods Appl. Mech. Eng. 198 (2009) 2555–2564.
[46] J. López, P. Gómez, C. Zanzi, J. Hernández, F. Faura, Application of non-convex analytic and geometric tools to a PLIC-VOF method, in: Proceedings of

the ASME 2016 International Mechanical Engineering Congress and Exposition, November 11-17, Phoenix, Arizona, 2016, IMECE2016-67409.
[47] J. López, J. Hernández, P. Gómez, F. Faura, A volume of fluid method based on multidimensional advection and spline interface reconstruction, J.

Comput. Phys. 195 (2004) 718–742.
[48] J. López, J. Hernández, P. Gómez, C. Zanzi, R. Zamora, VOFTools 5: an extension to non-convex geometries of calculation tools for volume of fluid

methods, Comput. Phys. Commun. 252 (2020) 107277.
[49] W.J. Rider, D.B. Kothe, Reconstructing volume tracking, J. Comput. Phys. 141 (1998) 112–152.
[50] P. Liovic, M. Rudman, J-L. Liow, D. Lakehal, D. Kothe, A 3D unsplit-advection volume tracking algorithm with planarity-preserving interface reconstruc-

tion, Comput. Fluids 35 (2006) 1011–1032.
[51] A. Baraldi, M.S. Dodd, A. Ferrante, A mass-conserving volume-of-fluid method: volume tracking and droplet surface-tension in incompressible isotropic

turbulence, Comput. Fluids 96 (2014) 322–337.
[52] R. Comminal, J. Spangenberg, J.H. Hattel, Cellwise conservative unsplit advection for the volume of fluid method, J. Comput. Phys. 283 (2015) 582–608.
[53] L. Jofre, O. Lehmkuhl, J. Castro, A. Oliva, A 3-d volume-of-fluid advection method based on cell-vertex velocities for unstructured meshes, Comput.

Fluids 94 (2014) 14–29.
[54] R. Scardovelli, S. Zaleski, Analytical relations connecting linear interfaces and volume fractions in rectangular grids, J. Comput. Phys. 164 (2000)

228–237.
[55] N. Max, Weights for computing vertex normals from facet normals, J. Graph. Tools 4 (2) (1999) 1–6.
[56] T.J. Barth, P.O. Frederickson, Higher-order solution of the Euler equations on unstructured grids using quadratic reconstruction, in: 28th AIAA Aerosp.

Sci. Meeting, 1990.
[57] D.L. Youngs, An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code, Technical Report 44/92/35, AWRE, 1984.
[58] D.B. Kothe, W.J. Rider, S.J. Mosso, J.S. Brock, J.I. Hochstein, Volume tracking of interfaces having surface tension in two and three dimensions, Technical

Report AIAA 96-0859, AIAA, 1996 [Presented at the 34rd Aerospace Sciences Meeting and Exhibit].
30

http://refhub.elsevier.com/S0021-9991(21)00474-5/bib506859910140213B86CDB997AD8DE930s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib506859910140213B86CDB997AD8DE930s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib70396DFD5FD56BED8217B078299023F5s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib70396DFD5FD56BED8217B078299023F5s1
http://graphics.stanford.edu/data/3Dscanrep/
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib153C4E14CB23C864F6DB2F64D076DA15s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib153C4E14CB23C864F6DB2F64D076DA15s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib57187919A1C909625CA3B6090180EE29s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib57187919A1C909625CA3B6090180EE29s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib52A91D168FF5AFCA20792EADD322BC0Ds1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibAFC60E1015E5FC91ED9DF50098093875s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib1BE4FFB880385873AFAC0DB981A49ED5s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib1BE4FFB880385873AFAC0DB981A49ED5s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibEA54BA36CB497DC77FD57717C4E280F9s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibEA54BA36CB497DC77FD57717C4E280F9s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibDB96DF1A0DE6E0EDA76EC0EE2FD2DF10s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibDB96DF1A0DE6E0EDA76EC0EE2FD2DF10s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibD902DB0727937B3BD2F6C506E79B86AFs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibD902DB0727937B3BD2F6C506E79B86AFs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibB46345E3838414BCFE2CDD5875266050s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibEA0810A375297D600934CF129B8252FEs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibEA0810A375297D600934CF129B8252FEs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibEDEBF465F02E5520D33DE49C19032AEDs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibEDEBF465F02E5520D33DE49C19032AEDs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib8DD704C679EC98F75873AD525D300F4As1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibDF19E44D223C750E8A4E8B5C1DFA16B4s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibDF19E44D223C750E8A4E8B5C1DFA16B4s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib076BDFEA39D010767478D5677A8A3815s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib076BDFEA39D010767478D5677A8A3815s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib130469DCBD623802A2D3C17B468E372As1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib53766DCC4F080FED7FEE6CEB8F08773As1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib53766DCC4F080FED7FEE6CEB8F08773As1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bib806C299B3A6C81AEB37D8F7579E15AE4s1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibA5A2B79D237A1D592940B93FEE6EA1BAs1
http://refhub.elsevier.com/S0021-9991(21)00474-5/bibA5A2B79D237A1D592940B93FEE6EA1BAs1

	A new isosurface extraction method on arbitrary grids
	1 Introduction
	2 Method for isosurface extraction on arbitrary polyhedral cells
	2.1 Cell vertex tagging
	2.2 φ-Vertex insertion
	2.3 φ-Vertex arrangement
	2.4 Positioning the φ-vertices by interpolation
	2.5 Software description

	3 Results and discussion
	3.1 Comparison between the proposed algorithm and the marching cubes algorithm
	3.2 Application to several grid types
	3.2.1 Scalar field given by implicit functions
	3.2.2 Scalar field given by signed distances to scanned surfaces
	3.2.3 Scalar field given by volume fractions
	3D vortex in a box test

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Content of file domain.poly
	Appendix B Extended CLCIR PLIC reconstruction method
	Appendix C Nomenclature
	References

