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The development of interface-capturing methods (such as level-set, phase-field or volume 
of fluid (VOF) methods) for arbitrary 3D grids has further highlighted the need for more 
accurate and efficient interface reconstruction procedures. In this work, we propose a new 
method for the extraction of isosurfaces on arbitrary polyhedra that can be used with 
advantage for this purpose. The isosurface is extracted from volume fractions by a general 
polygon tracing procedure, which is valid for convex or non-convex geometries, even with 
non-planar faces. The proposed method, which can be considered as an extension of the 
marching cubes technique, produces consistent results even for ambiguous situations in 
polyhedra of arbitrary shape. To show the reproducibility of the results presented in this 
work, we provide the open source library isoap, which has been developed to implement 
the proposed method and includes test programs to demonstrate the successful extraction 
of isosurfaces on several grids with polyhedral cells of different types. We present results 
obtained not only for isosurface extraction from discrete volume fractions resulting from 
a volume of fluid method, but also from data sets obtained from implicit mathematical 
functions and signed distances to scanned surfaces. The improvement provided by the 
proposed method for the extraction of isosurfaces in arbitrary grids will also be very useful 
in other fields, such as CFD visualization or medical imaging.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Isosurface extraction is a procedure often used in various applications, such as data visualization and numerous phys-
ical and engineering problems (see, for example, [1,2]). It is increasingly common to develop codes capable of simulating 
different physical phenomena using complex unstructured grids with cells without any predetermined geometric configu-
ration. The complex geometry and topology of this type of grids makes extremely difficult the extraction of isosurfaces to 
visualize or reconstruct material volumes. This difficulty also appears in the simulation of multiphase flows using VOF-type 
methods and arbitrary convex or non-convex grids, when trying to reconstruct the interface using advanced schemes based 
on the extraction of isosurfaces from the distribution of the volume fraction of fluid. Examples of these schemes can be 
found, for example, in [3–6]. López et al. [3] developed several piecewise linear interface calculation (PLIC) methods to 
represent the interface in a given grid cell by a plane whose position is obtained to match the fluid volume contained in 
the cell and its orientation is obtained by a weighted-average procedure. This procedure is based on triangulated surfaces 
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Fig. 1. 2D example of an ambiguous situation produced in the isosurface extraction from discrete data.

constructed from the extraction of generally non-planar isosurfaces corresponding to a 0.5 value of the fluid volume frac-
tion distribution. In particular, the LLCIR (local level-contour interface reconstruction) method constructs the triangulated 
surface by joining the vertices and centroid of the extracted isosurface in the cell. The ELCIR (extended level-contour in-
terface reconstruction) method constructs the triangulated surface by joining the centroid of the isosurface extracted in the 
cell with those of the isosurfaces extracted in adjacent cells. The CLCIR (conservative level-contour interface reconstruction) 
method translates the above mentioned centroids to the corresponding PLIC geometric centers, and the CLC-CBIR (conserva-
tive level-contour cubic-Bézier-based interface reconstruction) improves the orientation obtained from the CLCIR method by 
constructing a cubic-Bézier patch over each triangle of the triangulated surface. Results obtained using these reconstruction 
methods were presented in [3] for cubic grids and results obtained using the CLC-CBIR method were presented in [4] for 
grids with deformed hexahedral cells. Roenby et al. [5] proposed an advanced VOF method, referred to as isoAdvector, based 
on the extraction of isosurfaces corresponding to a non-fixed value of the fluid volume fraction that is adjusted in each cell 
to enforce volume conservation without the need for PLIC reconstructions. Later, Scheufler and Roenby [6] improved the 
isoAdvector method by using reconstructed distances to PLIC interfaces (isoAdvector-plicRDF). Results obtained using these 
isosurface-based methods were presented in [5,6] for general grids with arbitrary polyhedral cells. Shin and Juric [7] also 
used an isosurface extraction technique, referred to as level contour reconstruction, which enables front-tracking methods 
to robustly merge and breakup interfaces in three-dimensional flows (later enhancements and applications can be found in 
references [8–11]).

The following describes the problem posed in this work and discusses the background to the issue. Given a scalar field 
φ :R3 →R and a value φ̃ ∈R, the goal is to extract the set {(x, y, z) : φ(x, y, z) = φ̃}, which is usually called an isosurface. 
The scalar field can be given, for example, by implicit mathematical functions, thresholded data obtained by computer fluid 
dynamics simulations or by computer tomography, which is of particular relevance in medical applications, or unorganized 
points obtained, for example, by scanning systems (which usually requires creating a distance function from the unorganized 
points). In this work, with an approach that could also be used in applications other than the reconstruction of interfaces 
in VOF methods, it will be assumed that φ is defined by discrete data, generally in the form of experimental or computed 
volumetric datasets, available only at the cell vertices of a grid. Therefore, the location of the extracted isosurface points 
must be approximated by interpolation, and the reconstructed isosurface can be represented, for example, with linear edges 
constructed by sequentially connecting the obtained isosurface points ordered by some tracing procedure. It should be 
mentioned that the use of discrete data may introduce ambiguities like that shown in the example of Fig. 1. These situations 
can produce inconsistencies in isosurface extraction and can be solved by increasing the number of sample points.

There are several methods that use polygons to reconstruct isosurfaces from discrete data; among them, the “marching 
cubes” algorithm, originally introduced by Lorensen and Cline [12] for 3D medical data disposed in a cubic grid, is one of 
the best known. This algorithm creates a triangular surface of a given φ̃ level. In an individual cube there are 28 different 
configurations based on the relative values of the φ-sampled data assigned to its 8 vertices with respect to φ̃ . The original 
algorithm proposed in [12] uses two different symmetries to reduce the number of distinctive configurations to only 14 
(see Fig. 3 in [12]), which are stored in a lookup table to speed up execution of the algorithm. However, this reduction 
introduces a topological inconsistency in the vertex data when at least one face of the cube contains two opposite vertices, 
one on one side of the isosurface, and the other on the other side (similar to the ambiguous situation shown in Fig. 1). This 
inconsistency produces isosurfaces that may have holes and may not be a 2-manifold (see the example of Fig. 2). Several 
efforts have been made to avoid this inconsistency and to extend the use of the original marching cubes algorithm to other 
grid types (see, for example, References [13–20]).

Many codes, such as OpenFOAM [21] or STAR-CCM+ [22], are capable of simulating different physical phenomena using 
complex unstructured grids. However, isosurface extraction to visualize or reconstruct material volumes has not been solved 
in a fully satisfactory way for such complex grids. The marching tetrahedra algorithm, originally introduced by Doi and 
Koide [15], is one of the most widely used isosurface extraction algorithms to deal with inconsistencies. It can also be 
2
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Fig. 2. Inconsistency of the original marching cubes algorithm. A combination of cells with (a) configuration 3 of Fig. 3 in [12] and (b) the complementary 
symmetric case produces (c) the hole observed on the bottom picture.

applied to unstructured grids, although with the added cost of an extra step to decompose complex polyhedral cells into 
tetrahedra. A promising neural network-based approach to efficiently reconstruct and visualize interfaces using square, cubic, 
triangular or tetrahedral grids has been recently proposed by Ataei et al. [23] in the context of VOF methods.

In this work, we propose a method, described in Section 2, that avoids the above mentioned inconsistencies by using 
general rules that do not rely on predefined configurations and can be applied to any polyhedral cell, either convex or non-
convex, even with non-planar faces, without using cell decompositions. To the best of our knowledge, there is no similar 
published method that provides this generalization. In Section 3, different tests on several grids are considered to extract 
polygonal isosurfaces from implicit mathematical functions, signed distances to a scanned surface, and volume fraction 
data obtained from a VOF scheme. Results obtained with an extension to arbitrary meshes of the CLCIR method based 
on the proposed isosurface extraction method will be compared with those obtained by other authors. The method has 
been implemented in the isoap library, publicly available in the Mendeley Data repository [24], under the terms of GPLv3 
license [25].

2. Method for isosurface extraction on arbitrary polyhedral cells

The new method proposed in this work aims to efficiently and consistently extract the isosurface corresponding to a 
value φ̃ from the distribution of values φip of the scalar variable φ assigned to every vertex ip of an arbitrary polyhedral 
cell. As already mentioned, the φip values may be obtained, for example, from implicit functions or discrete data such as 
signed distances or volume fractions, among other sources. The isosurface is approximated locally at each cell by a polygonal 
surface, which will be referred to as an isopolygon, using a general polygon tracing procedure. The vertices of the isopolygon 
will be called φ̃-vertices. The following additional considerations will be made:

• the φ̃-vertices are located at cell edges connecting cell vertices with assigned φ values above and below φ̃ ,
3



Algorithm 1 Isosurface extraction.
1: Tag cell vertices
2: Call to Algorithm 2 to insert the φ̃-vertices
3: Call to Algorithm 3 to define the isopolygons by sequentially arranging the φ̃-vertex indices
4: Calculate the position vectors xφ̃ of the φ̃-vertices from interpolation

Table 1
Array IPV of index ip assigned to every vertex i of face 
boundary j of the polyhedra of Fig. 3.

Vertex index Face boundary j

i 1 2 3 4 5 6

Cube of Fig. 3(a)
1 1 2 3 4 1 6
2 2 1 2 3 4 5
3 3 5 6 7 8 8
4 4 6 7 8 5 7

Non-convex pentapyramid of Fig. 3(b)
1 1 1 2 3 4 5
2 5 2 3 4 5 1
3 4 6 6 6 6 6
4 3 − − − − −
5 2 − − − − −

• at most, one φ̃-vertex is inserted at each cell edge, and
• the φ̃-vertices inserted at cell edges are sequentially joined by line segments, forming polygons that may be non-planar.

The extracted polygonal surface for the whole domain can be used in the implementation of advanced PLIC schemes in VOF 
methods (examples of such schemes can be found, for example, in [3]), but also for visualization with conventional graphics-
rendering tools, among other purposes. The construction of the polygonal isosurface may be followed by a decomposition 
procedure to convert each isopolygon into triangles, but this is beyond the scope of the present work. In any case, most 
visualization applications can handle non-planar polygons, as can be seen in the results presented in Section 3.

Algorithm 1 performs the proposed isosurface extraction procedure, which basically consists of the following four steps:

(1) The cell vertices are tagged according to their relative assigned value of φ with respect to φ̃.
(2) A φ̃-vertex is inserted on every cell edge connecting cell vertices with different tags.
(3) The inserted φ̃-vertices are sequentially ordered by a polygon tracing procedure. An anticlockwise order is chosen to 

sequentially connect all the φ̃-vertices when the isosurface is viewed from the outside of the region with positive scalar 
field (reference medium whose surface is represented). This is the most complex step of the algorithm and is somehow 
similar to the capping procedure valid for convex or non-convex regions presented in [26].

(4) The φ̃-vertices are finally positioned on cell edges by interpolation.

Each of these steps is detailed in the next four subsections. The following arrangement of vertices, similar to that used 
in [26], is considered for a polyhedral cell. Let us consider a generic (convex or non-convex) polyhedron � with NIPV( j)
vertices on each face boundary j, either planar or non-planar. Note that a face may be defined by a simple polygon with 
holes, with its non-simply connected interior delimited by two or more face boundaries. The vertices of each face boundary 
are arranged sequentially, so that the vector joining two consecutive vertices leaves the face boundary to the left when 
viewed from outside the polyhedron. The vertex with index ip , assigned to vertex i of face boundary j, is stored using the 
two-dimensional array IPV( j, i) = ip . The notation used in the description of the algorithms considers that the vertices for 
each face boundary are ordered to form a closed loop. More details about the arrangement of vertices of � can be found 
in [26]. As an example, Table 1 presents the arrangement of vertices in the cube and non-convex pentapyramid of Fig. 3, 
showing the index ip assigned to every vertex i of face boundary j (x j,i ≡ xip ). For ease of explanation, many examples of 
surface extraction on these polyhedra will be presented below in this section. Illustrative examples of the application of the 
algorithm to more complex polyhedral cells will be presented throughout the paper.

2.1. Cell vertex tagging

At every cell vertex with index ip , the array element IA(ip) is set equal to 1 if φip > φ̃, or 0 otherwise. From now on, 
cell vertices with assigned IA element values equal to 1 and 0 will be depicted with • and ◦ symbols, respectively, as in 
Fig. 4.
J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
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Fig. 3. Vertex coordinates of (a) a cube and (b) a non-convex pentagonal pyramid.

Fig. 4. Examples of vertex tagging for the cells shown in Fig. 3.
5
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Algorithm 2 Insertion of the φ̃-vertex indices.
1: iφ̃ = 0
2: for face boundaries j intersected by the isosurface do
3: i′ = 0
4: for i = 1 to NIPV( j) do
5: ip1 = IPV( j, i) and ip2 = IPV( j, i + 1)

6: if IA(ip1) �= IA(ip2) then
7: if edge defined by ip1 and ip2 was previously visited then
8: Identify the previously inserted vertex with index iφ̃
9: else

10: Insert a new φ̃-vertex, with index iφ̃ = iφ̃ + 1
11: end if
12: i′ = i′ + 1 and IPVINT( j, i′) = iφ̃
13: if IA(ip2) = 1 then IPVINT( j, i′) is marked as “key vertex”
14: end if
15: end for
16: NIPVINT( j) = i′
17: end for

Fig. 5. Key (red cross) and previous (blue cross) φ̃-vertices for j = 2 (boundary of the shaded face) in the example of Fig. 6(a). The isoedges are depicted in 
green. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

2.2. φ̃-Vertex insertion

Algorithm 2 inserts a φ̃-vertex at each cell edge intersected by the isosurface. To illustrate the procedures used here and 
in the next section, the inserted φ̃-vertices are depicted with × symbols at the middle of the corresponding intersected cell 
edges (the final location of the φ̃-vertices will be obtained from the interpolation procedure described in Section 2.4). Each 
of these intersected edges is defined by the two vertices of the edge, with different IA element values. A cell is considered 
to be intersected by the isosurface if any of its edges is. The procedure goes in sequential order over the NIPV( j) vertices 
of each intersected face boundary j (lines 4-15 in Algorithm 2) to obtain the array IPVINT( j, i′) that stores the index iφ̃
assigned to every intersected edge i′ of j (line 12 in Algorithm 2). The array NIPVINT( j) stores the total number of edges 
of the face boundary j intersected by the isosurface (line 16 in Algorithm 2). Note that each intersected edge is shared by 
two face boundaries, and index iφ̃ is increased by one only if the corresponding edge was not previously visited in this 
sequential procedure over all the intersected face boundaries (line 10 in Algorithm 2). Otherwise, the index iφ̃ identified in 
a previous “visit” to the edge (line 8 in Algorithm 2) is assigned to the array IPVINT.

On every intersected face boundary, the inserted φ̃-vertices will be marked as follows (see the example in Fig. 5):

• A φ̃-vertex inserted at an intersected edge i′ , defined by vertices with indices ip1 = IPV( j, i) and ip2 = IPV( j, i + 1), 
of face boundary j will be marked as a “key φ̃-vertex” if IA(ip2) = 1 (line 13 in Algorithm 2; vertices denoted by red 
cross symbols in the example of Fig. 5).

• If IPVINT( j, i′) stores an index corresponding to a key φ̃-vertex in the face boundary j, the edge joining it to the 
previously inserted φ̃-vertex, whose index is stored as IPVINT( j, i′ − 1) (blue cross symbols in the example of Fig. 5), 
is part of an isopolygon (each of the green lines in the example of Fig. 5). Note that the previous φ̃-vertex of index 
IPVINT( j, i′ − 1) must be a key φ̃-vertex at the other face boundary of the cell that shares the cell edge in which 
this φ̃-vertex is inserted. The array IPVINT is considered to form a closed loop; thus, for i′ = 1, IPVINT( j, i′ − 1) =
IPVINT( j, NIPVINT( j)).
6
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Fig. 6. Examples of the application of the insertion procedure of Algorithm 2 for the two polyhedra of Fig. 3. Symbols • and ◦ denote cell vertices with 
assigned IA element values equal to 1 and 0, respectively, and symbol × denotes φ̃-vertices (the same notation will be used in other figures).

Table 2
Array IPVINT of indices iφ̃ of the vertices inserted on the intersected face bound-

aries of the polyhedra of Fig. 6. The key φ̃-vertices inserted on every face boundary 
are boundboxed.

Intersected edge Face boundary j

index i′ 1 2 3 4 5 6

Cube
1 1 1 2 6 7 4
2 2 3 5 7 3 6
3 − 4 − − − −
4 − 5 − − − −
Non-convex pentapyramid
1 1 4 3 2 1 5
2 2 5 6 6 7 7
3 3 − − − − −
4 4 − − − − −

Fig. 6 illustrates the application of Algorithm 2 to the polyhedra of Fig. 3. Table 2 shows the resulting array IPVINT of 
indices iφ̃ , of the vertices inserted at the intersected face boundaries of the polyhedra (the key φ̃-vertices inserted on each 
face boundary are highlighted in the table by a box).

2.3. φ̃-Vertex arrangement

Algorithm 3 sequentially arranges all the indices of the inserted φ̃-vertices in anticlockwise order when viewed from 
outside the region with positive scalar field (fluid or another medium considered as reference), to form one or more closed 
isopolygons. The isopolygons constructed to approximate the isosurface are identified with index k. The array NIPVISO(k)

is used to store the number of φ̃-vertices on each isopolygon k, and the two-dimensional array IPVISO(k, ik) is used to 
store every φ̃-vertex index iφ̃ assigned to vertex ik of isopolygon k.

The proposed vertex arrangement procedure consists of the following steps:

1. Assign the φ̃-vertex index corresponding to the first vertex of isopolygon k (line 2 in Algorithm 3).
The first vertex (ik = 1) of the first isopolygon (k = 1) is assumed to be the first vertex (iφ̃ = 1) obtained in the 

insertion procedure of Section 2.2 (line 1 in Algorithm 3). Note, however, that a different choice could have been made 
with no loss of generality.

2. Apply the following recursive procedure (lines 3-6 in Algorithm 3):

2.i. For the φ̃-vertex index previously assigned to IPVISO(k, ik), find the intersected face boundary j for which 
IPVINT( j, i′) = IPVISO(k, ik) is a key φ̃-vertex (line 3 in Algorithm 3).

2.ii. If the previous φ̃-vertex index stored at IPVINT( j, i′ − 1) is not coincident with IPVISO(k, 1), increase index ik
by one, assign IPVINT( j, i′ − 1) to IPVISO(k, ik) and go to 2.i (lines 4-6 in Algorithm 3).
7
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Algorithm 3 Arrangement of the φ̃-vertices.
1: k = 1 and iφ̃ = 1
2: ik = 1 and IPVISO(k, ik) = iφ̃
3: Find j and i′ for which IPVINT( j, i′) = IPVISO(k, ik) is a “key φ̃-vertex”
4: if IPVINT( j, i′ − 1) �= IPVISO(k, 1) then
5: ik = ik + 1 and IPVISO(k, ik) = IPVINT( j, i′ − 1)

6: Go to line 3
7: else
8: NIPVISO(k) = ik

9: if there are still unassigned φ̃-vertices then
10: Pick an unassigned φ̃-vertex iφ̃ and k = k + 1
11: Go to line 2 to construct a new isosurface k
12: end if
13: end if

3. If there are still unassigned φ̃-vertices, pick one of them, increase index k by one and go to Step 1 to construct a new 
isopolygon (lines 9-12 in Algorithm 3).

Figs. 7 and 8 illustrate the sequence of application of Algorithm 3 to the examples of Figs. 4(a) and 4(b), respectively. 
The edge of the isopolygons are depicted with thick green lines.

Examples of the construction of multiple isopolygons in polyhedral cells can be seen in Figs. 9(a) (four isopolygons) and 
9(b) (eight isopolygons).

2.4. Positioning the ̃φ-vertices by interpolation

Finally, the position vectors xφ̃ of the φ̃-vertices are obtained from the following linear interpolation (line 4 in Algo-
rithm 1):

xφ̃ = xip2
− φip2

− φ̃

φip2
− φip1

(
xip2

− xip1

)
. (1)

Note that, due to the use of strict inequalities (line 6 in Algorithm 2) to determine the φ values involved in Eq. (1), it 
is guaranteed that φip2

�= φip1
, and, therefore, the divide by zero issue never occurs and the consistency of the isosurface 

extraction is maintained in cases where the isosurface coincides with a face, edge, or vertex of the cell. It should be 
mentioned that high-order interpolations based, for example, on the gradient of φ could have been considered (see, for 
example, Reference [27]), but this will be the subject of future works.

Fig. 10 shows the resulting isopolygons for the cells of Fig. 3 and the φ-node values indicated, which are obtained by 
using the interpolation of Eq. (1) with φ̃ = 0 to compute the position vectors xφ̃ .

2.5. Software description

The implemented algorithm extracts, from discrete data, isosurfaces on arbitrary, convex or non-convex polyhedra, even 
with non-planar face boundaries. The software package [24] also includes a user manual and routines for writing the geom-
etry of polyhedra and isosurfaces in external files. Tests programs are included to extract isosurfaces on single polyhedral 
cells and grids of any type, either from implicit mathematical functions or discrete data such as volume fractions or signed 
distances to scanned surfaces. The implemented routines can be used in FORTRAN and C, with C interfaces. To speed up 
the operations performed over grids, the OpenMP application programming interface is used.

3. Results and discussion

A comparison in terms of consistency and computational efficiency between the proposed and the marching cubes 
algorithms is presented in Section 3.1. Results for isosurfaces constructed from implicit mathematical functions, signed 
distances to scanned surfaces and volume fraction data obtained from a volume of fluid scheme, using several grids with 
convex and non-convex cells, are presented in Section 3.2. The results presented in these sections are visualized using the
ParaView program [28].

3.1. Comparison between the proposed algorithm and the marching cubes algorithm

Fig. 11 shows the isosurfaces extracted using the proposed method for the pre-defined cubic cell configurations consid-
ered in [12]. Note that the results for ambiguous configurations, like those shown in Fig. 1, differ from those obtained in 
[12]. The inconsistency observed in Fig. 2 when using the original marching cubes algorithm [12] is produced because the 
φ̃-vertices lying on the isoedges on an ambiguous cell face are connected using rules that may be different in the two cells
8
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Fig. 7. Construction sequence (from top to bottom and from left to right) of the isopolygon for the example of Fig. 4(a). The cell face boundary involved in 
each step of the sequence is depicted gray filled.

that share the face. Note that the extracted isosurface separates the black circles on the left cell in Fig. 2, but the empty 
circles on the right cell, producing a hole at the shared face. The proposed method avoids this inconsistency because all the 
face boundaries are treated systematically, using the same rules presented in Algorithms 2 and 3. The extracted isopolygons 
obtained using the proposed method always separate the cell vertices with IA values equal to zero, as shown in the exam-
ple of Fig. 12. Bloomenthal [29], Wyvill and Jevans [30] or Delibasis et al. [31], among others, also used a polygon tracing 
technique to avoid these inconsistencies, although only for cubic cells.
9
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Fig. 8. Same isopolygon construction sequence as in Fig. 7, but for the example of Fig. 4(b).

Note that the proposed method relies on general rules which are able to extract isosurfaces on arbitrary polyhedral 
cells, while the marching cubes technique is restricted to a list of standard configurations for cubic cells. For comparison 
purposes, Fig. 13 presents the isosurfaces of two tests described in [19], where the marching cube algorithm with an 
extended modified lookup table with 21 patterns is used. The use of lookup tables in the marching cubes algorithm speeds 
up the surface extraction, making our more general algorithm to be, on average, 1.8 times slower (the tests were run 
for the algorithm in [19] and the proposed algorithm on an iMac Pro (2017) with a 2.3 GHz Intel Xeon W processor 
using the gcc compiler with -O3 compilation option; a ×6 speedup is achieved for the proposed algorithm using the
-fopenmp compilation option and all the available threads). However, our method is not constrained to using a given cell 
geometry. Obviously, to accelerate the CPU-time and obtain a computational efficiency similar to that of the marching cubes 
algorithm, the φ̃-vertex connectivity could have been pre-computed with the proposed method for each of the possible 28

cube configurations and stored in a lookup table for rapid access. The same applies for other cell types.
10



J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
Fig. 9. Examples of multiple isopolygons constructed on (a) a cubic cell and (b) a dodecahedral cell.

Fig. 10. Resulting isopolygons defined by the position vectors xφ̃ computed from the interpolation given by Eq. (1) with φ̃ = 0.

3.2. Application to several grid types

In this section, the following grids in a unit domain are used:

1. Structured grid with cubic cells (Fig. 14(a)).
2. Unstructured grid with tetrahedral cells (Fig. 14(b)), obtained using TetGen [32] (version 1.5) by typing

tetgen option domain.poly

where the content of file domain.poly is included in Appendix A and the values of the parameter option, used to 
generate the grids with different resolutions considered in this work, are shown in Table 3.

3. Structured grid with non-convex cells (Fig. 14(c)), obtained by distorting cubic cells as follows. Each of the eight corner 
vertices of the initial uniform cubic grid of cell size h is randomly moved to the surface of a sphere with radius 0.25h
and centered in the corresponding vertex. Each face of the distorted cell, which is generally non-planar, is triangulated 
by joining its center with two consecutive vertices of the face, resulting in a non-convex polyhedron of 14 vertices and 
24 triangular faces.

4. Unstructured grid with non-convex irregular polyhedral cells (Fig. 14(d)), obtained with the aid of TetGen [32] and
OpenFOAM’s tetgenToFoam and polyDualMesh tools (see [21] for information on how to use these tools) by typing

tetgen option domain.poly
tetgenToFoam domain.1
polyDualMesh 75 -concaveMultiCells
11
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Fig. 11. Results obtained with the proposed method for the 14 pre-defined cell configurations considered in [12].

It should be mentioned that the faces of these cells are generally non-planar. For the VOF simulation carried out in 
Section 3.2.3, each cell face has additionally been triangulated by joining its geometric center with two consecutive face 
vertices.

The isosurfaces extracted from φ values obtained in different ways are presented below for grids with n 	 803 cells, in order 
to demonstrate the versatility of the proposed algorithm.

3.2.1. Scalar field given by implicit functions
The scalar field φ is defined at each cell vertex ip by the following implicit functions:

φip = 0.3252 − (xip − xc)
2 − (yip − yc)

2 − (zip − zc)
2 (2)
12
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Fig. 12. The proposed approach avoids the inconsistency of Fig. 2.

Table 3
Details of the tetrahedral and non-convex irregular polyhedral grids of different resolutions used to assess the proposed 
methods. The numbers of grid vertices and faces obtained after triangulating the faces of the non-convex irregular poly-
hedral grids used in the VOF simulation are included in parenthesis.

Approx. tetgen Grid Grid Grid Avg. vertices Avg. faces
n1/3 option cells, n vertices faces per cell per cell

Tetrahedral grids
20 -pq1.2a0.00031k 7 923 1 831 16 907 4 4
32 -pq1.2a0.00007k 33 010 6 823 69 080 4 4
40 -pq1.2a0.000034k 63 988 12 400 132 550 4 4
64 -pq1.2a0.0000079k 261 051 47 201 534 515 4 4
80 -pq1.2a0.0000039k 513 711 89 902 1 046 584 4 4
128 -pq1.2a0.00000093k 2 094 575 351 874 4 239 540 4 4
160 -pq1.2a0.00000047k 4 138 041 687 618 8 360 839 4 4

Non-convex irregular polyhedral grids
20 -pq1.2a0.000056k 8 077 48 947 56 673 22.8 13.4
32 -pq1.2a0.000012k 32 887 201 401 233 551 23.6 13.8

(434 952) (1 201 904) (37.4) (70.8)
40 -pq1.2a0.0000056k 64 207 396 276 459 748 24.1 14.0
64 -pq1.2a0.00000127k 262 122 1 638 789 1 899 408 24.6 14.3

(3 538 197) (9 819 651) (38.9) (73.9)
80 -pq1.2a0.00000063k 510 961 3 210 090 3 719 548 24.8 14.4

(6 929 638) (19 247 250) (39.3) (74.5)
128 -pq1.2a0.000000147k 2 101 279 13 312 234 15 410 474 25.2 14.6

(28 722 708) (79 847 053) (39.7) (75.5)
160 -pq1.2a0.0000000745k 4 081 207 25 935 456 30 013 624 25.3 14.6

for a sphere,

φip = 0.12 −
{

0.2 −
[
(xip − xc)

2 + (yip − yc)
2
]1/2

}2

− (zip − zc)
2 (3)

for a torus,
13
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Fig. 13. Extracted isosurfaces obtained from the 2003 volumetric data provided by Masala et al. [19] for two tests, using a grid with 1993 cubic cells: (a) 
‘visual’ (φ̃ = 0.5) and (b) ‘net’ (φ̃ = 1.05) tests.

Fig. 14. Cell types: (a) cube, (b) tetrahedron, (c) distorted cube and (d) non-convex irregular polyhedron (note that this cell has non-planar faces).

φip = 1 −
(

xip − xc

0.4

)2

−
(

yip − yc

0.3

)2

−
(

zip − zc

0.2

)2

(4)

for an ellipsoid, and
14
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Fig. 15. Extracted isosurfaces of ̃φ = 0 for the sphere of Eq. (2), obtained using the (a) cubic, (b) tetrahedral, (c) distorted cubic and (d) non-convex irregular 
polyhedral grids with n 	 803.

φip = − 1√
3
(xip − xc) − 1√

3
(yip − yc) − 1√

3
(zip − zc) (5)

for a half-space, where xc = 0.525, yc = 0.464 and zc = 0.516, and xip , yip and zip are the position vector coordinates of 
vertex ip .

Figs. 15, 16 and 17 show the extracted isosurfaces of φ̃ = 0 for the sphere of Eq. (2), the torus of Eq. (3) and the 
ellipsoid of Eq. (4), respectively, obtained using the (a) cubic, (b) tetrahedral, (c) distorted cubic and (d) non-convex irregular 
polyhedral grids.

To quantify the accuracy of the isosurface extraction, the error norms

E L∞
φ̃

= max
(∣∣∣φ(xφ̃ )

∣∣∣) (6)

and

E L1

φ̃
=

∑∣∣∣φ(xφ̃ )

∣∣∣
Nφ̃

(7)

are considered, where the max operator and the summation extend over all the Nφ̃ φ̃-vertices, and φ(xφ̃ ) is obtained from 
Eqs. (2), (3), (4) or (5) by replacing xip , yip and zip with the corresponding coordinates of each extracted φ̃-vertex xφ̃ . 
The values of these error norms, along with the corresponding convergence orders, are shown in Tables 4, 5, 6 and 7 for 
the sphere, torus, ellipsoid and half space, respectively. As expected for the linearly approximated isosurface of Eq. (1)
[33], it can be observed from these table, for any of the grids considered, a second-order convergence for the sphere, torus 
and ellipsoid, and errors on the order of the machine precision for the half-space. The test programs supplied with the 
software package use an interval-based approach to create the list of cells over which the algorithms presented in this 
work are applied (i.e., cells with maximum and minimum scalar values greater and lower, respectively, than φ̃). The user 
could incorporate more sophisticated search approaches, such as those described, for example, in [34]. The execution times 
consumed to identify these cells, ti , and extract the isosurface on them, tφ̃ , have also been included in the tables. It can 
be seen that, for a particular combination of grid type and implicit function, the variation of ti and tφ̃ with respect to the 
total number of grid cells, n, and identified cells, nφ̃ , respectively, is roughly linear (see the example of Fig. 18). The slopes 
of these variations decrease as the number of threads used in the simulation execution increases. Using the maximum 
15
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Fig. 16. Same results as in Fig. 15, but for the torus of Eq. (3).

Fig. 17. Same results as in Fig. 15, but for the ellipsoid of Eq. (4).

number of threads allowed by the processor used for this test, instead of only one, the execution can be speed up in some 
cases by a factor of around 10 for ti and 20 for tφ̃ . Also note that, as expected, for a particular implicit function and grid 
size n, the execution times tend to increase as the grid cell complexity increases (the high complexity of the non-convex 
irregular polyhedral grids becomes evident from the high values of the average number of vertices and faces per cell shown 
in Table 3).

The E L∞
φ̃

values obtained for φip = 1 − (xip − 4)2 − (yip − 4)2 − (zip − 4)2 in a domain 83 using grids with cubic cells 
of size h, are compare in Fig. 19 with those reported in [33] and obtained with six different isosurface extraction codes: 
16



Table 4
E L∞

φ̃
, E L1

φ̃
, convergence order (O) and execution time values for the isosurface corre-

sponding to the sphere of Eq. (2) extracted on different grids.

n nφ̃ E L∞
φ̃

O E L1

φ̃
O ti (μs) tφ̃ (μs)

Cubic cells
203 786 6.25 × 10−4 4.07 × 10−4 354 252
403 3174 1.56 × 10−4 2.0 1.05 × 10−4 2.0 543 317
803 12720 3.91 × 10−5 2.0 2.59 × 10−5 2.0 2965 562
1603 50936 9.77 × 10−6 2.0 6.50 × 10−6 2.0 20022 2153
Tetrahedral cells
203 883 9.14 × 10−3 2.72 × 10−3 308 218
403 3847 2.10 × 10−3 2.1 6.17 × 10−4 2.1 453 272
803 16158 5.17 × 10−4 2.0 1.49 × 10−4 2.0 2656 640
1603 66642 1.35 × 10−4 1.9 3.63 × 10−5 2.0 20842 3123
Distorted cubic cells
203 827 1.30 × 10−3 3.48 × 10−4 274 277
403 3297 3.31 × 10−4 2.0 8.71 × 10−5 2.0 509 549
803 13264 8.47 × 10−5 2.0 2.20 × 10−5 2.0 2866 1830
1603 53030 2.13 × 10−5 2.0 5.48 × 10−6 2.0 22831 7247
Non-convex irregular polyhedral cells
203 555 4.50 × 10−4 1.13 × 10−4 309 273
403 2523 7.20 × 10−5 2.6 2.44 × 10−5 2.2 780 621
803 11033 2.18 × 10−5 1.7 5.70 × 10−6 2.1 5280 3275
1603 45263 5.60 × 10−6 2.0 1.38 × 10−6 2.0 78783 16057

Table 5
Same results as in Table 4, but for the torus of Eq. (3).

n nφ̃ E L∞
φ̃

O E L1

φ̃
O ti (μs) tφ̃ (μs)

Cubic cells
203 460 6.25 × 10−4 3.52 × 10−4 315 226
403 1820 1.56 × 10−4 2.0 8.93 × 10−5 2.0 570 304
803 7296 3.91 × 10−5 2.0 2.13 × 10−5 2.1 2803 415
1603 29256 9.77 × 10−6 2.0 5.47 × 10−6 2.0 20326 1448
Tetrahedral cells
203 498 7.25 × 10−3 1.88 × 10−3 316 209
403 2264 2.21 × 10−3 1.7 4.73 × 10−4 2.0 489 247
803 9643 4.56 × 10−4 2.3 1.14 × 10−4 2.1 2540 493
1603 39439 1.22 × 10−4 1.9 2.79 × 10−5 2.0 20421 1884
Distorted cubic cells
203 468 1.27 × 10−3 2.80 × 10−4 292 220
403 1888 3.25 × 10−4 2.0 6.85 × 10−5 2.0 642 388
803 7856 8.29 × 10−5 2.0 1.69 × 10−5 2.0 2577 1200
1603 30779 2.17 × 10−5 1.9 4.27 × 10−6 2.0 22835 4521
Non-convex irregular polyhedral cells
203 335 2.90 × 10−4 8.23 × 10−5 290 251
403 1543 7.22 × 10−5 2.0 1.87 × 10−5 2.1 679 467
803 6435 1.91 × 10−5 1.9 4.43 × 10−6 2.1 5052 2019
1603 27053 4.98 × 10−6 1.9 1.06 × 10−6 2.1 81421 9710

vtk Marching Cubes [12], SnapMC [35], Macet [36], Dual Contouring [37], Afront [38] and DelIso [39]. As expected, the E L∞
φ̃

values obtained with the proposed method almost coincide with the vtk Marching Cubes and Snap MC codes since both use 
the same linear approximation of Eq. (1). As mentioned in Section 2.4, higher-order interpolations must be used to obtained 
more accurate results.

3.2.2. Scalar field given by signed distances to scanned surfaces
In this section, the scalar field φ is obtained from the scanned surface of two objects. The first corresponds to the 

well-known Stanford bunny [40] and the second to an automobile part available in our laboratory.
The scanned Stanford bunny is available in [40] for download in polygon (PLY) format. We used the file composed by 

35947 vertices and 69451 triangles. The scalar field φ is assigned to each grid point from its signed distance (negative 
inside the surface and positive outside) to the triangulated bunny surface. This signed distance is computed using the
dist3d routine presented in [41,42]. Fig. 20 shows the extracted isosurfaces of φ̃ = 0 for the four grid types considered.

An aluminum alloy A413 automobile part (Fig. 21(a)) was scanned to provide a triangulated surface in PLY format 
composed of 156229 vertices and 312458 triangles (Fig. 21(b)). As in the previous case, the scalar field φ at each grid 
point is obtained from the signed distance to the triangulated surface. Fig. 22 shows the extracted isosurfaces of φ̃ = 0 for 
J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
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Fig. 18. Execution times ti (top picture) and tφ̃ (bottom picture) as a function of n and nφ̃ , respectively, for the sphere of Eq. (2) and tetrahedral grids of 
different sizes.

Fig. 19. Error E L∞
φ̃

as a function of cell size, h, obtained for a cubic grid and φip = 1 − (xip − 4)2 − (yip − 4)2 − (zip − 4)2, in a domain of size 83. Comparison 
of the proposed method with different isosurface extraction methods.
18
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Table 6
Same results as in Table 4, but for the ellipsoid of Eq. (4).

n nφ̃ E L∞
φ̃

O E L1

φ̃
O ti (μs) tφ̃ (μs)

Cubic cells
203 664 1.56 × 10−2 6.76 × 10−3 365 269
403 2616 3.91 × 10−3 2.0 1.70 × 10−3 2.0 584 305
803 10436 9.77 × 10−4 2.0 4.29 × 10−4 2.0 2265 490
1603 41808 2.44 × 10−4 2.0 1.07 × 10−4 2.0 19210 1717
Tetrahedral cells
203 707 1.75 × 10−1 3.71 × 10−2 337 236
403 3227 4.26 × 10−2 2.0 9.57 × 10−3 2.0 395 260
803 13646 1.07 × 10−2 2.0 2.25 × 10−3 2.1 2763 573
1603 55745 3.18 × 10−3 1.8 5.47 × 10−4 2.0 18920 2399
Distorted cubic cells
203 697 2.98 × 10−2 5.44 × 10−3 248 238
403 2762 7.83 × 10−3 1.9 1.32 × 10−3 2.0 583 443
803 10939 2.04 × 10−3 1.9 3.32 × 10−4 2.0 2615 1536
1603 43858 5.43 × 10−4 1.9 8.39 × 10−5 2.0 21396 6008
Non-convex irregular polyhedral cells
203 478 8.59 × 10−3 1.69 × 10−3 307 278
403 2144 1.75 × 10−3 2.3 3.68 × 10−4 2.2 803 580
803 9203 4.50 × 10−4 2.0 8.65 × 10−5 2.1 5143 2734
1603 38088 1.13 × 10−4 2.0 2.08 × 10−5 2.1 77255 13453

Table 7
Same results as in Table 4, but for the half-space of Eq. (5) (obviously, the 
convergence orders are dropped).

n nφ̃ E L∞
φ̃

E L1
φ̃

ti (μs) tφ̃ (μs)

Cubic cells
203 898 5.55 × 10−17 8.24 × 10−18 323 273
403 3598 5.55 × 10−17 8.05 × 10−18 596 296
803 14398 5.55 × 10−17 8.73 × 10−18 2540 578
1603 57598 6.25 × 10−17 9.71 × 10−18 21066 2130
Tetrahedral cells
203 995 1.11 × 10−16 2.25 × 10−17 334 235
403 4041 1.11 × 10−16 2.30 × 10−17 570 273
803 16442 1.11 × 10−16 2.41 × 10−17 2888 656
1603 66130 1.67 × 10−16 2.39 × 10−17 21560 2792
Distorted cubic cells
203 903 1.39 × 10−16 2.37 × 10−17 265 289
403 3603 1.67 × 10−16 2.38 × 10−17 576 511
803 14401 1.67 × 10−16 2.38 × 10−17 3178 1494
1603 57605 1.77 × 10−16 2.41 × 10−17 23151 6443
Non-convex irregular polyhedral cells
203 660 1.11 × 10−16 2.27 × 10−17 300 273
403 2729 1.63 × 10−16 2.43 × 10−17 730 629
803 11106 1.67 × 10−16 2.40 × 10−17 5329 3429
1603 45499 1.67 × 10−16 2.40 × 10−17 79377 16192

the four grid types considered. The resolution of the tetrahedral grid was increased to N = 128 to avoid losing too much 
detail.

It should be mentioned that the accuracy of the extraction of isosurfaces using signed distances to scanned surfaces 
obviously depends, apart from the factors discussed in the previous section, on the surface scanner and signed distances 
accuracies. A detailed assessment of the procedure used in this work to computed signed distances can be found in [43].

3.2.3. Scalar field given by volume fractions
For dealing with the complex interfacial shapes that typically arise in simulations of multiphase fluid flows using VOF 

methods, the evolution equation for an indicator function χ(x, t), which is equal to 1 if x is inside the fluid and 0 otherwise,

∂χ(x, t)

∂t
+ ∇ · [vχ(x, t)] − χ(x, t)∇ · v = 0, (8)

is integrated over a given cell, �, of volume V� , and the time interval �t = tn+1 − tn, to obtain, at each time step,
19
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Fig. 20. Same results as in Fig. 15, but for the scanned Stanford bunny.

Fig. 21. Aluminum alloy A413 automobile part: (a) real and (b) scanned.

F (tn+1) = F (tn) − 1

V�

tn+1∫
tn

∫
�

∇ · [vχ(x, t)] dx dt

+ F (tn+1) − F (tn)

2V�

tn+1∫
tn

∫
�

∇ · v dx dt,

(9)

where F is a discretized version of function χ , whose value in each cell of the computational grid is the fraction of the 
cell occupied by the fluid. In the test described below, a spherical fluid volume is subjected to advection in a prescribed 
20
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Fig. 22. Same results as in Fig. 15, but for the scanned automobile part of Fig. 21(b). To avoid losing too much detail, the grid resolution for the tetrahedral 
grid has been increased from 803 to 1283 cells.

velocity field. At the initial time step, F (tn=0) is obtained in each cell using a grid refinement procedure [44,45], extended 
to non-convex grid cells in [26], for a spherical fluid body of radius 0.15 and centered at (0.5, 0.75, 0.25) in a unit box 
domain. For subsequent time steps, F (tn+1) is obtained from the solution of Eq. (9) assuming that the interface was previ-
ously reconstructed at the instant tn using an extension to arbitrary grids of the CLCIR method proposed in [3], which has 
been implemented with the aid of the isosurface extraction procedure presented in this work to estimate the PLIC interface 
orientation on every cell where 10−12 < F (tn) < (1 − 10−12), and is described in Appendix B. The first integral in Eq. (9)
represents the net volume of fluid advected out of the cell and will be solved geometrically using the extension to 3D [46]
of the edge-matched flux polygon advection (EMFPA) method proposed by López et al. [47], which avoids the over/under-
lapping between flux regions constructed at cell faces with common vertices. The repeated intersection operations required 
by this method over polyhedra that are generally non-convex, even with self-intersecting faces, are performed with the aid 
of the tools proposed in [26,48], thus avoiding the use of decomposition techniques. Note that the last term in Eq. (9) must 
be null if the velocity vector field v is discretely solenoidal.

3D vortex in a box test The solenoidal velocity field v = (u, v, w), defined by

u = sin2(πx) sin(2π y) cos(πt/3)

v = − sin2(π y) sin(2πx) cos(πt/3)

w =
{

1 − 2
[
(x − 0.5)2 + (y − 0.5)2

]1/2
}2

cos(πt/3),

(10)

corresponds to a combination of the classical vortex-in-a-box test of Rider and Kothe [49] with a laminar pipe flow in the 
z-direction, as in the work of Liovic et al. [50] (variants of this single-vortex test can also be found, for example, in [51,52], 
among many other references). Figs. 23 and 24 show the extracted isosurfaces for φ̃ = 0.5 at different instants using the 
cubic and tetrahedral grids, and the distorted cubic and non-convex irregular polyhedral grids, respectively, with n 	 803

cells. Note that the fluid interface reaches its maximum deformation at instant 1.5 and should return to its initial state at 
instant 3 (any visual difference with the spherical body shape at t = 0 is due to numerical errors in the solution of Eq. (9)).
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Fig. 23. Extracted isosurfaces for φ̃ = 0.5 at different instants in the 3D vortex in a box test, using the EMFPA and CLCIR methods and the (a) cubic and (b) 
tetrahedral grids with n 	 803.

To assess the performance of the implemented algorithms, results obtained using grids of different types and resolutions 
are compared with the exact solution at the end of the VOF simulation (t = tend). Fig. 25 shows an example of this compar-
ison (the pictures are depicted in semitransparent colors to better see the comparison) for cubic grids. The EMFPA method 
was used in combination with two PLIC methods: the CLCIR method (left pictures) and the well-known method of Youngs 
(right pictures). Although some differences can be qualitatively perceived from the figure, especially for the coarser grids, 
the quantitative differences can be estimated using the following error norm:

E L1
shape =

n∑
i=1

V�i

∣∣F e
i (tend) − Fi(tend)

∣∣ , (11)

where F e
i (tend) and Fi(tend) are, respectively, the exact and computed fluid volume fraction in cell i at instant tend = 3. 

It should be mentioned that results obtained using unstructured grids are very scarce in the literature, and the few that 
can be found do not allow a rigorous comparison due to the lack of information about the grid generation. Scheufler and 
Roenby [6] and Jofre et al. [53] provide results on tetrahedral grids with similar number of cells, although not generated 
in the same way. Results on unstructured polyhedral grids for this test can also be found in [6], although details on the 
degree of complexity of the polyhedral cells are not provided. As mentioned, detailed information about the grids used 
in this work is included at the beginning of Section 3.2, which will allow for more rigorous future comparisons. Table 8
compares results obtained in this work using a Courant-Friedrich-Levy (CFL) number equal to 0.5 and grids of n 	 323, 643

and 1283 cells, with those obtained in [6] using an improved version (isoAdvector-plicRDF, which reconstructs a distance 
function from PLIC interfaces) of the method based on isosurface extractions proposed by Roenby et al. [5], and with those 
22
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Fig. 24. Same results as in Fig. 23, but using the (a) distorted cubic and (b) non-convex irregular polyhedral grids with n 	 803.

obtained in [53] using an EMFPA-like advection method combined with the LVIRA (least-squares volume-of-fluid interface 
reconstruction algorithm) method. The time step �t is determined at each instant t from

�t = min

[
min(hxi )

max(u j)
,

min(hyi )

max(v j)
,

min(hzi )

max(w j)

]
CFL (12)

where the min and max operators inside the square brackets involve, respectively, all the cells and faces for cubic grids 
and only cells and faces near the interface for unstructured grids; hxi , hyi and hzi are the sizes along the corresponding 
coordinate axis of the minimum-size rectangular parallelepiped that encloses cell i (note that, for cubic grids with n cells, 
min(hxi ) = min(hyi ) = min(hzi ) = 1/n1/3); and u j , v j and w j are the components of the velocity vector at the center of grid 
face j. The average execution time per time step, ̃tcpu, is also included in the table (execution times can also be found in 
[6] for this test, although using different resources to execute the simulations, therefore these values should only be used 
as an approximated reference). For all the grids used, the results obtained with EMFPA-CLCIR methods show second-order 
convergence and lower error values than those obtained using the EMFPA and Youngs methods, although with a slightly 
higher CPU time consumed. For the cubic and tetrahedral grids, the EMFPA-CLCIR methods also show error values lower 
than those obtained in [6] and [53]. For the non-convex irregular polyhedral grids, the isoAdvector-plicRDF method provides 
lower errors on grids with n 	 643 and 1283. Fig. 26 shows the PLIC interfaces at t = 1.5 and 3 using the cubic, tetrahedral 
and non-convex irregular polyhedral grids. A visual comparison with the results obtained using the isoAdvector-plicRDF 
method can be seen in Fig. 13 of reference [6]. It is clear from this comparison that the unstructured grids used in [6] are 
not identical to those used in this work and therefore, as mentioned above, conclusions about this comparison must be 
viewed with certain reservations.
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Fig. 25. Extracted isosurfaces for ̃φ = 0.5 (semitransparent light blue color) at the end of the VOF simulation of the 3D vortex in a box test, using the EMFPA 
method in combination with the CLCIR (left pictures) and Youngs (right pictures) methods and cubic grids of different sizes (the exact solution is depicted 
in semitransparent red color).

4. Conclusions

In this paper we have proposed a novel method for isosurface extraction from a discrete data field, which can be advan-
tageously used for interface reconstruction in volume of fluid methods on arbitrary grids. The performance and versatility 
of the new method, which can be applied not only to the simulation of multiphase flows but also in fields such as CFD 
visualization and medical imaging, among others, have been assessed through several tests using different grids with poly-
hedral cells, either convex or non-convex, with planar or non-planar faces, where the discrete values assigned to the grid 
nodes are obtained from different sources, such as implicit mathematical functions, signed distances to scanned surfaces or 
volume fractions obtained from a VOF scheme. The main novelties and advantages of the proposed method with respect to 
the existing ones are the following:

1) It maintains the local character of the marching cubes algorithm (only discrete data in the vertices of the considered cell 
are involved in the isosurface extraction), which has the advantage of allowing for easy parallelization, and avoids the 
J. López, A. Esteban, J. Hernández et al. Journal of Computational Physics 444 (2021) 110579
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Table 8
E L1

shape error obtained with the VOF simulation using the EMFPA method in combination with the 
CLCIR and Youngs reconstruction methods using different grids. Comparison with results from [6]
and [53]. The convergence orders are included in parenthesis between the corresponding error val-
ues and the averaged execution times, ̃tcpu (s), are included on the right in square brackets.

Grid EMFPA EMFPA isoAdvector Jofre
size CLCIR [̃tcpu] Youngs [̃tcpu] plicRDF [6] et al. [53]

Cubic cells
323 3.21 × 10−3 [0.0088] 3.73 × 10−3 [0.0067] 4.06 × 10−3 4.08 × 10−3

(1.9) (1.8) (1.9) (1.5)
643 8.80 × 10−4 [0.028] 1.10 × 10−3 [0.023] 1.08 × 10−3 1.46 × 10−3

(2.0) (1.9) (2.1) (2.0)
1283 2.14 × 10−4 [0.13] 2.91 × 10−4 [0.11] 2.44 × 10−4 3.53 × 10−4

Tetrahedral cells
323 5.60 × 10−3 [0.018] 6.92 × 10−3 [0.015] 8.43 × 10−3 5.97 × 10−3

(1.9) (1.7) (1.5) (1.9)
643 1.46 × 10−3 [0.063] 2.15 × 10−3 [0.054] 2.88 × 10−3 1.64 × 10−3

(2.1) (1.8) (2.4) (1.6)
1283 3.51 × 10−4 [0.37] 6.00 × 10−4 [0.25] 5.50 × 10−4 5.37 × 10−4

Distorted cubic cells
323 3.64 × 10−3 [0.069] 4.00 × 10−3 [0.062] −− −−

(1.8) (1.7)
643 1.02 × 10−3 [0.23] 1.23 × 10−3 [0.21] −− −−

(2.0) (1.9)
1283 2.60 × 10−4 [0.93] 3.41 × 10−4 [0.84] −− −−
Non-convex irregular polyhedral cells
323 4.66 × 10−3 [0.089] 4.92 × 10−3 [0.076] 5.99 × 10−3 −−

(1.9) (1.8) (2.4)
643 1.29 × 10−3 [0.36] 1.38 × 10−3 [0.31] 1.17 × 10−3 −−

(1.9) (1.9) (2.2)
1283 3.44 × 10−4 [2.19] 3.76 × 10−4 [1.81] 2.59 × 10−4 −−

Fig. 26. PLIC interfaces at t = 1.5 and 3 for the VOF simulation using (a) cubic, (b) tetrahedral and (c) non-convex irregular polyhedral grids with (from the 
left to the right) n 	 323, 643 and 1283 cells.
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associated inconsistencies. It is also important to emphasize that this is achieved not only when the algorithm is applied 
to the extraction of isosurfaces on cubic cells but also over convex or non-convex arbitrary polyhedral cells.

2) The method not only allows the systematic extraction of isosurfaces in any type of grid, but can also be applied to 
generate “lookup tables” like those used in the marching cubes algorithm, but with two important advantages: a) the 
tables are consistent and b) they can be obtained not only for cubic cells but for any type of cells used in grids with 
predefined cell types. Having “lookup tables” previously generated by using the proposed algorithm would reduce the 
calculation time for the extraction of isosurfaces.

A new software that implements the proposed method has been released as open-source [24], allowing the results 
presented in the paper to be reproduced.
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Appendix A. Content of file domain.poly

# Part 1 - node list
# Node count, 3 dim, no attribute, no boundary marker
8 3 0 0
# Node index, node coordinates
1 0.0 0.0 0.0
2 1.0 0.0 0.0
3 1.0 1.0 0.0
4 0.0 1.0 0.0
5 0.0 0.0 1.0
6 1.0 0.0 1.0
7 1.0 1.0 1.0
8 0.0 1.0 1.0
# Part 2 - facet list
# Facet count, no boundary marker
6 0
# Facets
1 # 1 polygon, no hole, no boundary marker
4 1 2 3 4 # front
1
4 5 6 7 8 # back
1
4 1 2 6 5 # bottom
1
4 2 3 7 6 # right
1
4 3 4 8 7 # top
1
4 4 1 5 8 # left
# Part 3 - hole list
0 # no hole
# Part 4 - region list
0 # no region

Appendix B. Extended CLCIR PLIC reconstruction method

For each interfacial cell, the interface is represented by a plane as

n · x + C = 0, (B.1)
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Algorithm 4 Extended CLCIR method.
1: Obtain φ at the grid vertices from Eq. (B.2)
2: for every grid cell do
3: Maximum (φmax) and minimum (φmin) values of φ at the cell vertices
4: if φmax > 0.5 and φmin < 0.5 then
5: Call Algorithm 1 with φ̃ = 0.5 to extract the isosurface
6: if there is only one extracted isopolygon then
7: Mark the grid cell as valid isosurface cell
8: Construct the ‘local triangulated surface’
9: Compute nl from Eq. (B.3)

10: end if
11: end if
12: end for
13: for every interfacial cell do
14: if it is a valid isosurface cell then
15: Construct the ‘extended triangulated surface’ T
16: Compute ne from the equation equivalent to Eq. (B.3)
17: if arccos(ne · nl) < 1.2 rad then
18: n = ne

19: else
20: n = nl

21: end if
22: else
23: Compute n from the LSGIR method
24: end if
25: Compute C to locate the PLIC
26: end for
27: for every interfacial cell marked as valid isosurface cell do
28: Update the vertices of T with the corresponding PLIC centers
29: end for
30: for every interfacial cell marked as valid isosurface cell do
31: Compute nc from the equation equivalent to Eq. (B.3) using the updated T
32: if arccos(nc · n) < 1.2 rad then
33: Update n with nc

34: Compute C to relocate the PLIC
35: end if
36: end for

where the unit-length vector n, normal to the interface and pointing to the fluid, is determined from the PLIC reconstruction 
method presented in the Algorithm 4 described below, which has been implemented with the aid of the proposed isosurface 
extraction procedure. The PLIC position is defined by the constant C , which is computed so that the interface splits cell �, 
of volume V� , into two sub-cells of volumes F (tn)V� and (1 − F (tn))V� . In this work, the CIBRAVE (coupled interpolation-
bracketed analytical volume enforcement) method of López et al. [46] is used to compute C , except when using grids with 
cubic cells, for which the efficient analytical method of Scardovelli and Zaleski [54] is used. The implementation of these 
two volume conservation enforcement methods is included in the VOFTools package [41,42,48].

The scalar field φ at each instant tn and cell vertex ip of the computational domain is obtained from

φip =
∑

l
Fl(tn)wl∑

l
wl

, (B.2)

where the summations extend to all cells l containing the vertex ip and wl = 1/|xip − xl|, where xip and xl are the position 
vectors of the ip vertex and geometric center of cell l, respectively (line 1 in Algorithm 4). For grid cells whose maximum 
and minimum interpolated φ values satisfy the condition (line 4) φmin < 0.5 < φmax, the isosurface corresponding to φ̃ = 0.5
is extracted by calling Algorithm 1 (line 5). When the extracted isosurface consists of a single isopolygon (line 6), the grid 
cell is marked as a valid isosurface cell (line 7). A ‘local triangulated surface’ is then constructed around the geometric 
center of the extracted isosurface in such a way that each triangle is formed by this geometric center and two consecutive 
φ̃-vertices (line 8). The unit vector normal to the PLIC interface is obtained as

nl =

Nt∑
t=1

wtnt/
Nt∑

t=1
wt∣∣∣∣∣

Nt∑
t=1

wtnt/
Nt∑

t=1
wt

∣∣∣∣∣
, (B.3)

where the summation extends over the Nt = NIPVISO(1) facets of the triangulated surface, nt is the unit-length vector 
normal to the triangular facet t and wt is a weighting factor (line 9). For cubic grids, wt is defined as the ratio of the sine of 
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the angle between the two inner edges of each triangular facet t and the product of their lengths [55] (an inner edge joins 
a φ̃-vertex with the geometric center of the extracted isosurface), and for the rest of grids, wt = 1. To increase the accuracy 
of the PLIC reconstruction, the initial triangulated surface is substituted by an ‘extended triangulated surface’ obtained by 
connecting its geometric center to those of the isosurfaces extracted at adjacent cells (line 15) and the corresponding vector 
ne is obtained from the equation equivalent to Eq. (B.3) (line 16). If arccos(ne · nl) < 1.2 rad, n = ne and otherwise n = nl

(line 17-21). For interfacial cells that are not valid isosurface cells, situations that frequently occur in regions of low grid 
resolution, n is computed using a least-squares gradient interface reconstruction (LSGIR) method [56] (line 23), which can be 
considered as an extension of the Youngs’ finite difference approximation for the gradient of the fluid volume fraction [57]
to arbitrary grids [49,58]. Once n is obtained, the constant C is computed to locate the PLIC (line 25). Finally, the vertices 
of the extended triangulated surfaces are moved to the corresponding PLIC centers (lines 27-29). For every interfacial cell 
which is considered as a valid isosurface cell, nc is computed from the equation equivalent to Eq. (B.3) using the updated 
extended triangulated surface (line 31). If arccos(nc ·n) < 1.2 rad, n is updated with nc and the constant C is again computed 
to relocate the PLIC (lines 32 to 35).

Appendix C. Nomenclature

C = PLIC interface constant in Eq. (B.1)
E L1

shape = L1 error norm to quantify interface shape accuracy in a VOF simulation

E L1

φ̃
= L1 error norm to quantify the accuracy of isosurface extraction

E L∞
φ̃

= L∞ error norm to quantify the accuracy of isosurface extraction

F = fluid volume fraction in a grid cell
F e = exact fluid volume fraction in a grid cell

h = size of a cubic cell
i = index of each vertex of a face boundary; index of a grid cell

i′ = edge index of intersected cell
ik = index of each φ̃-vertex of an isopolygon
ip = vertex index
iφ̃ = φ̃-vertex index

j = face boundary index
k = isopolygon index
l = index of a grid cell containing a given grid vertex ip

n = number of grid cells
n = unit vector normal to the PLIC interface

nc = unit normal vector averaged on the updated surface T
ne = unit normal vector averaged on surface T
nl = unit normal vector averaged on the local triangulated surface
Nt = number of facets of the triangulated surface
nt = unit vector normal to the triangular facet t
nφ̃ = number of grid cells where the isosurface is extracted

Nφ̃ = number of φ̃-vertices on the grid
O = order of convergence

t = time; triangular facet index
T = extended triangulated surface

t̃cpu = average execution time per time step in the VOF simulation
tend = time at the end of VOF simulation

ti = execution time consumed to identify the grid cells over which the isosurface is extracted
tφ̃ = execution time consumed to extract the isosurface on the grid

u, v, w = Cartesian components of v
v = velocity vector

V� = volume of the grid cell �
w = weighting factor

x, y, z = Cartesian coordinates
x = position vector of a grid point or of a generic point in the PLIC plane

xip = position vector of vertex ip
xl = position vector of the geometric center of grid cell l

xφ̃ = position vector of φ̃-vertex

Greek characters

�t = time interval
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φ = scalar field
φ̃ = isovalue of φ

φip = scalar value assigned to vertex ip

φmax = maximum φ value at cell vertices
φmin = minimum φ value at cell vertices

� = polyhedron; grid cell
χ = indicator function

Arrays

IA(ip) = tag value (1 or 0) assigned to vertex ip

IPV( j, i) = polyhedron vertex with index ip assigned to vertex i of face boundary j
IPVINT( j, i′) = φ̃-vertex index iφ̃ corresponding to the intersected edge i′ of face boundary j

IPVISO(k, ik) = φ̃-vertex index iφ̃ corresponding to vertex ik of isopolygon k
NIPV( j) = number of vertices of each polyhedron face boundary j

NIPVINT( j) = number of intersected edges of face boundary j
NIPVISO(k) = number of φ̃-vertices of isopolygon k
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