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On the Entanglement Entropy in Gaussian cMERA

J. J. Fernández-Melgarejo and J. Molina-Vilaplana*

The continuous Multi Scale Entanglement Renormalization Anstaz (cMERA)
consists of a variational method which carries out a real space
renormalization scheme on the wavefunctionals of quantum field theories. In
this work we calculate the entanglement entropy of the half space for a free
scalar theory through a Gaussian cMERA circuit. We obtain the correct
entropy written in terms of the optimized cMERA variational parameter, the
local density of disentanglers. Accordingly, using the entanglement entropy
production per unit scale, we study local areas in the bulk of the tensor
network in terms of the differential entanglement generated along the cMERA
flow. This result spurs us to establish an explicit relation between the cMERA
variational parameter and the radial component of a dual AdS geometry
through the Ryu-Takayanagi formula. Finally, we argue that the entanglement
entropy for the half space can be written as an integral along the
renormalization scale whose measure is given by the Fisher information
metric of the cMERA circuit. Consequently, a straightforward relation between
AdS geometry and the Fisher information metric is also established.

1. Introduction

Entanglement is a key feature to characterize quantum systems.
The best known measure of it, entanglement entropy, has been
used in a wide range of fields such as condensed matter physics,
high energy theory and gravitational physics (see [1] and refer-
ences therein). Given a system described by a quantum state,
for an observer having access only to a subregion A of the to-
tal system, all physical predictions are given in terms of the re-
duced density matrix 𝜌A. The entanglement entropy measures
the amount of missing information about the total system for
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this observer, and is given by the vonNeu-
mann entropy of the reduced density ma-
trix 𝜌A, e.g.,

SA = −TrA 𝜌A log 𝜌A. (1)

In quantum field theory (QFT), com-
puting SA has shown to be an extraordi-
narily difficult task. Noteworthily, in the
context of the AdS/CFT[2–4] the entan-
glement entropy can be computed using
one of the central entries in the holo-
graphic dictionary, the RyuTakayanagi
formula,[5,6]

SA =
Area(𝛾A)

4G(d+2)
N

, (2)

which quantifies the entanglement en-
tropy SA of a region A in a (d + 1)-
QFT admitting a (d + 2)-gravity dual.

Here, 𝛾A is a codimension-2 static minimal surface in AdS(d+2)
anchored to the boundary of the region A.
The holographic formula for the entanglement entropy (2) al-

lows to compute the entanglement entropy in a QFT from the
dual bulk geometry. Being the AdS/CFT a duality between the-
ories, it seems reasonable to think that analyzing the entangle-
ment structure of concrete states in a QFT, one would be able
to infer the dual bulk geometries related to these states. Interest-
ingly, this strategy has been graciously revealed in terms of tensor
networks, concretely in terms of the Multi-scale Entanglement
Renormalization Ansatz (MERA).[7] A MERA tensor network,[8]

implements a real space renormalization group on the wavefunc-
tion of a quantum many body system. A continuous version of
MERA (cMERA) has been proposed for free field theories[9,10]

and more recently for interacting field theories.[11–14] In [10], to
make the connection of cMERA with the AdS/CFTmore precise,
authors proposed to think in terms of the Fisher information
metric defined via quantum distances. Namely, they define the
holographic radial component of a dual metric by considering
the overlap between states that infinitesimally differ in the renor-
malization scale of cMERA. However, a more refined proposal
would require to define local areas in the bulk of the tensor net-
work in terms of the differential entanglement generated along
the cMERA flow, and see if these local areas can be mapped into
minimal areas in AdS spacetimes.
Continuing this line of thought, in this paper we have obtained

the entanglement entropy for the half-space of a free scalar the-
ory in a Gaussian cMERA tensor network as a function of the
local density of disentanglers, the variational parameter defining
the tensor network. This result, which was conjectured in [10]
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based on an estimation of the entropy in the discrete version
of MERA, spurs us to broaden our analysis when other (non-
)Gaussian cMERA circuits with additional disentanglers are con-
sidered. In particular, we observe that the entanglement entropy
must be computed in cMERA through the Fisher information
metric guu, which is the avatar of the bond dimension in the dis-
crete version of the MERA circuit.
In addition, our result explicitly shows how the infinitesimal

change in the entropy can be cast in terms of the differential con-
tribution to the area of aminimal surface in a dual AdS geometry.
As a result, the dual geometry is defined in terms of the varia-
tional parameters of the tensor network through a computation
of the entanglement entropy in a QFT state.
The paper is structured as follows. In Section 2 we review the

obtaining of the entanglement entropy of half space in quantum
field theory. Then, after briefly introducing the Gaussian cMERA
formalism in Section 3, in Section 4 we study the entanglement
entropy in cMERA. In particular, we provide an expression for
the entropy as a function of the variational parameter. In Sec-
tion 5we elaborate on the relation of this expressionwith the Ryu-
Takayanagi formula and establish an explicit relation between the
AdSmetric and the cMERA variational parameter. Finally, we dis-
cuss our results and explain our conclusions in Section 6.

2. Entanglement Entropy of Half-Space in QFT

A standard method for the calculation of the entanglement en-
tropy in a field theory is the replica trick. To illustrate this, and
following,[15] let us consider a quantum field 𝜓(X) in a (d + 1)-
dimensional spacetime and choose the Cartesian coordinates
X𝜇 = {𝜏, x, xi⟂} with i = 1, .., d−1, where 𝜏 is Euclidean time, such
that a surface A⟂ is defined by the condition x = 0 and xi⟂, i =
1, .., d−1 are the coordinates on A⟂.

1

Here we consider the wavefunction for the vacuum state,
which is built by performing the path integral over the lower half
of the total Euclidean spacetime (𝜏 ≤ 0) such that the quantum
field satisfies the boundary condition 𝜓(𝜏 = 0, x, x⟂) = 𝜓0(x, x⟂)

Ψ[𝜓0(x, x⟂)] = ∫𝜓(X)|𝜏=0=𝜓0(x,x⟂) D𝜓 e−W[𝜓 ] , (3)

where W[𝜓 ] is the action of the field. The (co-dimension 2)
surface A⟂ separates the hypersurface 𝜏 = 0 into two parts:
x < 0, (Ac) and x > 0, (A). Thus the path integral boundary data
𝜓(x, x⟂) are split into

𝜓(x, x⟂) =

{
𝜓−(x, x⟂) = 𝜓0(x, x⟂), x < 0,

𝜓+(x, x⟂) = 𝜓0(x, x⟂), x > 0.

The reduced density matrix describing the subregion A (x >
0) of the vacuum state is then obtained by tracing over the set
of boundary fields 𝜓− located in the complementary region Ac.
In the Euclidean path integral, this corresponds to integrating
out 𝜓− over the entire spacetime, but with a cut from negative
infinity to A⟂ along the 𝜏 = 0 surface (i.e., along x < 0). We must

1 In this case, A⟂ is a plane and the Cartesian coordinate x is orthogonal
to A⟂.

therefore impose boundary conditions for the remaining field 𝜓+
as this cut is approached from above (𝜓1

+) and below (𝜓2
+). Hence

we have:

𝜌A(𝜓
1
+,𝜓

2
+) = ∫ D𝜓−Ψ(𝜓1

+,𝜓−)Ψ(𝜓2
+,𝜓−). (4)

Computing the vonNeumann entropy SA = −Tr𝜌A log 𝜌A from
this formal object is an extremely difficult task for all but the
very simple systems. The solution is given by the replica trick.
The trace of the n-th power of the density matrix (4) is given by
the Euclidean path integral over fields defined on an n-sheeted
covering of the cut geometry associated to 𝜌A. Taking polar co-
ordinates (r,𝜙) in the (𝜏, x) plane, the cut corresponds to values
𝜙 = 2𝜋k,k = 1, 2, .., n. In building the n-sheeted cover, we glue
sheets along the cut in such a way that the fields are smoothly
continued from 𝜓1,2

+ |k to 𝜓1,2
+ |k+1. The resulting space is a cone

Cn, with angular deficit 2𝜋(1 − n) at A⟂. The partition function
for the fields over this n-fold, which is denoted by Z[Cn] and then
Tr𝜌nA = Z[Cn]. Assuming that one can consider an analytic con-
tinuation to non-integer values of n, we have

SA = −Tr𝜌A log 𝜌A = −(𝜆𝜕𝜆 − 1) log Tr𝜌𝜆A|𝜆=1. (5)

Hence, introducing the effective actionW[𝜆] = − logZ[C𝜆] for
fields on an Euclidean spacetime with a conical singularity at
A⟂, the cone C𝜆 is defined, in polar coordinates, by making 𝜙 =
𝜙 + 2𝜋𝜆. Then taking the limit in which (1 − 𝜆)≪ 1, the entan-
glement entropy is given by the replica trick as

SA = (𝜆𝜕𝜆 − 1)W(𝜆)|𝜆=1. (6)

It is the actionW(𝜆) the function to be calculated. It can be shown
that for a bosonic field whose partition function is Z = det−1∕2 ,
with  a differential operator, this action can be written as

W = −1
2 ∫

∞

𝜖2

ds
s2
TrK(s), (7)

with K(s, X, X ′) the heat kernel satisfying

(𝜕s +)K(s, X, X ′) = 0, K(0, X, X ′) = 𝛿(X − X ′). (8)

The heat kernel K𝜆(s, X, X
′) is obtained by applying the Sommer-

feld formula[16]

K𝜆(s, X, X
′) = K(s, X, X ′) + Δ𝜆(s, X, X

′), (9)

whereΔ𝜆 ensures the 2𝜋𝜆 periodicity (see [15] for further details).

Entanglement Entropy in Free Field Theory

It can be proven that, for the operator  = −∇2 +m2, one can
obtain K𝜆(s, X, X

′) and then calculateW(𝜆). The final result is

TrK𝜆(s) =
1

(4𝜋s)d∕2

(
𝜆V + 2𝜋 1 − 𝜆

2

6𝜆
s|A⟂|), (10)

where V is the spacetime volume and |A⟂| = ∫ dd−2x is the area
of the surface A⟂. From the the Euclidean path integral for the
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fields in a free theory, after properly normalizing, we have

W = 1
2
log det = 1

2
Tr log(−∇2 +m2), (11)

where −1 ≡ G(x, y) = ⟨𝜓(x)𝜓(y)⟩. With this, TrKA⟂
(s), which is

given by

TrKA⟂
(s) =

|A⟂|
(4𝜋s)

d−2
2

exp(−m2s), (12)

can be interpreted as the trace of the heat kernel of(A⟂), where(A⟂) is the differential operator over the codimension-2 plane
A⟂:

log det = −∫
∞

𝜖2

ds
s
TrKA⟂

(s). (13)

Thus, upon a straightforward identification we obtain

SA = − 1
12

log det(A⟂) = − 1
12

TrA⟂
log . (14)

Based on this expression, in Sections 4 and 5 we will establish
a relation between cMERA and the Ryu-Takayanagi formula.

3. A cMERA Primer

cMERA[9,10] amounts to a real space renormalization group pro-
cedure on the quantum state that builds, through a Hamiltonian
evolution in scale, scale dependent wavefunctionalsΨ[𝜙, u] given
by,

Ψ[𝜙, u] = ⟨𝜙|Ψu⟩ = ⟨𝜙| e−i ∫
u
uIR

(K(u′)+L) du′ |Ω⟩. (15)

Here u parametrizes the scale of the renormalization and  is
the u-ordering operator. L represents the dilatation operator and
K(u) is the generator of evolution in scale, the so-called “entan-
gler” operator. The scale parameter u is taken to be in the interval
[uIR, uUV ] = (−∞, 0]. uUV is the scale at the UV cut off 𝜖, and the
corresponding momentum space UV cut off is Λ = 1∕𝜖. uIR is
the scale in the IR limit.
The state |ΨΛ⟩ ≡ |ΨUV⟩ is the state in the UV limit and it may

be the ground state of a quantum field theory. The state |Ω⟩ is
defined to have no entanglement between spatial regions. |Ω⟩ is
invariant with respect to spatial dilatations, so that e−iLu|Ω⟩ = |Ω⟩
or, equivalently L|Ω⟩ = 0.
For a free bosonic theory, |Ω⟩ is defined by(√
M (𝜙(k) − �̄�) + i√

M
𝜋(k)

)|Ω⟩ = 0, (16)

for all momenta k, where M =
√
Λ2 +m2 with m the mass of

the particles in the free theory and �̄� ≡ ⟨Ω|𝜙(x)|Ω⟩. This state
satisfies ⟨Ω|𝜙(p)𝜙(q)|Ω⟩ = 1

2M
𝛿d(p + q) and ⟨Ω|𝜋(p)𝜋(q)|Ω⟩ =

M
2
𝛿d(p + q).
The nonrelativistic dilatation operator L, that can be under-

stood as as the “free” piece of the cMERAHamiltonian evolution

in scale, does not depend on the scale u but only by the scaling
dimensions of the fields 2.
On the other hand, the entangler operatorK(u), contains all the

variational parameters to be optimized, creating entanglement
between field modes with momenta |k| < Λ, where Λ is the cut-
off mentioned above. The entangler is considered as the “inter-
acting” part of the cMERA Hamiltonian. From this point of view,
the unitary operator in Eq. (15)

U(u1, u2) ≡  exp
[
−i∫

u1

u2

du (K(u) + L)
]

(17)

is understood as a Hamiltonian evolution with K(u) + L. Usu-
ally it is useful to define cMERA in the “interaction picture”
through the unitary transformation |Φu⟩ = eiLu|Ψu⟩ in which the
u-evolution is determined by the unitary operator  (u1, u2) =
e−i ∫ u1

u2
du K̂(u).

Gaussian cMERA

For free scalar theories in (d + 1) dimensions,K(u) is given by the
quadratic operator3[9,10]

K(u) = 1
2 ∫pq g(p; u)

[
𝜙(p)𝜋(q) + 𝜋(p)𝜙(q)

]
𝛿(p + q), (19)

where ∫p ≡ ∫ (2𝜋)−d ddp. The conjugate momentum of the field
𝜙(p) is 𝜋(p), such that [𝜙(p),𝜋(q)] = i𝛿(p + q)„ with 𝛿(p) ≡
(2𝜋)d𝛿(p). The function g(p; u) in (19) is the only variational pa-
rameter to be optimized in the cMERA circuit. This function fac-
torizes as

g(p; u) = g(u) ⋅ Γ(p∕Λ), (20)

where Γ(x) is a cut off functionwhich, in general, will be assumed
Γ(x) ≡ Θ(1 − |x|) withΘ(x) is the Heaviside step function. g(u) is
a real-valued function known as density of disentanglers andΓ(p∕Λ)
implements a high frequency cutoff such that ∫p ≡ ∫ Λ

0 ddp.[9,10]

The sharp cutoff function, which is assumed by default along this
paper, ensures that K(u) acts locally in a region of size 𝜖 ≃ Λ−1.
The optimized cMERA ansatz for the relativistic free mas-

sive scalar theory can be obtained as follows[9,10]: The expectation
value of theHamiltonian of the theoryw.r.t. the cMERA state |ΨΛ⟩
is calculated in terms of the variational function f (k, uIR)

f (k, uIR) = ∫
uIR

0
g(ke−u; u) du = ∫

− logΛ∕k

0
g(u) du. (21)

The optimization process yields

f (k, uIR) =
1
4
log

k2 + 𝜇2

M2
, g(u) = 1

2
Λ2e2u

(Λ2e2u + 𝜇2)
, (22)

2 L = − 1
2
∫ dx[𝜋(x)(x ⋅ ∇𝜙(x)) + (x ⋅ ∇𝜙(x))𝜋(x) + d

2
(𝜙(x)𝜋(x)+𝜋(x)𝜙(x))].

3 In the interaction picture the entangler operator reads as

K̂(u) = 1
2 ∫pq g(pe

−u; u)
[
𝜙(p)𝜋(q) + 𝜋(p)𝜙(q)

]
𝛿(p + q). (18)
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where 𝜇 is a variational mass parameter that in the free case
equals the bare mass m of the theory.
Remarkably, in [17], a cMERA circuit based on the quadratic

entangler (19) was used to study the self-interacting 𝜙4 scalar the-
ory. This model has a mass gap and flows to a free theory in the
IR, where the IR ground state is exactly a Gaussian wavefunc-
tional. Similar to the free case, by minimizing the expectation
value of the Hamiltonian with respect to the ansatz wavefunc-
tional one obtains (22) but in this case 𝜇 is the modified mass of
propagating free quasi-particles given by the gap equation

𝜇2 = m2 + 𝜆

2

(
�̄�2 +G(0)

) ≡ m2 + 𝜆

2
Δ,

G(0) = 1
2 ∫k

1√
k2 + 𝜇2

, (23)

where 𝜆 is the coupling constant. The cMERA wavefunctional
thus obtained is a vacuum state for a free theory with mass given
by (23). The optimized ansatz captures all 1-loop 2-point correla-
tion functions, as well as the resummation of all cactus-like dia-
grams.

4. Entanglement Entropy in Gaussian cMERA

Here, we consider the entanglement entropy of half space in free
scalar theory in (d + 1)-dimensions. In this case the entangling
surface is A⟂ = ℝd−1 and its area will be denoted by |A⟂|. Accord-
ing to the heat kernel result (14), the entanglement entropy of the
half space can be written as [18, 19]

SA =
|A⟂|
6 ∫ dd−1k⟂ log⟨ΨΛ|𝜙(k⟂)𝜙(−k⟂)|ΨΛ⟩ + const, (24)

where const represents a (UV dependent) quantity independent
of mass and |ΨΛ⟩ is the ground state of the field theory un-
der consideration defined at some fixed cutoff Λ. The integra-
tion is carried out over the (d − 1) transverse momenta in A⟂.
Upon this assumption, from now on we will simplify the nota-
tion ∫ dd−1k⟂ → ∫ dd−1k.
The Gaussian cMERA circuit introduced in the previous sec-

tion is exactly solvable for the free scalar theory and thus, the UV
cMERA approximation to the ground state of the theory |ΨΛ⟩, is
exact in this case. Upon these conditions, we compute the entan-
glement entropy of the half-space by renormalizing the 2-point
correlator in (24) with cMERA. First we note that,

⟨ΨΛ|𝜙(k)𝜙(−k)|ΨΛ⟩ = 1
2M

e−2 f (k,uIR) 𝛿d(0). (25)

Therefore, using (22) we express the entropy as

SA =
|A⟂|
6 ∫ dd−1k log

(
e−2f (k,uIR)

2M

)
+ c̃onst, (26)

where c̃onst is a new UV dependent quantity independent
of mass.
When applying the Gaussian cMERA to the self interacting

𝜆𝜙4 scalar theory,[17] one may expand for weak 𝜆 to recover the

half space entropy for the theory at 1-loop,[18]

SA = −
|A⟂|
12 ∫ dd−1k

[
log

(
k2 +m2

)
+ 𝜆

2
Δ

(k2 +m2)

]
+ c̃onst + (𝜆2). (27)

This is precisely a consequence of the 1-loop exactitude of the
Gaussian ansatz.
Let us now write the half space entropy in cMERA in terms

of the tensor network bulk variational parameters. To do this we
note that

log⟨ΨΛ|𝜙(k)𝜙(−k)|ΨΛ⟩ = −2f (k, uIR) + const′. (28)

Consequently, we have

SA = −
|A⟂|
3 ∫ dd−1k f (k, uIR) + c̃onst

′
. (29)

Now, according to the definition of f (k, uIR), we have

f (k, uIR) = ∫
uIR

0
du g(ke−u, u), g(k, u) ≡ g(u) ⋅ Γ(k∕Λ).

(30)

Considering these quantities and taking into account that we are
integrating over momenta 0 ≤ k ≤ Λ, we find

SA =
|A⟂|
3 ∫ dd−1k∫

0

uIR

du g(ke−u, u) + c̃onst
′

=
|A⟂|
3 ∫

0

uIR

du g(u) ∫ dd−1k kd−2 Γ(ke−u∕Λ) + c̃onst
′
. (31)

We note that this expression is also valid for other choices of the
cutoff function Γ(k∕Λ). Namely one can rewrite the last expres-
sion as

SA =
|A⟂|
3 ∫

0

uIR

du g(u) ⋅ Σ(u) + c̃onst
′
,

Σ(u) ≡ ∫ dd−1k kd−2 Γ(ke−u∕Λ). (32)

The cut off functions, which act as alternative UV regulariza-
tion schemes of the cMERA formalism, will determine Σ(u). In
Table 1, it is shown the resulting Σ(u) for some cutoff functions
that have been proposed in the literature.[9,20] We observe that the
result is similar to the one obtained through sharp cut off func-
tion up to some numerical factors. Onemight interpret that these
numerical factors can be absorbed into a redefinition of the UV
cutoff 𝜖. Consequently, and for convenience, in the rest of this
section we will consider the sharp cutoff Γ(x) = Θ(1 − x). In this
case the entanglement entropy results

SA = 1
3
S(d−1)

(d − 1)
|A⟂|Λd−1 ∫

0

uIR

du g(u) eu(d−1) + c̃onst
′
, (33)
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Figure 1. Left: Rate of entanglement entropy per unit momentum (c.f. Eq. (34)). Right: Rate of entanglement entropy per unit scale (c.f. Eq. (36)).
Parameters: d = 1, Λ = 100, m = Λ

100
.

Table 1. For various cutoff functions Γ(k∕Λ), their corresponding momen-
tum integral Σ(u) defined in (32) and the ratio between the radial AdS
metric component and the variational parameter,

√
Guu∕g(u) are shown.

S(d) is the area of a unit d-sphere, S(d) ≡ 2𝜋d∕2

Γ(d∕2) .

Γ(k∕Λ) Σ(u)
4GN

𝛾

√
Guu∕g(u)

Θ(1 − ke−u

Λ
) S(d−1)

d − 1
Λd−1eu(d−1) 1

1
2
exp(− 1

𝜎

k2e−2u

Λ2
) S(d−1)

4
𝜎

d − 1
2 Γ( d − 1

2
)Λd−1 eu(d−1) 1

4
𝜎

d − 1
2 Γ( d − 1

2
)

1
2

Λ2

Λ2 + k2e−2u
S(d−1)

4
𝜋 Λd−1eu(d−1) (d = 2) 𝜋

4

with S(d) the area of a d-sphere, S(d) ≡ 2𝜋d∕2

Γ(d∕2)
. Thus the final result

can be written as

SA = 1
3
S(d−1)

(d − 1)
|A⟂|
𝜖d−1 ∫

0

uIR

du g(u) eu(d−1) + c̃onst
′
. (34)

where 𝜖 ≡ 1∕Λ can be identified with the lattice constant.
Let us compare this expression with the half space entangle-

ment entropy SA in the discrete MERA for a (d + 1)-dimensional
quantum system on a lattice which was obtained in [10]. In this
case the entanglement entropy is given by

SA ∝ Ld−1
0∑

u=−∞
n(u) ⋅ 2(d−1)u, (35)

where Ld−1 is the number of lattice points on the boundary of A
and n(u) is the strength of the bonds at the layer specified by the
non-positive integer u. n(u) is typically given by the logarithm of
the bond dimension at layer u. The comparison between these ex-
pressions shows a manifestly similar structure and suggests that
g(u) in cMERA might be interpreted as a local bond dimension.
We will elaborate on this in Secs. 5 and 6.

So far, we have obtained the same quantity, SA, as an integral
over momenta, Eq. (24) and over the scale, Eq. (34). Upon con-
sidering the integrand of the former expression, we define the
entanglement entropy at the scale u, SA(u), as

SA(u) ≡ |A⟂|
6 ∫

Λeu

0
dd−1k⟂ log⟨ΨΛ|𝜙(k⟂)𝜙(−k⟂)|ΨΛ⟩ + const

=
|A⟂|
6 ∫

Λ

0
dd−1k⟂ e

u(d−1) log⟨ΨΛ|𝜙(k⟂eu)𝜙(−k⟂eu)|ΨΛ⟩
+ const.

(36)

To gain some insight into the entropy production rate as a func-
tion of the momentum and as a function of the scale, let us study
the integrands of (34) and (36) 4, as both procedures must give
the same result. In Figure 1 we plot, for d = 1, the log of the
2-point correlator G(k⟂e

u) ≡ ⟨ΨΛ|𝜙(k⟂eu)𝜙(−k⟂eu)|ΨΛ⟩ from (36)
and the variational parameter g(log(keu∕Λ)) from (34). For the lat-
ter, a change of variable is needed to consistently compare the two
definite integrals. We observe that, qualitatively, both of them ex-
hibit an area law behavior: highest momenta, i.e. short distance
correlations, provide the highest contributions to the entropy. In
contrast, while in the left plot higher momenta are gradually in-
corporated as u → 0, in the right plot all momenta are contribut-
ing at relatively low u and only the renormalization scale deter-
mines the strength of the entanglement.
In this respect, the variational solution in (22) shows that in

the conformal case (m = 0), g(u) is constant and all length scales
contribute equally to (34). In the massive case, the bond dimen-
sion in cMERA is g(u) ≈ 1∕2 for uw ≪ log𝜇∕Λ and exponentially
decays to zero for uw > log𝜇∕Λ. From the bond dimension inter-
pretation, the scale uw marks a sort of IR wall end of the tensor
network due to the mass gap. This wall effectgively shortens the

4 Let us note that, because we are introducing somemomentum cutoffs,
const in (36) is just a finite UV cut off dependent quantity.
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integration domain in (34) from [−∞, 0] to [uw, 0]. Interestingly,
in the Gaussian cMERA, as the interaction dress up the mass of
the free quasiparticles through (23), the tensor network IR wall
moves towards uw → 0 as the interaction strength grows. This
phenomena decreases the value of the entanglement entropyw.r.t
the free case at least in the regime of validity of the Gaussian ap-
proximation to the interacting case.[19,21]

5. cMERA and Holography

In order to establish an explicit connection between cMERA and
holography, it would be desirable to define local areas in the bulk
in terms of the differential entanglement generated along the
tensor network, as it was suggested in [22]. That is to say, the
infinitesimal contribution to the area of an hypothesized mini-
mal surface homologous to the half space, must be defined to be
proportional to the change in entropy. From (34), the differential
entropy production rate is given by

dSA
du

= 𝛾
|A⟂|
𝜖d−1

g(u) eu(d−1), (37)

where 𝛾 ≡ 1
3
S(d−1)

(d−1)
. With this, the proposal amounts to recovering

a dual tensor network bulkmetric as an inverse problem in terms
of this differential entropy.5

With this, we are in a position to establish, at a proof of concept
level, a relation between the AdS geometry and the cMERA ten-
sor network through the Ryu-Takayanagi formula. To this end, let
us consider a cMERA of a large number N of interacting scalar
fields withO(N) symmetry. Here we assume that the leading con-
tribution to the bond dimension is given in terms of a Gaussian
cMERA and the quantum corrections to this bond dimension are
1∕N.[23] In this case the cMERA entangler can be safely approxi-
mated by N copies of the entangler for a free scalar theory. With
this, it is straightforward to conclude that the half space entropy
amounts to

SA = N 𝛾
|A⟂|
𝜖d−1 ∫

0

uIR

du g(u) eu(d−1) + c̃onst
′
. (39)

For convenience, we write (39) as

dSA = N 𝛾 ⋅ dATN, (40)

where

dATN ≡ |A⟂|
𝜖d−1

g(u) eu(d−1) du. (41)

We understand dATN as an infinitesimal area surface in the bulk
of the tensor network. To see this, let us assume that an ansatz
for a geometric description of the tensor network is given as the

5 We note that for the free scalar, 0 ≤ g(u) ≤ 1, and thus (37) fulfills

dSA
du

≤ 𝛾
|A⟂|
𝜖d−1

eu(d−1), (38)

an upper bound obtained in [9], using very general conditions of the
cMERA Hamiltonian evolution in scale.

spatial slice of an asymptotically (d + 2)-dimensional AdS metric
with a radial coordinate labeled by the cMERA parameter u:

ds2 = Guu du
2 + e2u

𝜖2
dx2d +Gttdt

2. (42)

Here, the AdS radius has been fixed to be unity for simplicity and
Guu → constant as u → 0. On the other hand, the Ryu-Takayanagi
formula for the half space in this geometry implies that[10]

d SA = 1

4G(d+2)
N

⋅ dART, (43)

where

dART ≡ |A⟂|
𝜖d−1

√
Guu e

u(d−1) du (44)

is an infinitesimal area in the bulk geometry.
When comparing (41) and (44) we obtain that the bulk geome-

try may be described in terms of the variational parameters of the
tensor network. This definition arises from a computation of the
entanglement entropy in cMERA following a QFT prescription
and comparing the result with the holographic calculation. As a
result, the entropic RG flow generated by cMERA can be consis-
tently encoded in terms of an AdS geometry as far as the radial
component of the metric is related to the variational parameter
of the tensor network as

1
4GN

√
Guu = 𝛾 g(u). (45)

Upon identifying 𝛾 = 1
4GN

, we give the ratio
√
Guu∕g(u) for other

alternative cutoff functions Γ(k∕Λ) in the last column of Table 1.
It is straightforward to note that different cMERAUV regulariza-
tion schemes implemented by cutoff functions Γ(ke−u∕Λ) do not
affect the dual bulkmetric up to order one numerical factors that,
as mentioned above, can be reabsorbed into a redefinition of the
UV cutoff. In addition, as noted in [10], for any cutoff function,
changing it by Γ(k𝜂(e−u)∕Λ) just amounts to a coordinate transfor-
mation along the AdS radial direction of the form e−u → 𝜂(e−u).
At this point, it is interesting to interpret the IR wall scale of

the tensor network commented above in terms of the differential
area surfaces. Following the previous discussion, in the confor-
mal limit where g(u) is a constant in the range [−∞, 0], the bulk
tensor network surface for a half space ATN is interpreted as a
holographic surface which hangs straight down into the bulk. On
the other hand, for themassive case, theATN deeps straightly into
the bulk up the IR wall uw where it ends. From this, by means of
our inverse method one might conclude that the metric Guu in-
herits the IR hard wall feature of the bond dimension g(u).
The results given above, at the proof of concept level, make

precise a previous heuristic relating the scale dependent bond
dimension in the discrete setting of MERA to a notion of scale
dependent entanglement generation and to a notion of bulk
area element of a putative holographic description. It is obvi-
ous that further generalizations must be considered. First, it
is interesting to see if our conjecture for the structure of the
cMERA bond dimension holds when explicitly considering a
large number of fields and strong interactions. This may be
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hopefully addressed with a new kind of cMERA circuits that
nonperturbatively include non-quadratic entangler operators
that give account for interactions.[14] Second, our matching
between differential entanglement along cMERA and minimal
Ryu-Taakayanagi surfaces has been established for the half space
where the RT surface deeps vertically into the bulk. It is a matter
of further investigation to see if/how this matching occurs for
other region shapes. Using the real time approach[24] it has
been numerically shown that the Gaussian cMERA matches the
correct scaling of entanglement entropy of intervals of variable
size for scalar and fermionic theories in (1 + 1) dimensions.[25]

Finding geometrical-like analytic expressions for this scaling
in terms of g(u) is worth to be investigated instead of the chal-
lenge it poses to find these expressions by finding analytical
expressions for the eigenvalues of the covariance matrix.[24]

Fisher Information Metric

In [10], in an attempt to make the connection between cMERA
and the AdS/CFT more precise, authors thought in terms of
quantum distances in order to obtain dual geometrical descrip-
tions of the tensor network. For this purpose, authors considered
two cMERA states infinitesimally displaced in u. The Hilbert-
Schmidt distance between them, which measures how different
these states are, was given by

DHS(Ψ(u),Ψ(u + du)) ≡ 1 − ||⟨Ψ(u)|Ψ(u + du)⟩||2 = guu(u) du
2,
(46)

where guu(u) is the so called cMERA Fisher information metric.
This is more conveniently defined as

guu(u)du
2 =  −1

(
1 − ||⟨Φ(u)|Φ(u + du)⟩||2),

|Φ(u)⟩ ≡ Pe−i ∫
u
uIR

K̂(s)ds|Ω⟩, (47)

where  is a normalization constant. For the particular case of
the Gaussian entangler (19), the metric results guu = g(u)2.
Our results above provide a more concise relationship be-

tween the Fisher metric and a dual geometrical description of
the cMERA circuit. Indeed, because guu measures the density of
disentanglers, the entanglement entropy obtained from the for-
mula (34) can be naturally interpreted as the summation of the
entanglers that cut the curve that divides the system at a certain
scale u. In other words, the entanglement entropy for a cMERA
circuit is given by

SA = 𝛾
|A⟂|
𝜖d−1 ∫

0

uIR

du
√
guu(u) e

u(d−1) + c̃onst
′
. (48)

where the Fisher information factor
√
guu, is the integralmeasure

of the “curved” tensor network bulk space along the entangle-
ment renormalization direction. In this sense, our formulation
establishes a precise connection between the Fisher information
metric and putative holographic descriptions of the cMERA ten-
sor network.

In view of these results, we note that in case of enlarging the
number of entangler operators in a cMERA circuit,

K̂(u) = K̂1(g1(u); u) +⋯ + K̂n(gn(u); u), (49)

with K̂i an entangler containing a generic dependence on the
scale parameters and a variational parameter gi(u), the Fisher
metric guu will be a quadratic function of the variational param-
eters guu =

∑
ij 𝛼ijgi(u)gj(u), where 𝛼ij are real valued coefficients

associated to the expectation values of the multiple (products
of) disentanglers. This suggests that adding more entanglers,
and consequently having more terms in this sum, is the ana-
log of increasing the bond dimension in the discrete MERA cir-
cuit. In this respect, some recent non-Gaussian formulations
of cMERA for interacting field theories, incorporate additional
non quadratic entanglers (with their respective variational pa-
rameters), giving rise to genuinely non-Gaussian effects.[13,14,17]

Consequently, we conjecture that, for those circuits, the en-
tanglement entropy can be computed through (48). The re-
sults so obtained would be compared with recent results in the
literature[19,26,27] dealing with entanglement entropy in interact-
ing theories.

6. Conclusions

We have obtained the entanglement entropy for the half-space
of a free scalar theory in a Gaussian cMERA tensor network.
The resulting entropy can be written as a function of the local
bond dimension, the variational parameter defining the tensor
network. Our results explicitly show that the differential change
in the entropy along the cMERA flow can be cast in terms of
the differential contribution to the area of a minimal surface of
a dual AdS geometry. As a result, the dual geometry is defined
in terms of the local bond dimension of cMERA. Namely, the
entanglement entropy can be computed through the Fisher in-
formation metric guu, which we justify, amounts to the avatar of
the bond dimension in the discrete version of the MERA circuit.
The Fisher-metric acts precisely as the integral measure of the
“curved” tensor network bulk space along the scale direction. Our
proof of concept result makes precise previous heuristics relat-
ing the scale dependent bond dimension in the discrete setting
to a notion of scale dependent entanglement generation and to
a notion of bulk area element of a putative holographic descrip-
tion. Finally, our results spurs us to broaden this analysis to more
general (non-)Gaussian cMERA circuits and regions with a more
general shape.
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