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Abstract. In this paper we construct and analyze new nonlinear optimal weights for WENO4
interpolation which are capable of raising the order of accuracy close to jump discontinuities in5
the function or in the first derivative (kinks). The new nonlinear optimal weights are constructed6
using a strategy inspired by the original WENO algorithm, and they work very well for kinks or jump7
discontinuities, leading to optimal theoretical accuracy. This is the first part of a series of two papers.8
In this first part we analyze the performance of the new algorithms proposed for univariate function9
approximation in the point values (interpolation problem). In the second part, we will extend the10
analysis to univariate function approximation in the cell averages (reconstruction problem) and to11
the solution of problems in the context of hyperbolic conservation laws.12

Our aim is twofold: to raise the order of accuracy of the WENO type interpolation schemes both13
near discontinuities in the function or in the first derivative (kinks) and in the intervals which contain14
a kink. The first problem can be solved using the new nonlinear optimal weights, but the second one15
requires a new strategy that locates the position of the singularity inside the cell in order to attain16
adaption, this new strategy is inspired by the ENO-SR schemes proposed by Harten in A. Harten,17
ENO schemes with subcell resolution, J. Comput. Phys. 83 (1) (1989) 148 – 184. Thus, we will18
introduce two different algorithms in the point values. The first one can deal with kinks and jump19
discontinuities for intervals not containing the singularity. The second algorithm can also deal with20
intervals containing kinks, as they can be detected from the point values, but jump discontinuities21
can not, as the information of their position is lost during the discretization process. As mentioned22
before, the second part of this work will be devoted to the cell averages and, in this context, it will23
be possible to work with jump discontinuities as well.24

Key words. WENO schemes, new optimal weights, improved adaption to discontinuities, signal25
processing.26

AMS subject classifications. 65D05, 65D17, 65M06, 65N0627

1. Introduction. The reconstruction of a piecewise continuous function from28

some discretized data points is an important problem in the approximation theory.29

We will consider two possible ways of discretizing the initial set of data: it might30

come from a sampling of a piecewise continuous function or from the averaging of a31

function in L1 over certain intervals. In the first case we are talking about a point32

value discretization and in the second case about a cell average discretization. This33

is the first part of a series of two articles where we present a new algorithm for34

approximation of piecewise smooth functions. In this part we will only consider the35

point value discretization. The second part [1] will be dedicated to the cell average36

discretization and its application to the solution of conservation laws.37

When approximating a function from discretized data, we can choose to use linear38

or nonlinear algorithms. Linear algorithms usually present accuracy problems when39

the stencil crosses a discontinuity: Gibbs oscillations usually appear and the accuracy40

is lost locally around the discontinuity. The increasing of the length of the stencil41
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does not solve the problem and usually results in larger zones affected by oscillations.42

ENO (essentially non-oscillatory) interpolation solves this problem choosing stencils43

that do not cross the discontinuity. This algorithm was introduced in [2, 3] for solving44

conservation laws problems. ENO scheme manages to reduce the zones affected by45

oscillations to the interval where the discontinuity is placed. This task is done using46

a stencil selection strategy which allows us to choose the smoothest stencil. The47

reader interested in obtaining more information about ENO algorithm can refer to48

the following incomplete list of references [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].49

In [13], Liu, Osher and Chan proposed WENO (weighted ENO) algorithm, which50

aim was to improve the results obtained by ENO method. This technique was pro-51

posed in [13] as a nonlinear convex combination of the approximations obtained by52

different interpolants constructed over sub-stencils, all of them fragments of a bigger53

stencil. The weights used were calculated through an estimation of the smoothness54

of the interpolants used.55

The smoothness of the data is estimated using smoothness indicators that are56

functions that take divided differences as arguments. In [14] the authors presented57

new smoothness indicators which, crucially, were more efficient than those proposed58

initially in [13]. The computation of these indicators is done through a measurement59

based on the sum of the L2 norms of the derivatives of the interpolatory polynomials60

at the interval where we want to obtain the prediction. The computational cost of61

this measurement is smaller than the one obtained using the total variation and its62

result is smoother and easier to compute than the total variation. The nonlinear63

weights are designed in such a way that the stencils that cross a discontinuity pose an64

insignificant contribution to the resulting interpolation. The purpose of the WENO65

algorithm proposed in the seminal reference [13] was to optimize the stencil used by66

the ENO algorithm at smooth zones, in order to attain a higher order of accuracy.67

The interested reader can refer to [5, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,68

28, 29, 30, 31, 32, 33] and especially to [34, 35] and the references therein in order to69

get a more complete picture of the state of the art about WENO.70

As it was originally conceived, the WENO strategy only imposes restrictions to71

the weights of the convex combination in smooth zones: the main objective is to72

reach maximum order of accuracy when the data is smooth in the whole bigger sten-73

cil. However, close to discontinuities the value of the weights is mainly taking care74

of the essentially non-oscillatory property, not the order of accuracy, hence the order75

of accuracy is not optimized if there is more than one sub-stencil free of discontinu-76

ities. Basically, this property of the WENO algorithm is due to the usage of fixed77

optimal-weights when constructing the nonlinear weights of the convex combination of78

interpolants. This problem can be easily appreciated if we perform a grid refinement79

analysis around a discontinuity and we obtain the numerical accuracy obtained by80

the algorithm. The interested reader can have a look to the experiments presented in81

[36], especially Tables 1 and 3 or Figure 5.82

Our aim in this article is to increase the accuracy of the WENO method close83

to kinks or jump discontinuities when the data is discretized in the point values. We84

will tackle this task by proposing new nonlinear optimal weights. The main objective85

is to attain the maximum theoretical accuracy close to discontinuities in the function86

or in the first derivative, while keeping maximum accuracy in smooth zones. New87

smoothness indicators were introduced in [36] in order to allow the WENO scheme88

to simultaneously detect kinks and jump discontinuities in the point values. At the89

same time, these smoothness indicators show the same properties as the original90

smoothness indicators proposed in [14]. Using these smoothness indicators we propose91
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two new algorithms. The first one aims to attain optimal control of the accuracy of92

the interpolation around discontinuities, but not in the interval that contains the93

discontinuity. The objective of the second one is to raise the accuracy of the WENO94

algorithm also in the intervals that contain a kink. It is well known that the classical95

WENO scheme loses its accuracy when a discontinuity is placed in the central interval96

of the stencil. The state of the art literature includes algorithms that try to solve this97

issue of the classical WENO scheme. For example, in [37] the authors succeed in98

increasing the accuracy of the approximation, but they do not obtain the maximum99

accuracy theoretically possible. In this paper we increase the order of accuracy in the100

central cell of the stencil and obtain optimal accuracy.101

This paper is organized as follows: Section 2 introduces the discretization of data102

that will be used in the whole article and shows how the WENO algorithm for point103

values works. Subsection 2.1 presents a very brief description of the nonlinear WENO104

weights. In Subsection 2.2 we review some smoothness indicators that appear in105

the literature. Section 3 is devoted to the new WENO algorithm. Subsection 3.1 is106

dedicated to the introduction of new smoothness indicators more adapted for working107

with kinks. Subsection 3.2 explains how to redesign the WENO optimal weights in108

order to control the accuracy close to discontinuities, but not in the interval that109

contains the discontinuity. Subsection 3.3 presents a strategy through which we are110

able of raising the accuracy in the interval that contains the kink and, at the same time,111

controlling the order of accuracy close to it. Subsection 3.4 analyzes the ENO property112

for the two algorithms presented. Section 4 is dedicated to test the new algorithms113

through some numerical experiments. In particular, we analyze the performance of114

the new algorithm using discretized univariate functions that show kinks and jump115

discontinuities. Finally, Section 5 presents the conclusions.116

2. Weighted essentially non-oscillatory (WENO) algorithm for point117

values. In this section we introduce the classical WENO method. The concepts118

presented in this section are already classic and can be found in many references, see119

for example [13, 14, 36, 37], but their presence is strictly necessary to keep the paper120

self-contained and to introduce the different notations that we will use.121

Let us consider the space of finite sequences V , a uniform partition X of the
interval [a, b] in J subintervals, and the set of piecewise continuous functions in the
interval [a, b],

X = {xi}Ji=0, x0 = a, h = xi − xi−1, xJ = b.

We will use a point value discretization of the data,

fi = f(xi), f = {fi}Ji=0 .

We can see that the previous discretization preserves the information locally at the122

sites xi. Although it is possible to locate the position of kinks, as shown in Figure123

1, there is no hope in locating the exact positions of jumps, as they are lost in124

the discretization process [38], as shown in Figure 2. We will always consider that125

discontinuities are far enough from each other (for WENO algorithm and stencils of126

6 points we will consider that we have at least four discretization grid-points between127

any adjacent discontinuities).128

In this section we introduce the WENO scheme. As mentioned before, this algo-129

rithm allows us to obtain a high order of accuracy at smooth zones of f and, at the130

same time, it manages to avoid Gibbs oscillations close to discontinuities. This tech-131

nique appeared as an improvement of ENO reconstructions [2, 3]. The ENO scheme132
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xj−1 xj x∗ xj+1 xj+2

d d d d

Fig. 1. This figure represents a kink placed in the interval (xj , xj+1) at a position x∗. If we
consider that the discretized data is in the point values, we can recover an approximation of the
position of the discontinuity crossing an interpolating polynomial built using the data to the right of
the discontinuity with another interpolating polynomial built using the data to the left.

xj−1 xj x∗ xj+1 xj+2

d d

d d

Fig. 2. This figure represents a jump discontinuity placed in the interval (xj , xj+1) at a position
x∗. In this case it is not possible to recover the position of the discontinuity from the discretized
data in the point values [38].

uses a stencil selection procedure and manages to obtain an order of accuracy r + 1.133

In order to do this, this scheme deals with several stencils of length r + 1. The ENO134

scheme uses divided differences in order to determine which stencil is the smoothest.135

The WENO scheme uses smoothness indicators based on (divided) differences to de-136

termine the smoothness of the stencil.137

We will denote the different stencils by Smi (j) = {xj−m+i, · · · , xj+i−1}. The138

WENO scheme uses the same stencil of 2r nodes S2r
r (j) = {xj−r, · · · , xj+r−1} as the139

ENO method when trying to interpolate in the interval (xj−1, xj). Using this stencil,140

WENO manages to reach order of accuracy 2r [13] at smooth regions of f . In our141

notation, Srk(j), k = 0, · · · , r − 1 will represent the r sub-stencil of length r + 1 that142

contains the interval (xj−1, xj), where we want to interpolate:143

(2.1) Srk(j) = {xj−r+k, · · · , xj+k}, k = 0, · · · , r − 1.144

Figure 3 presents a diagram where we show the big stencil S2r
r (j) and the sub-stencils145

Srk(j), k = 0, · · · , r − 1 considered for the particular case r = 3.146

Let’s consider the following convex combination,147

(2.2) qj−r(x) =
r−1∑
k=0

ωrk(j)prj−r+k(x),148

where ωrk(j) ≥ 0, k = 0, · · · , r−1 and
∑r−1
k=0 ω

r
k(j) = 1. In (2.2), prj−r+k(x) represents149

the interpolatory polynomial of degree r defined on the stencil Srk(j). The prediction150
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· · · · · ·xj−3 xj−2 xj−1 xj xj+1 xj+2

︷ ︸︸ ︷S6
3(j)

︷ ︸︸ ︷S3
2(j)

︷ ︸︸ ︷S3
1(j)

︷ ︸︸ ︷S3
0(j)

Fig. 3. In this diagram we represent for r = 3 the big stencil S2r
r (j) = {xj−r, · · · , xj+r−1}

and the substencils Sr
k(j) = {xj−r+k, · · · , xj+k} for k = 0, · · · , r − 1.

operator for the mid point of the target interval (xj−1, xj) is given by151

(2.3) I
(
xj− 1

2
; f
)

=

r−1∑
k=0

ωrk(j)prj−r+k

(
xj− 1

2

)
.152

The value of the weights is chosen in order to obtain order of accuracy 2r at xj− 1
2

at153

smooth regions of the function f . In [13], the authors use an interpolant satisfying,154

(2.4) p2r−1j−r

(
xj− 1

2

)
= f

(
xj− 1

2

)
+O

(
h2r
)
,155

on the big stencil {xj−r, · · · , xj+r−1}, if we suppose that the function is smooth there.156

We can also build r approximations157

(2.5) prj−r+k

(
xj− 1

2

)
= f

(
xj− 1

2

)
+O

(
hr+1

)
,158

using the small stencils Srk(j). The optimal linear weights must satisfy that Crk(j) ≥159

0, ∀k and also that
∑r−1
k=0 C

r
k(j) = 1, such that160

(2.6) p2r−1j−r

(
xj− 1

2

)
=

r−1∑
k=0

Crk(j)prj−r+k

(
xj− 1

2

)
.161

The formulae for the optimal weights are easy to obtain if we use Newton interpolating162

polynomials. In [16], the authors give a proof for the following expression,163

(2.7) Crk(j) =
1

22r−1

(
2r

2k + 1

)
, k = 0, · · · , r − 1.164

For r = 3 the optimal weights are C3
0 (j) = 3

16 , C
3
1 (j) = 10

16 , C
3
2 (j) = 3

16 . In fact, in [39]165

the authors prove that the weights Crk(j) can be written as polynomials. However,166

we are usually interested in computing the reconstruction in specific points of the167

considered interval. In this case the polynomials Crk(j) take some specific positive168

values. We will consider this case.169



6 S. AMAT, J. RUIZ, C-W. SHU

2.1. Nonlinear weights. In [13], the non linear weights ωrk(j) are designed to170

satisfy the following relation at smooth zones,171

(2.8) ωrk(j) = Crk(j) +O(hm), k = 0, · · · , r − 1172

with m ≤ r − 1. Then, at these zones the interpolation error satisfies,173

(2.9) f(xj− 1
2
)− qj−r(xj− 1

2
) = O(hr+m+1).174

When m = r − 1 in (2.8), (2.9) assures that the accuracy attained is 2r. That said175

accuracy is the same as the one obtained using the interpolant p2r−1j−r (x) that uses176

all the nodes in the big stencil. The weights must also be designed in such a way177

that they satisfy the ENO property. This means that the contribution to the convex178

combination (2.3) of polynomials built from stencils crossing discontinuities should be179

insignificant. As mentioned in [13], the weights should also be easy to compute. The180

expression for the weights is,181

(2.10) ωrk(j) =
αrk(j)∑r−1
i=0 α

r
i (j)

, = 0, · · · , r − 1 where αrk(j) =
Crk(j)

(ε+ Irk(j))t
.182

This expression for the weights satisfies that
∑
k ω

r
k(j) = 1. In (2.10) Irk(j) represents183

a smoothness indicator for f(x) on the stencil Srk(j). t is an integer that has the184

purpose of assuring the maximum order of accuracy close to the discontinuities. The185

value of this parameter varies in the literature. For example, in [14] the authors choose186

t = 2 and in [13], it is set to t = r. In the theoretical proofs about the accuracy, we will187

determine which value of t we should take in our algorithm. The positive parameter188

ε that appears in the denominator of (2.10) is included to avoid divisions by zero.189

Some references can be found in the literature [15, 16], where the authors prove that190

ε plays a role when we are interpolating close to critical points at smooth zones. In191

this article we will show that the smoothness indicators used satisfy the requirements192

exposed in [13, 16] and necessary to attain the desired accuracy. We will also analyze193

the role played by the parameter ε and explicitly set the value it must take in order194

to obtain optimal results with the new algorithms presented.195

As we will refer all the time to the big stencil S2r
r (j) and in order to ease the196

notation, we will drop (j) in Srk(j), ωrk(j), Crk(j), αrk(j) and use simply Srk, ω
r
k, C

r
k , α

r
k.197

2.2. Classical smoothness indicators. As mentioned before, the computation198

of the smoothness indicators is done through a measurement based on the sum of the199

L2 norms of the derivatives of the interpolatory polynomials at the interval where we200

want to obtain the prediction [14],201

(2.11) Irk(j) =
r−1∑
l=1

h2l−1
∫ x

j+1
2

x
j− 1

2

(
dl

dxl
pkj−r+k(x)

)2

dx.202

In [16] another expression for the smoothness indicators is introduced, this time for203

data discretized in the point values,204

(2.12) Irk(j) =
r∑
l=1

h2l−1
∫ xj

xj−1

(
dl

dxl
prj−r+k(x)

)2

dx.205

The smoothness indicators presented before are suitable for jump discontinuities, but206

they do not work well for kinks.207
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In [36] we propose a new expression for the smoothness indicators that works well208

for kinks and for data discretized in the point values,209

(2.13) Irk(j) =
r∑
l=2

h2l−1
∫ x

j+1
2

x
j− 1

2

(
dl

dxl
prj−r+k(x)

)2

dx.210

This is the smoothness indicator used for computation of Hamilton-Jacobi equations211

[40], for which kinks are the generic singularities in the viscosity solutions.212

3. The new WENO algorithm for point values. In this section we intro-213

duce the new WENO algorithm. The difference with the classical WENO algorithm214

introduced in previous section is mainly located in the design of the WENO weights.215

We also make use of new smoothness indicators more suitable for working in the point216

values.217

3.1. New smoothness indicators. The smoothness indicator in (2.13) inte-218

grates in the interval (xj− 1
2
, xj+ 1

2
), but it seems more logical to integrate in the219

interval (xj−1, xj), where the point where we will interpolate is in the middle. Thus,220

in this article we propose to use the smoothness indicators in the point values given221

by the expression222

(3.1) Ink (j) =

min(r,n)∑
l=2

h2l−1
∫ xj

xj−1

(
dl

dxl
pnj−r+k(x)

)2

dx,223

where n is the degree of the polynomial and goes from n = r−1, · · · , 2r−1. As we will224

see in Subsection 3.2, for r = 3 our algorithms make use of smoothness indicators of 3,225

4, 5 and 6 points in order to optimize the accuracy of the new nonlinear interpolation226

proposed. Thus, we will need to build polynomials from degree two to five with the227

aim of replacing in (3.1) and obtaining such smoothness indicators. We work with228

the stencil of six points S6
3 = {xj−3, xj−2, xj−1, xj , xj+1, xj+2} and we will obtain the229

smoothness indicators integrating in the interval (xj−1, xj). The point values used230

will be {fj−3, fj−2, fj−1, fj , fj+1, fj+2}.231

In order to obtain compact expressions for the smoothness indicators in terms232

of finite differences, the polynomials can be expressed in the Newton form. The233

polynomials of degree n starting at the node j have the form,234

(3.2)

pnj (x) = fj +
fj+1 − fj

h
(x− xj) +

fj − 2fj+1 + fj+2

2h2
(x− xj)(x− xj+1)

+
−fj + 3fj+1 − 3fj+2 + fj+3

6h3
(x− xj)(x− xj+1)(x− xj+2) + · · ·+

δnj
n!hn

j+n−1∏
k=j

(x− xk),
235

where δnj = f [xj , · · · , xj+n]hn are finite differences of order n. Using a stencil of six236

points, we can build four different polynomials of degree two {p2j−3(x), p2j−2(x),237

p2j−1(x), p2j (x)}, three of degree three {p3j−3(x), p3j−2(x), p3j−1(x)}, two of degree four238

{p4j−3(x), p4j−2(x)} and one of degree five {p5j−1(x)}. We have used the notation239

pnj−r+k, for r = 3. We will use all of these polynomials to obtain smoothness indicators.240

As before, we will drop (j) in the notation of the smoothness indicators Irk(j) and241

simply use Irk .242

The smoothness indicators of three points obtained through (3.1) for n = r−1 = 2243

and the polynomials {p2j−3(x), p2j−2(x), p2j−1(x), p2j (x)} can be expressed in terms of244
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finite differences as,245

(3.3)

I2−1 = (δ2j−3)2,

I20 = (δ2j−2)2,

I21 = (δ2j−1)2,

I22 = (δ2j )2,

246

with δ2i = fi − 2 fi+1 + fi+2. The smoothness indicators of four points obtained247

through (3.1) for n = r = 3 and the polynomials in {p3j−3(x), p3j−2(x), p3j−1(x), } can248

be expressed in terms of finite differences as,249

(3.4)

I30 =
10

3
(δ3j−3)2 + 3δ3j−3δ

2
j−3 + (δ2j−3)2,

I31 =
4

3
(δ3j−2)2 + δ3j−2δ

2
j−2 + (δ2j−2)2,

I32 =
4

3
(δ3j−1)2 − δ3j−1δ2j−1 + (δ2j−1)2,

250

with δ3i = −fi + 3 fi+1 − 3 fi+2 + fi+3. The smoothness indicators of five points251

obtained using the same process and the polynomials {p4j−3(x), p4j−2(x)} are,252

(3.5)

I40 =
19

6
δ4j−3δ

3
j−3 +

2

3
δ4j−3δ

2
j−3 +

547

240
(δ4j−3)2 +

10

3
(δ3j−3)2 + 3δ3j−3δ

2
j−3 + (δ2j−3)2

I41 =
89

80
(δ4j−2)2 − 1

6
δ4j−2δ

3
j−2 −

1

3
δ4j−2δ

2
j−2 +

4

3
(δ3j−2)2 + δ3j−2δ

2
j−2 + (δ2j−2)2,

253

with δ4i = fi − 4 fi+1 + 6 fi+2 − 4fi+3 + fi+4. The smoothness indicator of six points254

obtained using the same process and the polynomial p5j−3(x) is,255

(3.6)

I50 =
1727

1260
(δ5j−3)2 +

203

240
δ5j−3δ

4
j−3 −

13

30
δ5j−3δ

3
j−3 −

1

6
δ5j−3δ

2
j−3

+
19

6
δ3j−3δ

4
j−3 +

2

3
δ2j−3δ

4
j−3 +

547

240
(δ4j−3)2 +

10

3
(δ3j−3)2 + 3δ2j−3δ

3
j−3 + (δ2j−3)2,

256

with δ5i = −fi + 5 fi+1 − 10 fi+2 + 10fi+3 − 5fi+4 + fi+5. To obtain these expressions257

we have applied the formula in (3.1) integrating always in the interval (xj−1, xj).258

Theorem 3.1. At smooth zones, the smoothness indicators (3.4), (3.5) and (3.6)
calculated using the expression in (3.1) can be simplified to

Ink =
(
h2f ′′j−1/2

)2
· (1 +O(h2)), n = 3, 4, 5.

Proof. At smooth zones, obtaining the Taylor expansion of the values of the stencil259

{fj−3, fj−2, fj−1, fj , fj+1, fj+2} around xj−1/2 and replacing them in the expressions260

of the smoothness indicators in (3.4), (3.5) and (3.6), we obtain that I40 , I
4
1 and I50 are261
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equal to D1, I30 and I32 are equal to D2 and I31 is equal to D3, with262

(3.7)

D1 = h4
(
d2f

dx2
(
xj−1/2

))2

+
13

12
h6
(
d3f

dx3
(
xj−1/2

))2

+
1

12
h6
(
d2f

dx2
(
xj−1/2

)) d4f

dx4
(
xj−1/2

)
+O(h7).

D2 = h4
(
d2f

dx2
(
xj−1/2

))2

+
13

12
h6
(
d3f

dx3
(
xj−1/2

))2

− 7

12
h6
(
d2f

dx2
(
xj−1/2

)) d4f

dx4
(
xj−1/2

)
+O(h7).

D3 = h4
(
d2f

dx2
(
xj−1/2

))2

+
13

12
h6
(
d3f

dx3
(
xj−1/2

))2

+
5

12
h6
(
d2f

dx2
(
xj−1/2

)) d4f

dx4
(
xj−1/2

)
+O(h7).

263

Collecting h4
(
d2f
dx2

(
xj−1/2

))2
, we get the result.264

3.2. Obtaining optimal weights close to discontinuities in the point265

values. If the optimal weights are obtained close to a discontinuity in the way spe-266

cified in (2.6) without any other consideration, the accuracy can be lost when there267

is more than one smooth substencil. A representation of a typical example of this268

situation is shown in Figures 4 and 5. The idea is that when a stencil is affected by269

a discontinuity, WENO is not designed to use all the available smooth information.270

In fact, the only conditions imposed to obtain the weights of the convex combination271

of polynomials of WENO interpolation in (2.2) is that they must depend on the272

smoothness of the function (they are large if the corresponding sub-stencil is smooth273

and small otherwise), and that at smooth zones the convex combination must provide274

optimal accuracy. For example, if we are working with stencils of 6 points and a275

convex combination of three polynomials of degree 3, then, in a situation like the276

ones depicted in Figures 4 and 5, WENO interpolation will typically provide O(h)277

accuracy at the interval that contains the discontinuity and O(h4) accuracy at the278

other intervals of the stencils that are affected by the discontinuity, even though279

there is available information to obtain O(h5) accuracy at the point xj−1/2 shown in280

Figures 4 and 5. If we obtain O(h5) accuracy in the mentioned interval, it is just by281

coincidence, as the weights as originally proposed in [14] are not designed to optimize282

the use of the stencil. It is possible to optimize the weights of the convex combination283

making the optimal weights also depend on the smoothness of the function, such that284

the optimal order is attained in all the stencils affected by the discontinuity.285

In this case, we will analyze how to attain optimal order with exactly the same286

stencil and sub-stencils that WENO method uses. Thus, we will use the formula287

for the interpolant in (2.3). In order to ease the presentation of the new opti-288

mal weights, we analyze the case r = 3 that corresponds to n = 2r = 6 points.289

Let’s start with the three stencils of four points S3
0 = {xj−3, xj−2, xj−1, xj}, S3

1 =290

{xj−2, xj−1, xj , xj+1} and S3
2 = {xj−1, xj , xj+1, xj+2}. The point values used will be291

{fj−3, fj−2, fj−1, fj , fj+1, fj+2}. With these conditions, it is straightforward to build292

polynomials in the Newton form shown in (3.2). We can denote them by p3j−3+k(x),293

such that r = 3 denotes the degree of the polynomial and j − 3 + k the node where294

the substencil starts. Nevertheless, it is more convenient to ease again the notation295
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dropping the dependence with j and simply write prk(x), as we will be referring all296

the time to the stencil S6
3 = {xj−3, xj−2, xj−1, xj , xj+1, xj+2}. All the polynomials297

are evaluated at the point of interpolation xj−1/2, as shown in Figures 4 and 5. Then298

for r = 3 we will be dealing with p30(x), p31(x) and p32(x) for the convex combination299

in (2.6) and p40(x), p41(x), p52(x) for calculating the nonlinear optimal weights. It is300

straightforward to prove that taking the weights shown in (2.7) for r = 3,301

(3.8)
p40(x) = 2C3

0p
3
0(x) + C3

1p
3
1(x)

p41(x) = C3
1p

3
1(x) + 2C3

2p
3
2(x),

302

with C3
0 , C

3
1 , and C3

2 the optimal weights for r = 3 presented in (2.7). It is clear303

that in the case represented in Figure 5 it would be convenient to use p41(x) in order304

to interpolate at xj−1/2 (and for the case presented in Figure 4, p40(x) is the best305

option). However, the WENO scheme does not assure that the convex combination of306

p30(xj−1/2) and p31(xj−1/2) will be equal to p40(xj−1/2). If the discontinuity is located307

in the intervals (xj−2, xj−1) or (xj , xj+1), WENO should obtain O(h4) accuracy as308

there is always a smooth stencil of four points. In order to assure maximum accuracy,309

we can design three vectors of optimal weights C4
0,C

5
0,C

4
1, each of which is suitable310

for a particular position of the discontinuity. The vectors will have the following311

expression,312

C4
0 = (2C3

0 , C
3
1 , 0),(3.9)313

C5
0 = (C3

0 , C
3
1 , C

3
2 ),(3.10)314

C4
1 = (0, C3

1 , 2C
3
2 ).(3.11)315

C4
0 is appropriate in the case presented in Figure 4. C4

1 is adequate for the case316

in Figure 5. Finally, C5
0 works well when there is no discontinuity. A weighted317

average of these vectors will result in non-linear optimal weights that would replace318

the optimal weights of WENO algorithm. The weights of the mentioned average319

will be computed using the same technique introduced in [14] for averaging WENO320

interpolatory polynomials: smoothness indicators. Thus, in order to assure optimal321

accuracy, we will use smoothness indicators for the polynomials of 4, 5 and 6 points322

that arise from the selected 6 points stencil. Let’s now denote by ω̃nk the quotients,323

(3.12) ω̃4
0 =

α̃4
0

α̃4
0 + α̃5

0 + α̃4
1

, ω̃5
0 =

α̃5
0

α̃4
0 + α̃5

0 + α̃4
1

, ω̃4
1 =

α̃4
1

α̃4
0 + α̃5

0 + α̃4
1

,324

with,325

(3.13) α̃4
0 =

1

(ε+ I40 )t
, α̃5

0 =
1

(ε+ I50 )t
, α̃4

1 =
1

(ε+ I41 )t
.326

Now we can just define the adapted optimal weights as,327

(C̃3
0 , C̃

3
1 , C̃

3
2 ) = ω̃4

0C
4
0 + ω̃5

0C
5
0 + ω̃4

1C
4
1.(3.14)328

These nonlinear optimal weights C̃rk are used in place of the optimal weights Crk in329

the expression (2.10). The smoothness indicators that appear in (2.10) are obtained330

using four points, and have the expression shown in (3.4). We keep this part of the331

algorithm untouched and we only modify the optimal weights, that now are nonlinear.332

A first explanation of why this technique works is the following:333
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• If all the sub-stencils Snk , n = 3, 4, 5, (three of four points, two of five points334

and one of six points) are smooth and f ′′j−1/2 6= 0, all of them are Ink =335

(h2f ′′j−1/2)2 · (1 +O(h2)), n = 3, 4, 5 (as shown in Theorem 3.1). Then, at su-336

fficiently smooth zones, the nonlinear weights in (3.12) satisfy the expression337

(3.15)
ω̃nk =

α̃nk
r∑
j=2

r−j∑
i=0

α̃j+r−1i

=
1

(ε+ Ink )t
1

r∑
j=2

r−j∑
i=0

1

(ε+ Ij+r−1i )t

, n = 4, 5,
338

where we are taking into account that the stencil has 2r points and r = 3.339

Replacing now Ink =
(
h2f ′′j−1/2

)2
·(1+O(h2)), n = 4, 5, as shown in Theorem340

3.1, and taking ε small enough, we obtain341

ω̃rk =
(1 +O(h2))t

3(1 +O(h2))t
,342

but (1 +O(h2))t = 1 +O(h2) and 1
(1+O(h2))t = 1 +O(h2), so,343

ω̃rk =
(1 +O(h2))t

3(1 +O(h2)t
=

1

3
(1 +O(h2)).344

For the particular case r = 3, (3.14) transforms into,345

(3.16)
(C̃3

0 , C̃
3
1 , C̃

3
2 ) =

1

3

(
1 +O(h2)

)
(C4

0 + C5
0 + C4

1) = C5
0 +O(h2)

= (C3
0 , C

3
1 , C

3
2 ) +O(h2),

346

that are the original optimal weights Crk(j) in (2.6) and proposed in [14] plus347

a small perturbation that, as we will see in Theorem 3.2, does not affect348

the order of accuracy. Applying exactly the same process but to the WENO349

weights in (2.10), using as optimal weights those in (3.16) we obtain,350

ωrk =
α̃rk

r−1∑
i=0

α̃ri

=
Crk +O(h2)

(ε+ Irk)t
1

r−1∑
i=0

Cri +O(h2)

(ε+ Iri )t

,
351

Replacing again the expression Irk = Iri =
(
h2f ′′j−1/2

)2
·(1+O(h2)), for r = 3,352

and taking ε small enough, we obtain,353

(3.17) ωrk =
Crk +O(h2)

(1 +O(h2))t
(1 +O(h2))t

1 +O(h2)
= Crk +O(h2),354

and the result is that the WENO weights are355

(3.18) ωrk = Crk +O(h2)356

• The cases shown in Figure 4 and 5 are symmetric, so we can just analyze the357

case presented in Figure 4. It is clear that a kink in the interval (xj+1, xj+2)358

will produce that the smoothness indicators I41 and I50 shown in (3.5) and (3.6)359

respectively will take a value O(h2) due to the presence of the discontinuity360
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fj−3
fj−2 fj−1

fj

fj+1

fj+2

xj−3 xj−2 xj−1/2

x∗

xj−1 xj xj+1 xj+2

d d d d
d

d
Fig. 4. Representation of a kink placed at x∗ in the interval (xj+1, xj+2).

in the first derivative, while I40 =
(
h2f ′′j−1/2

)2
· (1 + O(h2)) = O(h4) as that361

part of the stencil is smooth. If that is the case, then362

α̃4
0 =

1

(ε+O(h4))t
,

α̃5
0 =

1

(ε+O(h2))t
,

α̃4
1 =

1

(ε+O(h2))t
.

363

Then we have that,364

w̃nk =
α̃nk

r∑
j=2

r−j∑
i=0

α̃j+r−1i

=
1

(ε+ Ink )t
1

r∑
j=2

r−j∑
i=0

1

(ε+ Ij+r−1i )t

, n = 4, 5,
365

and r = 3. Assuming that ε is small enough, we obtain that the weights are,366

w̃4
0 =

1

(ε+ I40 )t
1

r∑
j=2

r−j∑
i=0

1

(ε+ Ij+r−1i )t

=
1

(ε+ I40 )t
1

1
(ε+I40 )

t (1 +O(h2t))
=

1

1 +O(h2t)

= 1 +O(h2t),

w̃4
1 =

1

(ε+ I41 )t
1

r∑
j=2

r−j∑
i=0

1

(ε+ Ij+r−1i )t

=
1

(ε+ I41 )t
1

1
(ε+I40 )

t (1 +O(h2t))
= O(h2t),

w̃5
0 =

1

(ε+ I50 )t
1

r∑
j=2

r−j∑
i=0

1

(ε+ Ij+r−1i )t

=
1

(ε+ I50 )t
1

1
(ε+I40 )

t (1 +O(h2t))
= O(h2t).

367

Then, the adapted optimal weights have the expression,368

(C̃3
0 , C̃

3
1 , C̃

3
2 ) = C4

0 +O(h2t) = (2C3
0 , C

3
1 , 0) +O(h2t),(3.19)369

Exactly the same conclusions can be reached if a jump discontinuity in the370

function is found in the interval (xj+1, xj+2). The only difference is that in371
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this case I41 and I50 are both O(1) and,372

w̃4
0 =

1

(ε+ I40 )t
1

r∑
j=2

r−j∑
i=0

1

(ε+ Ij+r−1i )t

=
1

(ε+ I40 )t
1

1
(ε+I40 )

t (1 +O(h4t))
=

1

1 +O(h4t)

= 1 +O(h4t),

w̃4
1 =

1

(ε+ I51 )t
1

r∑
j=2

r−j∑
i=0

1

(ε+ Ij+r−1i )t

=
1

(ε+ I41 )t
1

1
(ε+I40 )

t (1 +O(h4t))
= O(h4t),

w̃5
0 =

1

(ε+ I50 )t
1

r∑
j=2

r−j∑
i=0

1

(ε+ Ij+r−1i )t

=
1

(ε+ I50 )t
1

1
(ε+I40 )

t (1 +O(h4t))
= O(h4t).

373

Then, the adapted optimal weights have the expression,374

(C̃3
0 , C̃

3
1 , C̃

3
2 ) = C4

0 +O(h4t) = (2C3
0 , C

3
1 , 0) +O(h4t).(3.20)375

If the discontinuity is placed in the interval (xj−3, xj−2), the conclusions376

would be exactly the same but377

(C̃3
0 , C̃

3
1 , C̃

3
2 ) = C4

1 +O(h2t) = (0, C3
1 , 2C

3
2 ) +O(h2t),(3.21)378

for a kink, or379

(C̃3
0 , C̃

3
1 , C̃

3
2 ) = C4

1 +O(h4t) = (0, C3
1 , 2C

3
2 ) +O(h4t),(3.22)380

for a jump discontinuity.381

Now, let’s see what we obtain using WENO algorithm with these adapted382

optimal weights instead of the original optimal weights (2.10). If there is a383

kink in the interval (xj+1, xj+2) we know that I30 = O(h4), I31 = O(h4) and384

I32 = O(h2). If we assume that ε is small enough, we suppose that we have385

obtained as nonlinear optimal weights (C̃3
0 , C̃

3
1 , C̃

3
2 ) = (2C3

0 , C
3
1 , 0) + O(h2t)386

as shown in (3.19) and we take into account that, in this case, C̃3
0 +C̃3

1 +C̃3
2 =387

2C3
0 + C3

1 +O(h2t) = 1 +O(h2t), then,388

(3.23)

ω3
0 =

C̃3
0

(ε+ I30 )t
1

r−1∑
i=0

C̃3
i

(ε+ I3i )t

=
C̃3

0

(ε+ I30 )t
1

1
(ε+I30 )

t (C̃3
0 + C̃3

1 (1 +O(h2)) +O(h2t))

=
C̃3

0

1 +O(h2)
= C̃3

0 +O(h2),

389



14 S. AMAT, J. RUIZ, C-W. SHU

ω3
1 =

C̃3
1

(ε+ I31 )t
1

r−1∑
i=0

C̃3
i

(ε+ I3i )t

=
C̃3

1

(ε+ I31 )t
1

1
(ε+I31 )

t (C̃3
0 (1 +O(h2)) + C̃3

1 +O(h2t))

=
C̃3

1

1 +O(h2)
= C̃3

1 +O(h2),

ω3
2 =

C̃3
2

(ε+ I32 )t
1

r−1∑
i=0

C̃3
i

(ε+ I3i )t

=
C̃3

2

(ε+ I32 )t
1

1
(ε+I30 )

t (C̃3
0 + C̃3

1 (1 +O(h2)) +O(h2t))

=
C̃3

2

O(h2t)

1
1

O(h4t) (1 +O(h2))
= O(h2t).

390

If there is a jump, the analysis is analogous and391

(3.24) ω3
0 = C̃3

0 +O(h4), ω3
1 = C̃3

1 +O(h4), ω3
2 = O(h4t).392

fj−3

fj−2

fj−1

fj

fj+1 fj+2

xj−3 xj−2 xj−1/2

x∗

xj−1 xj xj+1 xj+2

d d

d
d

d d

Fig. 5. Representation of a kink placed at x∗ in the interval (xj−3, xj−2).

• If there is a kink or a jump in the function affecting the stencil in the intervals393

(xj , xj+1) or (xj−2, xj−1), there is no hope of attaining adaption through the394

modification of the optimal weights. The best order of accuracy that can395

be obtained is O(h4), the same as the classical WENO algorithm attains, as396

there is only one smooth stencil. In this case the adapted optimal weights397

(3.12) would be,398

(3.25) ω̃4
0 = O(1), ω̃5

0 = O(1), ω̃4
1 = O(1).399

In this situation, basically it is WENO strategy who decides the weights for400

each polynomial in (2.2). Let’s see how WENO algorithm will behave. Let’s401

analyze the case when the discontinuity is placed in the interval (xj , xj+1) as402

the case when the discontinuity is in the interval (xj−2, xj−1) is symmetric.403

As we did before, we can apply the same process to the WENO weights in404

(2.10), using as optimal weights those in (3.25). We know that we obtain,405

ω3
j =

α̃3
j

r−1∑
i=0

α̃3
i

=
O(1)

(ε+ I3j )t
1

r−1∑
i=0

O(1)

(ε+ I3i )t

, j = 0, 1, 2,
406



ON NEW STRATEGIES TO CONTROL THE ACC. OF WENO ALG. 15

and that I30 = O(h4), I31 = O(h2) and I32 = O(h2). If we assume that ε is407

small enough, and we suppose that we have obtained as nonlinear optimal408

weights (C̃3
0 , C̃

3
1 , C̃

3
2 ) then,409

(3.26)

ω3
0 =

C̃3
0

(ε+ I30 )t
1

r−1∑
i=0

C̃3
i

(ε+ I3i )t

=
C̃3

0

(ε+ I30 )t
1

C̃3
0

(ε+I30 )
t (1 +O(h2t))

= 1 +O(h2t),

ω3
1 =

C̃3
1

(ε+ I31 )t
1

r−1∑
i=0

C̃3
i

(ε+ I3i )t

=
C̃3

1

(ε+ I31 )t
1

C̃3
0

(ε+I30 )
t (1 +O(h2t))

=
C̃3

1

O(h2t)

1
C̃3

0

O(h4t) (1 +O(h2t))
= O(h2t),

ω3
2 =

C̃3
2

(ε+ I32 )t
1

r−1∑
i=0

C̃3
i

(ε+ I3i )t

=
C̃3

2

(ε+ I32 )t
1

C̃3
0

(ε+I30 )
t (1 +O(h2t))

=
C̃3

2

O(h2t)

1
C̃3

0

O(h4t) (1 +O(h2t))
= O(h2t),

410

and the result is that the first stencil of WENO algorithm receives a weight411

that is very close to 1 while the others are close to 0. If there is a jump412

discontinuity in the interval (xj , xj+1), the analysis is analogous and413

(3.27) ω3
0 = 1 +O(h4t), ω3

1 = O(h4t), ω3
2 = O(h4t).414

• Using the the new algorithm, it is clear that the hypothetical situation pre-415

sented in Figure 6 will result in a loss of accuracy when the discontinuity is416

placed at the central interval of the stencil.

fj−3

fj−2

fj−1

fj

fj+1

fj+2

xj−3 xj−2 xj−1/2

x∗

xj−1 xj xj+1 xj+2

d
d

d
d

d d

Fig. 6. Representation of a kink placed placed at x∗ in the interval (xj−1, xj).

417

Let’s consider the stencil S2r
r = {xj−3, xj−2, xj−1, xj , xj+1, xj+2} and the point418

values {fj−3, fj−2,419

fj−1, fj , fj+1, fj+2}. Now, we can prove the following theorem about the weights,420

that will also provide us information about the value of t and how small ε must be.421

Theorem 3.2. Let’s assume that r = 3, t ≥ 1, ε ≤ h4 and that the grid spacing422

h is small enough such that there is only one discontinuity in the considered stencil.423

In this situation we can take into account the four following situations:424
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• If the nonlinear optimal weights satisfy the following relation at smooth zones
where,

(C̃3
0 , C̃

3
1 , C̃

3
2 ) = ω̃4

0C
4
0 + ω̃5

0C
5
0 + ω̃4

1C
4
1 = C5

0 +O(h2),

with C5
0 = (C3

0 , C
3
1 , C

3
2 ), then

∑r−1
k=0 ω

r
kp
r
k(xj−1/2) = f(xj−1/2) +O(h6).425

• If there is a discontinuity in the interval (xj−3, xj−2) and the nonlinear opti-
mal weights satisfy the following relation,

(C̃3
0 , C̃

3
1 , C̃

3
2 ) = ω̃4

0C
4
0 + ω̃5

0C
5
0 + ω̃4

1C
4
1 = C4

1 +O(h2),

with C4
1 = (0, C3

1 , 2C
3
2 ), then

∑r−1
k=0 ω

r
kp
r
k(xj−1/2) = f(xj−1/2) +O(h5).426

• If there is a discontinuity in the interval (xj+1, xj+2) and the nonlinear opti-
mal weights satisfy the following relation,

(C̃3
0 , C̃

3
1 , C̃

3
2 ) = ω̃4

0C
4
0 + ω̃5

0C
5
0 + ω̃4

1C
4
1 = C4

0 +O(h2),

with C4
0 = (2C3

0 , C
3
1 , 0), then

∑r−1
k=0 ω

r
kp
r
k(xj−1/2) = f(xj−1/2) +O(h5).427

• If there is a discontinuity in the intervals (xj , xj+1) or (xj−2, xj−1), then the
nonlinear optimal weights satisfy the following relation,

(C̃3
0 , C̃

3
1 , C̃

3
2 ) = ω̃4

0C
4
0 + ω̃5

0C
5
0 + ω̃4

1C
4
1 = (O(1), O(1), O(1)),

and
∑r−1
k=0 ω

r
kp
r
k(xj−1/2) = f(xj−1/2) +O(h4).428

Proof.429

430

• Let’s prove the first statement of the theorem. As shown in (3.9), the com-431

ponents of the vector C5
0 are the Crk(j) in (2.7). We can start by writing the432

error of interpolation obtained by the expression in (2.2) at xj−1/2,433

r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 =

r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 +

r−1∑
k=0

Crkp
r
k(xj−1/2)

−
r−1∑
k=0

Crkp
r
k(xj−1/2),

434

where the Crk are the WENO optimal weights in (2.7). Grouping terms we435

obtain,436

r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 =

r−1∑
k=0

ωrkp
r
k(xj−1/2)−

r−1∑
k=0

Crkp
r
k(xj−1/2)

+
r−1∑
k=0

Crkp
r
k(xj−1/2)− fj−1/2

=
r−1∑
k=0

(ωrk − Crk)prk(xj−1/2) +O(h2r).

437



ON NEW STRATEGIES TO CONTROL THE ACC. OF WENO ALG. 17

And due to the fact that
∑r−1
k=0 ω

r
k =

∑r−1
k=0 C

r
k = 1,438

r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 =

r−1∑
k=0

(ωrk − Crk)prk(xj−1/2) +O(h2r)

+
r−1∑
k=0

(ωrk − Crk)fj−1/2

=
r−1∑
k=0

(ωrk − Crk)(prk(xj−1/2)− fj−1/2) +O(h2r)

439

From (3.17) it turns out that (ωrk − Crk) = O(hm) with m = 2,440

(3.28)
r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 = O(hm)O(hr+1) +O(h2r) = O(hmin(m+r+1,2r)).441

For the particular case r = 3, we obtain optimal accuracy O(h6) at smooth442

zones.443

• The second and third statements of the theorem are symmetric so let’s prove444

only the second statement. As shown in (3.8), C4
1 = (0, C3

1 , 2C
3
2 ). We can445

reproduce the proof in the previous point and write the error of interpolation446

obtained in this case by the expression in (2.2) at xj−1/2,447

r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 =

r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 +

r−1∑
k=0

C4
1(k)prk(xj−1/2)448

−
r−1∑
k=0

C4
1(k)prk(xj−1/2),449

where the C4
1 are the WENO optimal weights that would provide O(h5)450

accuracy in this case, as shown in (3.8). Grouping terms we obtain,451

r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 =

r−1∑
k=0

ωrkp
r
k(xj−1/2)−

r−1∑
k=0

C4
1(k)prk(xj−1/2)

+
r−1∑
k=0

C4
1(k)prk(xj−1/2)− fj−1/2

=
r−1∑
k=0

(ωrk −C4
1(k))prk(xj−1/2) +O(h2r−1).

452

And due to the fact that
∑r−1
k=0 ω

r
k =

∑r−1
k=0 C

4
1(k) = 1,453

(3.29)
r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 =

r−1∑
k=0

(ωrk −C4
1(k))(prk(xj−1/2)− fj−1/2) +O(h2r−1)

= O(hm)O(hr+1) +O(h2r−1) = O(hmin(m+r+1,2r−1)),

454

From (3.21) and (3.23), if t ≥ 1, it turns out that if (ωrk −C4
1(k)) = O(hm)455

with m = 2 for kinks and m = 4 for jumps. Thus, for the particular case456
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r = 3, we obtain optimal accuracy O(h5) for the situation presented in Figure457

5.458

• The proof of the fourth statement of the theorem corresponds to the case459

when there is a discontinuity in the interval (xj , xj+1) or (xj−2, xj−1). In this460

case there is only one smooth substencil of four points and WENO algorithm461

reaches the maximum accuracy without any modification. Lets consider the462

case analyzed in (3.26) when the discontinuity is in the interval (xj , xj+1) as463

the other case is symmetric. From (3.26) we can consider the vector C =464

(1, 0, 0). Following the same process as before, we have that,465

r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 =

r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 +

r−1∑
k=0

C(k)prk(xj−1/2)466

−
r−1∑
k=0

C(k)prk(xj−1/2),467

Grouping terms we obtain,468

r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 =

r−1∑
k=0

ωrkp
r
k(xj−1/2)−

r−1∑
k=0

C(k)prk(xj−1/2)

+
r−1∑
k=0

C(k)prk(xj−1/2)− fj−1/2

=
r−1∑
k=0

(ωrk −C(k))prk(xj−1/2) +O(hr+1).

469

And due to the fact that
∑r−1
k=0 ω

r
k =

∑r−1
k=0 C(k) = 1,470

(3.30)
r−1∑
k=0

ωrkp
r
k(xj−1/2)− fj−1/2 =

r−1∑
k=0

(ωrk −C(k))(prk(xj−1/2)− fj−1/2) +O(hr+1)

= O(hm)O(hr+1) +O(hr+1) = O(hmin(m+r+1,r+1)).

471

From (3.26) and (3.27) it is clear that m = 2t for kinks and m = 4t for jumps.472

Thus, for the particular case r = 3 with t ≥ 1, we obtain optimal accuracy473

O(h4) if we find a discontinuity in the intervals (xj , xj+1) or (xj−2, xj−1).474

The previous theorem leads to the following corollary475

Corollary 3.3. Considering the initial hypothesis r = 3, t ≥ 1, and ε ≤ h4 the476

new WENO interpolant is at least as good as WENO interpolant close to discontinui-477

ties.478

Proof. The proof is straightforward from the hypothesis and the proof of previous479

theorem. It basically consists in comparing the order of accuracy that WENO would480

obtain with the accuracy that the new WENO method obtains. In order to do this,481

we can just follow the proof of the previous theorem:482

• If there is no discontinuity affecting the stencil, for r = 3 WENO obtains483

O(h6) accuracy and from (3.28) the new WENO algorithm also obtains O(h6)484

accuracy.485
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• If there is a discontinuity in the interval (xj−3, xj−2) or (xj+1, xj+2), WENO486

algorithm typically obtains O(h4) accuracy. From (3.29) the new WENO487

algorithm obtains O(h5) accuracy with t ≥ 1.488

• If there is a discontinuity in the intervals (xj , xj+1) or (xj−2, xj−1), WENO489

algorithm obtains O(h4) accuracy. From (3.30) the new WENO algorithm490

obtains O(h4) accuracy with t ≥ 1.491

A small enough value of ε in (3.13) and in (2.10) is a value of order O(h4), as this492

is the minimum value of the new smoothness indicators (3.4), (3.5) and (3.6), that is493

reached at smooth zones, as can be seen from Theorem 3.1.494

3.3. Increasing the accuracy at the central interval of the stencil in495

the point values. In this subsection we will analyze how to increase the accuracy496

attained by WENO method when a kink is placed at the central interval of the stencil,497

as shown in Figure 6. It is important to remember that in the point value setting, the498

position of jump discontinuities is lost during the discretization process and we can not499

hope to localize their exact position [38]. In [1] we extend the algorithm presented500

in this article for working in the cell averages and to the solution of conservation501

laws. We can use the smoothness indicators of three points shown in (3.3) in order to502

detect the presence of a kink in the central interval of the big stencil. If we use these503

smoothness indicators and a kink is placed in the interval (xj−1, xj), then the first504

substencil S2
−1 = {xj−3, xj−2, xj−1} and the fourth substencil S2

2 = {xj , xj+1, xj+2}505

are smooth and I2−1 and I22 take a value that is O(h4), while the second and third506

stencils S2
0 = {xj−2,xj−1, xj}, S2

1 = {xj−1, xj , xj+1} are not smooth so I20 and I21 take507

value that is O(h2). This is a hint that should lead us to think that there is a kink at508

the interval (xj−1, xj). For isolated discontinuities, we will have the following cases:509

• If there is not a discontinuity in the interval (xj−1, xj), then I2−1, I
2
0 , I

2
1 and510

I22 are O(h4).511

• If there is a discontinuity in the interval (xj−1, xj), then I2−1 and I22 are O(h4)512

and I20 and I21 are O(h2).513

• If there is a discontinuity at xj−1, then I2−1, I
2
1 and I22 are O(h4) and I20 is514

O(h2).515

• If there is a discontinuity at xj , then I2−1, I
2
0 and I22 are O(h4) and I21 is O(h2).516

Our objective is to localize the position of the discontinuity and, depending on its517

position with respect to xj−1/2, then extrapolate at xj−1/2 using S2
−1 or S2

2 . This518

process is inspired by Harten’s ENO subcell resolution algorithm. Due to the bigger519

errors associated to the extrapolation process we would like to use it only when it is520

strictly necessary. Moreover, the extrapolation process that we propose reduces the521

stencil in order to avoid the discontinuity and, hence, implies order reduction if the522

location process fails and detects a discontinuity at a smooth zone. Thus, we only523

want to apply it at real singularities.524

Being h the grid spacing, when h(I20 + I21 ) > I2−1 + I22 the interval (xj−1, xj)525

is considered suspicious of containing a discontinuity. In this case, we build the526

second order interpolating polynomial p20(x), using the data {fj−3, fj−2, fj−1}, that527

corresponds to the stencil S2
0 , and the second order interpolating polynomial p23(x),528

using the data {fj , fj+1, fj+2}, that correspond to S2
3 . Then we build the function529

g(x) = p20(x)−p23(x). Supposing that there is only one zero of g(x) inside the interval530

(xj−1, xj), that zero corresponds to the position of the discontinuity with O(h3) accu-531

racy. Even though, we do not need to find the zeros of g(x) but only to know if one of532

them is placed in the interval (xj−1, xj−1/2) or in the interval (xj−1/2, xj). Evaluating533

g(x) at xj−1, xj−1/2 and xj and using Bolzano’s theorem we can know in which of the534
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previous subintervals we can find the discontinuity, if there is one. If the discontinuity535

is placed in the interval (xj−1, xj−1/2), we will use p23(x) to extrapolate at xj−1/2 in536

order to obtain an O(h3) approximation. On the other hand, if the discontinuity is537

placed in the interval (xj−1/2, xj), we will use p20(x) to extrapolate at xj−1/2. This538

technique assures O(h3) accuracy when a kink is placed in the central interval of the539

stencil. This process is somewhat similar to the one described by Harten in [41] to540

construct ENO subcell-resolution algorithm for conservation laws. Of course, the grid541

must be fine enough so that the discontinuity can be detected. Thus, it must be a-542

ssured that the grid spacing is below a critical value hc that guarantees the detection543

of the singularity. The smoothness indicators used in this work are based on second544

order differences, which are the base of the detection algorithm in [38]. As a conse-545

quence, the value of the critical grid spacing hc can be directly taken from Section 4,546

Lemma 2 of [38]. The interested reader can refer to [38] for a deeper explanation of547

this point.548

3.4. ENO property. It is important to remember that the technique presented549

in Section 3.2 or 3.3 is basically a WENO algorithm where we modify the original550

optimal weights in order to assure the maximum possible order close to discontinuities.551

The new WENO technique assures that the resulting polynomial satisfies the552

following properties:553

• It is a piecewise polynomial interpolation composed of polynomials of even554

degree r.555

• Every polynomial must satisfy the so-called essentially non-oscillatory pro-556

perty, through the emulation of the ENO algorithm [14]:557

– If the function f is smooth at the stencil Srk, then the weight related to558

this stencil will verify wrk = O(1).559

– If the function f has a singularity at the stencil Srk, then the correspon-560

ding wrk will verify wrk ≤ O (hr) .561

If the weights wrk that appear in (2.3) are designed to satisfy the ENO property, then562

qj−r(x) in (2.2) is a nonlinear convex combination of polynomials built using smooth563

stencils and where the contribution of stencils crossing discontinuities is negligible.564

Theorem 3.4. The new algorithm satisfies the ENO property for t ≥ 2, satisfying565

at the same time Theorem 3.2.566

Proof. For t ≥ 1 Theorem 3.2 is satisfied, so for t ≥ 2 it is also satisfied. From567

(3.18), (3.23) and (3.26) we can see that for t ≥ 2:568

• If the function f is smooth at the stencil Srk, then the weight related to this569

stencil will verify wrk = O(1).570

• If the function f has a singularity at the stencil Srk, then the corresponding571

wrk will verify wrk ≤ O (hr) .572

This is precisely the ENO property.573

4. Numerical experiments. In this section we have used the functions plotted574

in Figure 7 and presented in (4.1), (4.2) and (4.3). The function in (4.1) is a piecewise575

polynomial of degree eight. The function in (4.2) is the product of two sinusoidal576

functions plus a polynomial. The function in (4.3) presents a jump discontinuity.577

We have used a stencil of six points, i.e. r = 3 in (2.1), so no one of the functions578

proposed can be interpolated exactly. Following Corollary 3.3 and Subsection 3.4,579

we have chosen the parameters t = 2 and ε ≤ h4 for the new algorithm shown in580

Subsection 3.2. For WENO it is enough to choose t = 2 and ε ≤ h2, as shown in [15].581

We have used in all the experiments the smoothness indicators proposed in (3.1).582
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In all the experiments presented, in order to obtain lower resolution versions of583

the initial data, we start from a discretized version at a higher resolution and then584

we take one of every 2n samples. Using interpolation we recover a high resolution585

approximation of the original data. We have chosen to interpolate at the odd knots.586
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Fig. 7. In this figure we represent the functions (4.1), (4.2) and (4.3) that will be used for the
numerical experiments of this section.

Example 1 Let’s start with the function plotted in Figure (7) to the left,587

(4.1) f(x) = |(x− 3)(x− 1.5)(x− 0.5)(x+ η)(x+ 0.3)(x+ 0.6)(x+ 5)(x+ 1.5)| ,588

for −0.5 − ξ ≤ x < 0.5 − ξ. Setting grid spacing to hi = 1
2i , i = 6, 7, · · · , 12, we589

check the accuracy of the interpolation through a grid refinement analysis close to the590

discontinuity at x = 0. In order to obtain the error, we compare with the function591

discretized with hi+1 = 1
2i+1 . The worst case is when the discontinuity does not fall592

in a grid point (otherwise, there is always a smooth stencil). In order to assure the593

worse case for all the discretizations used, we place the discontinuity around which594

we will do the grid refinement analysis at x = −η, with η = (2/3)h13 and we place595

the left side of the interval at x = −0.5− ξ with ξ = 10h13. These considerations are596

only taken for doing the grid refinement analysis and would not be necessary in a real597

application of the algorithm.598

We consider the errors at the nodes {x2j−6, x2j−4, x2j−2, x2j , x2j+2, x2j+4, x2j+6},599

being x2j the prediction at the interval that contains the discontinuity (in this first600

experiment close to x = 0). Table 1 shows the results obtained by WENO algorithm601

using the smoothness indicator proposed in (3.1) and whose expressions are shown602

in (3.4). Table 2 shows the results obtained at the same points for the new optimal603

weights, described in Subsection 3.2, and WENO. The two tables show the order of604

accuracy between the successive errors when refining the grid. We can see how the605

accuracy is lost by both algorithms at the interval that contains the discontinuity.606

Also, as explained in Subsection 3.2, WENO is designed to obtain optimal order at607

smooth zones and to eliminate spurious oscillations close to discontinuities, but not608

optimizing the order in this last case. This fact can be seen in Table 1 at x2j−4 and609

x2j+4. In both cases there are two smooth stencils, containing in total 5 points be-610

longing to the same side of the singularity. This means that the maximum theoretical611

accuracy that can be obtained is O(h5) and WENO algorithm obtains O(h4). As it612

can be analyzed in Table 2, using the new optimal weights presented in Subsection613

3.2, we attain the maximum theoretical accuracy in the whole interval except at the614
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interval that contains the singularity. Table 3 shows the results obtained by the new615

algorithm proposed in Subsection 3.3. We can see how the algorithm reproduces the616

behavior of the algorithm presented in Subsection 3.2 in terms of accuracy, at the617

intervals that are close to the discontinuity but do not contain it. At the interval that618

contains the discontinuity we have managed to raise the accuracy using the strategy619

inspired by ENO-Subcell resolution algorithm that was presented in Subsection 3.3.620

Figure 8 shows the absolute error distribution for the three algorithms when interpo-621

lating the function in (4.1) using 212 = 4096 samples. To the left we can see the error622

obtained by WENO algorithm, at the center the error obtained using the new weights623

presented in Subsection 3.2 and to the right the error obtained by the new algorithm624

presented in Subsection 3.3. We can see how the error presented in this last plot is625

six orders of magnitude smaller than in the other two plots.626

x2j−6 x2j−4 x2j−2 x2j x2j+2 x2j+4 x2j+6

i ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
6 1.848e-08 - 4.867e-07 - 2.031e-06 - 1.076e-03 - 5.188e-05 - 1.475e-05 - 2.299e-08 -
7 2.943e-10 5.973 2.972e-08 4.034 1.271e-07 3.998 1.075e-03 0.001 1.771e-06 4.873 2.325e-07 5.988 3.274e-10 6.133
8 4.668e-12 5.978 1.843e-09 4.011 7.934e-09 4.002 1.052e-03 0.032 1.901e-08 6.542 2.696e-09 6.430 4.914e-12 6.058
9 7.359e-14 5.987 1.148e-10 4.005 4.941e-10 4.005 1.017e-03 0.048 5.484e-10 5.115 1.178e-10 4.516 7.546e-14 6.025
10 1.154e-15 5.995 7.141e-12 4.007 2.974e-11 4.054 8.539e-04 0.253 3.132e-11 4.130 7.171e-12 4.038 1.171e-15 6.010
11 1.908e-17 5.918 4.482e-13 3.994 1.941e-12 3.938 1.491e-04 2.518 2.220e-12 3.818 4.673e-13 3.940 1.735e-17 6.077
12 0 - 2.800e-14 4.000 1.212e-13 4.001 1.532e-04 -0.039 1.227e-13 4.177 2.806e-14 4.058 1.301e-18 3.737

Table 1
Grid refinement analysis for the smoothness indicators presented in (3.1) and WENO algorithm

for the function in (4.1). We can see how the accuracy is reduced at the interval that contains the
singularity and around it. At x2j−4 and x2j+4 there is enough information to obtain O(h5) accuracy,
but WENO is not designed to optimize the accuracy close to the discontinuities.

x2j−6 x2j−4 x2j−2 x2j x2j+2 x2j+4 x2j+6

i ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
6 1.848e-08 - 6.681e-09 - 2.052e-06 - 1.076e-03 - 3.048e-05 - 1.084e-05 - 2.299e-08 -
7 2.943e-10 5.973 1.240e-10 5.751 1.278e-07 4.005 1.077e-03 -0.000 9.762e-07 4.964 3.377e-08 8.326 3.275e-10 6.133
8 4.668e-12 5.978 9.334e-12 3.732 7.961e-09 4.005 1.062e-03 0.020 1.457e-08 6.066 5.100e-11 9.371 4.914e-12 6.058
9 7.359e-14 5.987 3.789e-13 4.623 4.956e-10 4.006 1.034e-03 0.039 5.593e-10 4.703 6.597e-13 6.272 7.546e-14 6.025
10 1.154e-15 5.995 1.294e-14 4.872 2.952e-11 4.069 8.537e-04 0.276 3.125e-11 4.162 1.677e-14 5.298 1.171e-15 6.010
11 1.908e-17 5.918 4.454e-16 4.861 1.942e-12 3.926 1.511e-04 2.499 2.121e-12 3.881 5.594e-16 4.906 1.735e-17 6.077
12 0 - 1.409e-17 4.982 1.213e-13 4.001 1.540e-04 -0.028 1.232e-13 4.106 1.518e-17 5.204 8.674e-19 4.322

Table 2
Grid refinement analysis for the new optimal weights presented in Subsection 3.2 and WENO

algorithm for the function in (4.1). We can see how the accuracy is lost at the interval that contains
the singularity, but it is controlled close to it, decreasing step by step as we move towards the
singularity.

x2j−6 x2j−4 x2j−2 x2j x2j+2 x2j+4 x2j+6

i ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
6 1.848e-08 - 6.681e-09 - 8.870e-05 - 1.416e-04 - 3.048e-05 - 1.084e-05 - 2.299e-08 -
7 2.943e-10 5.973 1.240e-10 5.751 1.278e-07 9.439 1.610e-05 3.136 9.762e-07 4.964 3.377e-08 8.326 3.275e-10 6.133
8 4.668e-12 5.978 9.334e-12 3.732 7.961e-09 4.005 1.911e-06 3.075 1.457e-08 6.066 5.100e-11 9.371 4.914e-12 6.058
9 7.359e-14 5.987 3.789e-13 4.623 4.956e-10 4.006 2.325e-07 3.039 5.593e-10 4.703 6.597e-13 6.272 7.546e-14 6.025
10 1.154e-15 5.995 1.294e-14 4.872 2.952e-11 4.069 2.810e-08 3.049 3.125e-11 4.162 1.677e-14 5.298 1.171e-15 6.010
11 1.908e-17 5.918 4.454e-16 4.861 1.942e-12 3.926 3.573e-09 2.975 2.121e-12 3.881 5.594e-16 4.906 1.735e-17 6.077
12 0 - 1.409e-17 4.982 1.213e-13 4.001 4.450e-10 3.005 1.232e-13 4.106 1.518e-17 5.204 8.674e-19 4.322

Table 3
Grid refinement analysis for the algorithm presented in Subsection 3.3 for the function in (4.1).

We can see how the accuracy is raised at the interval that contains the singularity and how the order
decreases in a controlled way, step by step as we move towards the singularity.
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Fig. 8. Absolute error obtained when reconstructing the function in (4.1) through WENO (left),
through the algorithm presented in Subsection 3.2 (center) and through the algorithm presented in
Subsection 3.3 (right). The original data was 8192 points and the subsampled data was 4096 points.

Example 2 Let’s continue with the function plotted in Figure (7) at the center,627

(4.2) l(x) = |sin (4π(x+ η))| cos ((2(x+ η)) + x, −0.5− ξ ≤ x < 0.5− ξ.628

As before, we set hi = 1
2i , i = 6, 7, · · · , 12, in order to check the accuracy of the629

interpolation through a grid refinement analysis close to the singularity that is placed630

in the interval (−0.3,−0.2). As before, in order to obtain the error we compare with631

the function discretized with hi+1 = 1
2i+1 . As mentioned in the previous experiment,632

in order to assure that the singularities do not fall at a grid point, we shift the633

function by η = (2/3)h13 and we place the left side of the interval at x = −0.5 − ξ634

with ξ = 3h13. Table 4 shows a grid refinement analysis for the results of WENO635

algorithm at the singularity placed in the interval (−0.2,−0.3) of function in (4.2).636

The conclusions that we can reach for this experiment are the same as those we637

obtained for the previous experiment. We can clearly observe how the accuracy is638

reduced around the interval that contains the singularity, but not in an optimal way.639

Table 5 shows the results obtained for the same function but using WENO with the640

new weights introduced in Subsection 3.2. We can see that the accuracy also decreases641

around the central interval but, in this case, reducing the order one step at a time642

as we proceed towards the singularity. Table 6 shows the results obtained using the643

new algorithm introduced in Subsection 3.3. We can see that the order of accuracy644

is optimal, including the interval that contains the singularity. Figure 9 shows the645

absolute error distribution for the three algorithms when interpolating the function646

in (4.2) using 212 samples. As before, we can see how the error presented in the plot647

to the right is several orders of magnitude smaller than the ones to the left and at the648

center.649

Example 3 Let’s finish with the function plotted in Figure (7) to the right,650

(4.3) f(x) =

{
−4x7 + x4 + 5x2 + 3x, 0.5 ≤ x < 0,
−8x7 + x4 + 5x2 + 3x+ 1, 0 ≤ x < 0.5,

651

In this case we have set again hi = 1
2i , i = 7, 8, 9 · · · 11, for the grid refinement analysis.652

The function in (4.3) only presents a jump discontinuity that is placed at x = 0. Table653

7 shows a grid refinement analysis for the results obtained using the WENO algorithm.654

Table 8 shows the result obtained using the optimal weights presented in Subsection655

3.2. In this case, the algorithm presented in Subsection 3.3 can not be applied, as the656
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x2j−6 x2j−4 x2j−2 x2j x2j+2 x2j+4 x2j+6

i ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
6 1.812e-06 - 6.743e-06 - 3.322e-05 - 9.801e-04 - 1.064e-04 - 1.735e-05 - 6.014e-07 -
7 2.312e-08 6.292 3.354e-07 4.329 1.634e-06 4.346 9.807e-04 -0.001 1.591e-06 6.063 3.142e-07 5.787 2.348e-10 11.322
8 3.274e-10 6.142 1.862e-08 4.171 8.709e-08 4.230 9.810e-04 -0.000 5.206e-08 4.934 1.198e-08 4.713 1.553e-10 0.596
9 4.889e-12 6.065 1.095e-09 4.088 4.958e-09 4.135 9.790e-04 0.003 3.677e-09 3.824 8.862e-10 3.756 3.753e-12 5.371
10 7.441e-14 6.038 6.637e-11 4.044 2.945e-10 4.073 9.591e-04 0.030 2.520e-10 3.867 5.976e-11 3.890 6.881e-14 5.770
11 1.027e-15 6.179 4.086e-12 4.022 1.792e-11 4.038 9.232e-04 0.055 1.658e-11 3.926 3.878e-12 3.946 1.443e-15 5.575
12 1.388e-16 2.888 2.537e-13 4.010 1.105e-12 4.019 7.755e-04 0.251 1.063e-12 3.963 2.467e-13 3.974 1.388e-16 3.379

Table 4
Grid refinement analysis for the smoothness indicators presented in (3.1) and WENO algorithm

for the function in (4.2). We can see how the accuracy is reduced at the interval that contains the
singularity and around it. At x2j−4 and x2j+4 there is enough information to obtain O(h5) accuracy,
but WENO is not designed to optimize the accuracy close to the singularities.

x2j−6 x2j−4 x2j−2 x2j x2j+2 x2j+4 x2j+6

i ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
6 1.815e-06 - 2.339e-06 - 3.324e-05 - 9.801e-04 - 7.058e-05 - 1.682e-05 - 6.092e-07 -
7 2.315e-08 6.293 9.660e-08 4.598 1.634e-06 4.346 9.808e-04 -0.001 9.005e-07 6.292 1.722e-07 6.610 1.660e-10 11.842
8 3.275e-10 6.143 3.324e-09 4.861 8.709e-08 4.230 9.812e-04 -0.001 4.733e-08 4.250 4.230e-09 5.347 1.556e-10 0.093
9 4.890e-12 6.066 1.090e-10 4.930 4.958e-09 4.135 9.798e-04 0.002 3.626e-09 3.706 1.241e-10 5.091 3.756e-12 5.372
10 7.438e-14 6.039 3.496e-12 4.963 2.945e-10 4.073 9.672e-04 0.019 2.517e-10 3.848 3.725e-12 5.058 6.881e-14 5.771
11 1.027e-15 6.179 1.107e-13 4.981 1.792e-11 4.038 9.386e-04 0.043 1.658e-11 3.924 1.143e-13 5.027 1.443e-15 5.575
12 1.943e-16 2.402 3.192e-15 5.116 1.105e-12 4.020 7.753e-04 0.276 1.063e-12 3.963 3.358e-15 5.089 1.388e-16 3.379

Table 5
Grid refinement analysis for the new optimal weights presented in Subsection 3.2 and WENO

algorithm for the function in (4.2). We can see how the accuracy is lost at the interval that contains
the singularity, but it is controlled close to it, decreasing step by step as we move towards the
singularity.

x2j−6 x2j−4 x2j−2 x2j x2j+2 x2j+4 x2j+6

i ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
6 1.815e-06 - 2.339e-06 - 1.862e-03 - 2.322e-03 - 7.058e-05 - 1.682e-05 - 6.092e-07 -
7 2.315e-08 6.293 9.660e-08 4.598 2.599e-04 2.841 2.894e-04 3.005 9.005e-07 6.292 1.722e-07 6.610 1.660e-10 11.842
8 3.275e-10 6.143 3.324e-09 4.861 3.382e-05 2.942 3.567e-05 3.020 4.733e-08 4.250 4.230e-09 5.347 1.556e-10 0.093
9 4.890e-12 6.066 1.090e-10 4.930 4.958e-09 12.736 4.414e-06 3.015 3.626e-09 3.706 1.241e-10 5.091 3.756e-12 5.372
10 7.438e-14 6.039 3.496e-12 4.963 2.945e-10 4.073 5.485e-07 3.008 2.517e-10 3.848 3.725e-12 5.058 6.881e-14 5.771
11 1.027e-15 6.179 1.107e-13 4.981 1.792e-11 4.038 6.835e-08 3.005 1.658e-11 3.924 1.143e-13 5.027 1.443e-15 5.575
12 1.943e-16 2.402 3.192e-15 5.116 1.105e-12 4.020 8.510e-09 3.006 1.063e-12 3.963 3.358e-15 5.089 1.388e-16 3.379

Table 6
Grid refinement analysis for the algorithm presented in Subsection 3.3 for the function in (4.2).

We can see how the accuracy is raised at the interval that contains the singularity and how the order
decreases in a controlled way, step by step as we move towards the singularity.

position of the jump discontinuity has been lost in the discretization process [38]. We657

can see how the new optimal weights allow to control the reduction of accuracy close658

to the discontinuity.659

x2j−6 x2j−4 x2j−2 x2j x2j+2 x2j+4 x2j+6

i ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
6 8.073e-11 - 1.284e-08 - 5.596e-08 - 4.996e-01 - 5.508e-08 - 1.294e-08 - 1.349e-10 -
7 8.178e-13 6.625 8.054e-10 3.995 3.493e-09 4.002 4.999e-01 -0.001 3.486e-09 3.982 8.061e-10 4.004 8.493e-13 7.311
8 9.354e-15 6.450 5.037e-11 3.999 2.183e-10 4.000 5.000e-01 -0.000 2.182e-10 3.998 5.037e-11 4.000 3.775e-15 7.814
9 1.197e-16 6.288 3.148e-12 4.000 1.364e-11 4.000 5.000e-01 -0.000 1.364e-11 4.000 3.148e-12 4.000 2.220e-16 4.087
10 0 - 1.968e-13 4.000 8.527e-13 4.000 5.000e-01 -0.000 8.527e-13 4.000 1.970e-13 3.999 0 -
11 0 - 1.230e-14 4.000 5.329e-14 4.000 5.000e-01 -0.000 5.329e-14 4.000 1.243e-14 3.985 0 -
12 0 - 7.685e-16 4.000 3.331e-15 4.000 5.000e-01 -0.000 3.331e-15 4.000 6.661e-16 4.222 2.220e-16 -

Table 7
Grid refinement analysis for the smoothness indicator proposed in (3.1) and WENO algorithm

for the function in (4.3). We can see how the accuracy is reduced at the central interval of the
stencil and around it.
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Fig. 9. Absolute error obtained when reconstructing the function in (4.2) through WENO (left),
through the algorithm presented in Subsection 3.2 (center) and through the algorithm presented in
Subsection 3.3 (right). The original data was 213 points and the subsampled data was 212 points.

x2j−6 x2j−4 x2j−2 x2j x2j+2 x2j+4 x2j+6

i ei log2

(
ei
ei+1

)
ei log2

(
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ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
ei log2

(
ei
ei+1

)
6 8.073e-11 - 1.295e-10 - 5.597e-08 - 4.996e-01 - 5.507e-08 - 4.475e-10 - 1.349e-10 -
7 8.178e-13 6.625 1.201e-12 6.753 3.493e-09 4.002 4.999e-01 -0.001 3.486e-09 3.982 3.296e-12 7.085 8.493e-13 7.311
8 9.354e-15 6.450 1.235e-14 6.603 2.183e-10 4.000 5.000e-01 -0.000 2.182e-10 3.998 2.287e-14 7.171 3.775e-15 7.814
9 1.162e-16 6.331 1.440e-16 6.423 1.364e-11 4.000 5.000e-01 -0.000 1.364e-11 4.000 2.220e-16 6.687 2.220e-16 4.087
10 1.735e-18 6.066 1.735e-18 6.375 8.527e-13 4.000 5.000e-01 -0.000 8.527e-13 4.000 0 - 0 -
11 0 - 0 - 5.329e-14 4.000 5.000e-01 -0.000 5.329e-14 4.000 0 - 0 -
12 0 - 0 - 3.331e-15 4.000 5.000e-01 -0.000 3.331e-15 4.000 2.220e-16 - 0 -

Table 8
Grid refinement analysis for the new optimal weights and WENO algorithm for the function

in (4.3). We can see how the accuracy is increased around the discontinuity.

Example 4 In this experiment we would like to check the computational perfor-660

mance of the new algorithms compared to the classical WENO algorithm. The code661

has been written in Matlab R2017b and executed in a laptop running OSX version662

10.9.5 with a microprocessor Intel Core i5, 1.4GHz and 8 GB of RAM memory. In Ta-663

ble 9 we present the results. In order to obtain each result presented in the table, we664

have executed 50 times each algorithm with the same initial data, we have obtained665

the computational time using the tic-toc buil-tin routines of Matlab and then we have666

obtained the mean of the 50 results. The initial data have been the same as the one667

used in the Examples 1, 2 and 3 at the same resolution used in the grid refinement668

analysis presented. The conclusions that we can reach from these experiments is that669

the new algorithms proposed are more expensive than the classical WENO, but not670

so much. Comparing the two new algorithms presented in this paper, both behave671

approximately the same in terms of computational time.672

5. Conclusions. In this article we have presented and analyzed two strategies673

that allow to improve the results obtained by WENO algorithm. The first one consists674

in a new nonlinear design of the WENO optimal weights. This new strategy allows675

to control the order of accuracy of the interpolation close to the discontinuity but676

not in the interval that contains it. The second strategy is inspired by the ENO-677

SR algorithm [41]. This second algorithm manages to raise the order of accuracy678

even at the interval that contains the discontinuity. Both strategies make use of new679

smoothness indicators that are inspired by those presented in [36]. The new algorithms680

have been theoretically analyzed to determine the value of the parameters t and ε681

that appear in (2.10) and (3.13). It turns out that the value of these parameters is682
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Example 1 Example 2 Example 3
i WENO New WENO WENO-SR WENO New WENO WENO-SR WENO New WENO WENO-SR
6 0.0039189 0.0050155 0.0067716 0.0037825 0.0063749 0.0055041 0.0040808 0.0060425 0.0060831
7 0.0041907 0.0064866 0.0072892 0.0032467 0.0066217 0.0074879 0.0028794 0.0070028 0.0056376
8 0.0052122 0.01333 0.0094176 0.0049805 0.0093341 0.010404 0.0046728 0.0094143 0.011844
9 0.0092705 0.021184 0.023047 0.0092013 0.019338 0.028683 0.0094946 0.018851 0.018876
10 0.01928 0.038014 0.045976 0.018954 0.034816 0.038187 0.018083 0.035791 0.036507
11 0.035951 0.061106 0.062691 0.034358 0.061173 0.060977 0.036714 0.061167 0.061914
12 0.059382 0.12116 0.12277 0.059937 0.12127 0.12286 0.059257 0.12214 0.12334

Table 9
In this table we present the computational time consumed by WENO, the algorithm presented

in Subsection 3.2 (labeled as New WENO) and the algorithm presented in Subsection 3.3 (labeled as
WENO-SR).

important in order to assure that the algorithms satisfy the ENO property, presented683

in Subsection 3.4, and the accuracy requirement for which they have been designed:684

attaining optimal accuracy control even close to kinks and jump discontinuities. The685

numerical experiments presented confirm all the theoretical conclusions reached. This686

work is the first one of a series of two, and is devoted to the point values version of the687

algorithms presented. The second article [1] will be devoted to the cell averages and688

how to implement a shock capturing scheme for the accurate solution of hyperbolic689

conservation laws.690
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