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Abstract—This work presents a new analog architecture to perform image convolution for deep learning purposes in CMOS 
imagers in the analog domain. The architecture is focused to reduce both power dissipation and data transfer between memory and 
the analog operators. It uses mixed signal multiply and add operators arranged following a row-parallel architecture in order to be 
fully scalable for different CMOS imager sizes. The multiplier circuit used is based on a current mode architecture to multiply the 
value of analog inputs by the digital stored weights and produce current mode outputs which are then added to obtain the 
convolution result. A digital control circuit manages the pixel readout and the multiply and add operations. The architecture is 
demonstrated performing 3x3 convolutions on 64x64 images with a padding equal to 1. Convolution weights are locally stored as 4-
bit digital values. The circuit has been synthesized in 110 nm CMOS technology. For this configuration, the simulation results show 
that the circuit is able to perform a whole convolution in 32 us and achieve an efficiency of 2.13 TOPS/W. These results can be 
extrapolated to larger CMOS imagers and different mask sizes. 
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I. INTRODUCTION  
In recent years, deep neural networks (DNNs) have become a paradigm in computer applications, being the focus for more 

and more researches to obtain faster and more accurate networks. On the other hand, hardware implementation of such systems 
is such a difficult task, given the effort needed to simplify computer algorithms in order to fit them into electronic circuits [1]. 
Multiply and accumulate (MAC) operations are widely used in convolutional neural networks, a particular type of network 
used for identification and tracking purposes. In a typical implementation, convolutional layers are responsible for more than 
90% of execution time during the inference. These operations require large power dissipation and also large movements of 
data, and so, memory bandwidth often becomes the bottleneck of the network, given the large number of weights that must be 
transferred from the memory to the MAC operators. 

Compared to digital processing, analog signal processing circuits are able to achieve much higher energy efficiency. 
However, its main drawback is an increased sensitivity due to device and circuit non-idealities. Although these types of circuits 
are not as precise as digital circuits, deep learning characteristics allow the use of circuits with lower accuracy specifications, 
since the loss of precision can be accounted for during the training of the DNNs [1]. Moreover, analog-domain operations can 
operate directly on raw analog data obtained from the image sensor before digitization, thus alleviating the requirements of the 
analog to digital conversion circuitry. Over the past few years, so called analog computing has been applied for the design of 
deep learning circuits in different works [2].  

There are different approaches to designing analog MACs, usually depending on resolution, speed or power dissipation 
specifications. Switched capacitor circuits demand significantly less energy than its digital counterparts. However, the 
overhead area of capacitors represents a serious drawback [3] in these types of circuit. There have also been proposals of MAC 
operations in the time domain [4], although these require a large number of digital-to-time converters arranged in series which 
results in a significant silicon area. On the other hand, continuous time operators such us current mode circuits allow for analog 
computation with large dynamic ranges and low supply voltages [5].  

In this paper, a mixed signal multiply-add architecture to perform convolution on images is presented. The circuit is 
designed to be synthetized in the analog domain close to the image pixels in order to reduce power dissipation and data transfer 
between memory and the analog operators and it presents a row-parallel row architecture to be fully scalable for different 
CMOS imager sizes. In this paper a 64x64 CMOS imager and a 3x3 convolution mask have been synthesized at device level to 
evaluate the circuit performance. The circuit combines analog current mode processing with digital storage of weights. The rest 
of the paper is organized as follows. Section II describes the structure and operation of the proposed architecture. Results are 
shown in Section III. Finally, conclusions are summarized in Section IV. 

II. CIRCUIT DESCRIPTION 
Fig. 1 shows a general overview of the implementation of the convolution circuitry for a generic size CMOS imager, where 

pixels are arranged following a row pattern. Each active pixel sensor (APS) in a row is connected to a multiply and add (MAD) 
operator through one of the switches swi, which performs partial MAD operations on each row, and these results are then added 
to obtain the convolution. The imager is framed by a border of dummy pixels whose function is to provide the capability of 
performing convolution with a padding factor of 1.  



 

Fig. 1. General overview of the row parallel convolution architecture. 

 

Fig. 2. Struture of the convolution circuitry. a) pixel and MAC arrangement b) c) d) mixed signal current mode MACs, e) 3x3 mask. 

The circuit uses a mixed mode operation combining voltage and current modes as well as digital values for the 4-bit 
weights. A detailed implementation of this architecture is shown in Fig. 2. The figure represents an m rows x n columns 
imager, which includes two additional columns and two additional rows corresponding to the dummy pixels border. The 
architecture is organized following a row-parallel arrangement, where each pixel is connected to its respective row-MAD 
through a set of analog switches swi which drive the pixel output to an intermediate Sample & Hold (S&H) circuit. The number 
of analog switches is the same as the side size of the convolution mask. In the figure, a 3x3 convolution mask is being applied, 
and therefore this is the number of switches per pixel. However, pixels in columns 0, 1, n-1 and n use one or two switches 
respectively, since they take part in the convolution only once or twice. Each convolution is decomposed in a number of 
parallel MAD operations carried out on the pixels of the same row. So, for a 3x3 convolution, the three sets of pixels in each 
one of the three first rows are processed simultaneously (Fig. 2).  



 

Fig. 3. Timing of the convolution operations 

 

 

Fig. 4. Row-parallel MAD arrangement a) rows 0 and 65 b) rows 1 and 64 c) rest of rows, d) 3x3 convolution mask. 

In fact, the architecture is designed to process the three neighboring columns involved in a convolution of a single clock 
period. The operation for this 3x3 convolution is the following: in each period, pixels are reset during the first semi-period, 
while the pixel readout and the MAD operation are performed during the second semi-period, as is shown in Fig. 3. The 
processing of an image starts enabling columns 0 to 2 through switches sw0 to sw2 and resetting the involved pixel values along 
all the three columns. The analog convolution for these columns is performed during the second semi-period in a parallel 
fashion for all the rows of pixels involved in the operation, i.e. convolutions centered in column 1 are simultaneously obtained 
during the first cycle. So, for the convolution centered in pixel (1,1), MAD 0 performs the operation i0,1 = Σij·w0,j for j ∈ (0,2), 
while the values of i0,2 and i0,3 are obtained simultaneously in MAD 1 and MAD 2 respectively. The result of these three 
operations is then added to yield the convolved pixel output value.  



 

Fig. 5. S&H and interface circuit. 

 

Fig. 6. 4-bit analog/digital multiplier. 

The structure of the MAD circuits is detailed in Fig.4. Fig 4.a details the MAD used for rows 0 and m. It only outputs one 
value of current given that the pixels involved only take part in the convolution centered in row 1. Fig 4.b corresponds to MAD 
1 and MAD m-1. The two outputs are required since pixels in row 1 take part in the convolution centered in column 0 and in 
column 1. Finally, the circuit described in Fig. 4 c corresponds to the rest of the MADs, where pixels take part in three 
simultaneous convolutions. This process is repeated for all columns in the imager to obtain the convolution of the whole image. 
Fig. 5 shows the S&H-VI circuit used to sample the pixel value and interface with the current mode analog multiplier. The 
S&H circuit is composed of the capacitor and the switch swi placed at the focal plane shown in Fig.2. The value held at the 
capacitor drives the differential cascaded structure to provide a current IP representing the pixel value. In order to achieve the 
proposed parallelization schema (Fig. 4) without increasing the number of current mirrors, the analog input to the multiplier is 
the voltage at the output of the S&H-VI module (VBIAS). Fig. 6. shows the architecture of the analog multiplier with digital 
weights. The multiplier is designed to work with 4-bit weights, which are stored close to each multiplier cell, allowing a 
reduction of the data transfer compared to the use of a same memory for all the weights.  



 

Fig. 7. Evolution of analog signals in the multiplier circuit. 

III. RESULTS 
The proposed architecture has been synthesized at device level using a CMOS 110 nm CIS technology. Fig. 7 shows the 

evolution of the multiplier output current during a full operation cycle. During the first semi-period the pixel is operating and 
the multiply circuit is powered down. During the second semi-period, the multiply circuit is powered on and the output signal 
is almost stabilized after 250 ns. Thus, the full pixel readout and processing could be done in 500 ns (2 MHz) per group of 
columns, although additional accuracy can be achieved using larger periods. This means that the processing of the 64 columns 
of a whole image plus the dummy borders for padding equal to 1 and a frequency of 2 MHz requires 32 µs. These numbers 
allow the processing of high density images in real-time applications. Due to its row-parallel arrangement this schema is fully 
scalable to larger image sizes because the silicon height of the MAD and adder circuitry (Fig. 2) is independent of the image 
size. However, for larger convolution masks, additional signal buses would be required since each pixel would have additional 
outputs, and the estimated silicon area for both the MAD and the adder would be wider. In order to decrease the power 
dissipation, the MAC circuitry is powered down during the first semi-period of each cycle. Fig. 7 shows the output currents 
involved in a convolution operation of a single pixel applying a mask of 3x3 for an operating frequency of 1.66 MHz. The 
plots have been labeled according to Fig. 4.c. During this semi-cycle, the currents decrease in value to almost 0 reducing the 
power consumption of this module. During the second semi-period, the multiply circuit is powered on and the currents of each 
module are multiplied by its corresponding weight. Therefore, a current proportional to the binary weight of the digit is 
generated. In this topology, the output currents of the nine modules are added simultaneously. iTotal shows the total output 
current of a convolution operation while i2,0, i1,1, i0,2 are the output current of the addition of the top, middle and bottom rows. 
Finally, the power down signal is shown at the bottom of Fig. 7. 

TABLE I.  PERFORMANCE OF THE CONVOLUTION ARCHITECTURE 

 This 
work [5] [6] [7] [8] 

Technology 110 nm 130 nm 130 nm 40 nm 180 nm 

Resolution Analog / 
4b Analog Analog / 

4b 
Analog 
/ 3b/ 4b 

Analog/ 
7b 

Frequency 2 MHz 8.3 kHz 20 kHz 1 GHz 10 MHz 

Supply (V) 1.2 3 1.2 1 2 

Power 599 µW 11.4 µW 663 nW 228 µW -  a 
Efficency 
(TOPS/W) 2.13 1 0.0603 8,77 0.545 

a. The whole sensor image consumes 1.8mW, but not value is reported for the convolution operator. 
 



 
a)                                              b) 

 
c)                                              d) 

Fig. 8. Error power and efficiency versus frequency 

The performance achieved by the proposed convolution architecture is shown in Table I and compared to other works 
which implement front-end neural networks. Compared to other implementations in a similar technology, the simulated results 
offer better efficiency in terms of TOPS/W, for similar or smaller supply voltages. It also offers a comparable efficiency to [7], 
taking into account the technology scaling factor. Moreover, the proposed work is fully scalable for different imager sizes. 
Because the power dissipation scales with the imager size, in the same proportion as the number of operations, the efficiency 
remains constant. The efficiency of the circuit is related to the operation frequency. Fig. 8 shows the relationship between 
different circuit performance and the clock frequency for a set of five images taken from the USC-SIPI image database [9], and 
cropped to 64 x64 pixels size. In each plot, the minimum, the maximum and the average values of each performance parameter 
is displayed. As expected, the average power dissipation increases linearly with the frequency (Fig. 8.c). It can be noted, 
however, the large variation of the power dissipated depending on the characteristics of the processed image. The efficiency is 
also increased with frequency achieving a maximum average of 5.79 TOPS/W for 5 MHz (Fig. 8.d), given that the rate of 
operations per unit of time rises faster with frequency than the power dissipation.  

 

Fig. 9. Example of analog filtering a) original image, b) image filtered using the proposed architecture c) ideal filter d ) normalized difference. 

However, both the absolute maximum error and the RMSE show large values for this operation frequency (Figs. 8.a and 
8.b). Stable values of error are achieved for frequencies under 2.5 MHz. For that frequency the achieved efficiency reaches a 

 
                        a)                                              b) 

 
                   c)                                             d) 



value of at least 2.13 TOPS/W. At this frequency an VGA image would be convoluted in 256µs, two orders of magnitude 
faster that real-time requirements.  

Fig. 9.a. shows an example of analog filtering using the architecture described in this work. Figures 9.b and 9.c show, 
respectively, the image processed using an ideal filter with MATLAB and the image filtered using the proposed architecture. 
This result has been obtained at device level simulation. The difference between the real analog filter and an ideal filter is 
normalized to the extreme value and shown in Fig. 4.d. 

IV. CONCLUSIONS 
This work has presented a new parallel mixed signal architecture capable of performing fast image convolutions in the 

analog domain in CMOS imagers. Due to its row-parallel arrangement, the architecture has been designed to be fully scalable 
for different image sizes, and is capable of processing very high resolution imagers at frame rates beyond real time. Moreover, 
it operates at a moderate clock frequency, avoiding the use of a costly precise clock circuitry. Although in this work a 3x3 
convolution mask has been used, it can be resized to other sizes. This would require an increase in the number of multiply-add 
circuits to fit the size of the mask, which can still be easily placed close to the image sensor by widening the layout in each row 
for the same height. In the same way, the padding factor can be expanded using additional rows and columns of dummy pixels 
around the pixels frame. Other convolution parameters such as the stride can also be synthesized by modifying the control 
circuitry. Although in this work this control circuitry is fixed, it could easy be adjusted to offer such type of programmability. 
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