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Abstract—This paper presents a technique to parallelise a
numeric integration solver on general purpose GPU. The tech-
nique is based on the combination of space state modeling
with an explicit integration method based on the Adams-
Bashforth second order formula. The paper studies the stability
of variable step explicit method and proposes a technique to
guarantee integration stability using this technique. Although
explicit methods require smaller integration steps compared
to the traditional implicit techniques, they avoid the complex
calculations on large which are used to solve the last ones. The
technique is demonstrated simulating an RC model of an VLSI
interconnect. Results achieved by the proposed variable step
explicit method is compared to those achieved by a traditional
implicit integration based simulator like Ngspice. The results
show that the parallelised explicit solution is one order of
magnitude faster than the implicit one for increasingly complex
circuits.

Index Terms—Simulation acceleration, state-space technique,
many-core computer, GPU.

I. INTRODUCTION

During the last four decades, the cost of integrated circuits
has been kept minimal by doubling component density every
year, while improving the power consumption and perfor-
mance of the devices. However, the interconnect performance
has been continuously degraded being the wire resistance a
dominant factor of this behaviour. Given that delays caused
by RC parasitics can easily spoil the improvements reached
by new device and circuit architectures in the context of a
continuous evolution of technology nodes, careful analysis of
the behaviour of such elements in the early stages of a system
design are needed to achieve the desired circuits performance.

These analysis require, nevertheless, transient simulations
which consume enormous amounts of time using traditional
circuit simulators. Classical simulators like SPICE rely on the
modified nodal analysis and use implicit integration techniques
based on Newton—Raphson method to solve the circuit analog
equations at each time step. These methods have proven to
be reliable and numerically stable, but on the other hand,
they lead to long CPU times, often hours or even days and
weeks, which contribute to extend the design cycle time.
The main reason for this extensive computation time is due
to computations required to factorize the jacobian matrix of
the analog system. Unlike these methods, the computational

workload of explicit integration techniques is lighter, and
although they require significantly smaller time steps com-
pared to implicit methods, their overall computation time is
smaller. Different works have proved that the use of state-
space equations combined with explicit integration methods
is a suitable technique to speed up transient simulations of
analog circuits [1] or mixed systems [2]. However, given
the increasing complexity of analog circuits and systems,
new techniques are required to speed transients simulations,
besides the use of alternative integration algorithms. Among
these techniques, those based on exploiting the parallelization
of analog integration methods running on parallel computer
architectures are arising in the last years. The so called
Compute Unified Device Architecture (CUDA) [3] in 2006, is
a programming model that allows engineers to use a high level
programming language such as C to develop algorithms for
general purpose Graphics Processing Units (GPUs). This has
given access to relatively cheap parallel architecture computers
to many engineers which now can perform fast simulations of
different types of scientific computations. Thus, in the last
decade, there have been different proposals to accelerate the
simulation of analog circuits using GPUs [4]–[7]. Some works
have focused on sparse matrix solvers [8] or LU factorization
matrix solver [9]–[11], which have achieved different speedups
compared with parallel sparse solvers like PARDISO [12] or
KLU [13]. NVIDIA also released an official sparse matrix
solver, cuSolver [14], but the LU factorization in it is still
performed in CPU instead of GPU.

A common characteristic of these works is that they are still
focused on the traditional implicit integration methods used
for simulators like SPICE. Recently, an explicit integration
method parallelizable over a many-core processors has been
proposed [15]. This method combines space state equations
with a fixed-step explicit schema to speedups the simulation
of passive circuits of a complexity up to 1000 nodes. Nev-
ertheless, this technique can be improved employing variable
step simulations, in a similar fashion that traditional implicit
simulators, which would lead into more accurate simulations.
To apply this technique, a stability analysis is depth is required
to bound the value of the time step. Up to our knowledge,
there is not any work related to interconnect simulation using



this variable-step method. Thus, in this paper, a variable-
step explicit integration schema parallelizable over a many-
core processors, is proposed. The proposed method evaluates
variable step techniques running on a general purpose GPU.
The technique is validated performing extensive transient sim-
ulations of large VLSI interconnects. The results are compared
to those achieved by the Ngspice simulator [16] running on
a multiprocessor GPU. The rest of the paper is organised
as follows. Section II describes the linearized space state
integration technique and its implementation on a many-core
computer. Section III shows an example of the proposed
technique. Finally, conclusions are drawn up in Section IV.

II. LINEARIZED SPACE STATE TECHNIQUE

Let (1) be the state equation of a nonlinear, passive dynamic
system:

ẋ(t) = f(xt, t);x(0) = x0 (1)

Its linearised state equation at time point tk, k = 0, 1 . . . is
given by:

Ẋ(tk) = JkX(tk) + Eex (2)

being X the vector of N state variable wave-forms, ex a vector
of excitations and Jk and E coefficient matrices, where Jk is
the Jacobian of the linearized model at the time point tk. The
eigenvalues of Jk have negative real parts given that the system
is passive [17]. Currently, implicit Newton-Raphson based
integration schemas are used by most circuit simulators, since
they assure numerical stability. However, explicit methods can
be used to provide a fast integration process for linearized
state equations if the step-size is limited to assure stability
besides controlling the accuracy of the numerical solution.
This limit can be set without consuming much CPU time using
the stability technique described in [2], which takes advantage
of the system’s passivity and uses a fast method for estimating
the maximum allowed step size directly from the Jacobian
entries. However, this method is restricted to systems with a
diagonal dominant Jacobian Matrix and it must be reformuled
to be useful for other types of Jacobians.

A. Stability analysis

Fig. 1 shows a finite difference grid for a q-order Adams-
Bashforth method, where tk is the current time point and tk+1

is the next time point. I represents the integration interval and
Pq(t) is the interpolation polynomial.

Let hi = ti+1−ti be the time step between two consecutive
time points ti and ti+1. In a fixed step integration method,
all the hi values are equal and invariable on time. However,
in a variable step method, the values of hi are different, and
change with time. The expressions for the general variable-step
method can be obtained by integrating the divided difference
polynomial approximation between the current variable value
xk ≡ x(tk) and the predicted one xk+1 ≡ x(tk+1).

Fig. 1. Finite difference grid for the qth-order Adams-Bashforth method.

TABLE I
MAXIMUM REAL NEGATIVE VALUE OF THE STABILITY PLOTS

r 1 1.2 1.4 1.6 1.8 2

Lr(h0) -1 -0.952 -0.909 -0.869 -0.833 -0.8

Lr(h1) -1 -0.794 -0.649 -0.544 -0.463 -0.4

I =

∫ xk+1

xk

dy =

∫ tk+1

tk

Pq(tk+1)dt⇒

⇒ xk+1 − xk =

∫ tk+1

tk

(
f0 + (x− xk)f

(1)
k + ...

...+ (x− xk)...(x− xk−p)f
(q)
k

)
dt+O

(3)

where f
(q)
k is the qth divided difference of function f at tk

[18] and O is the truncation error. So, for the second order
method, the state variable at time tk+1 is computed as:

xk+1 − xk = fkh0

(
1 +

h0

2h1

)
− fk−1h0

(
h0

2h1

)
(4)

being fk = f
(0)
k . For the third order method, the following

term is added to (4):(
t3k+1 − t3k

3
− (tk + tk−1)

t2k+1 − t2k
2

+tktk−1(tk+1 − tk)

)
f
(2)
k

(5)

Fig. 2 shows the stability plots of equations (4) and (5) for
different ratios from 1 to 2 between the integration step sizes.
The plots show how the variation of the ratio r = hi+1/hi

affects the stability for both the second and the third order AB
methods. The values of integration step hi decrease as the ratio
is increased, being clearly smaller for the third order method.
So, in order to be able to manage larger values of hi, in this
work the second order variable step integration method has
been used. Table I shows the intersection (Lr) of the stability
plots with the negative real axis for different values of r for
the second order method.

For a system of linearised equations, substituting the values
of fk and fk+1 in (4) by the product JkX(tk) as in (2), yields:

Xk+1 = Xk + h0β0J ·Xk − h0β1J ·Xk−1 (6)

being β0 = 1/r + 1/2r2 and β1 = 1/2r2. According to the
plots in Fig. 2, the stability is achieved if the product h · ||J ||
is within the left hand complex plane and bounded by the



Fig. 2. Stability regions for the second and third order AB methods.

stability curve. For a symmetric Jacobian, max
i=1,...,N

λi = ||J ||
and according to the Gershgorin theorem the values of the
eigenvalues are bounded to λ ≤ Jii +

∑N
j=1 |Aij | for i ̸= j.

Given that all the Jacobian entries are real numbers, we finally
obtain that:

h ≤ Lr∑N
j=1 Jij

(7)

being Lr the intersection of the stability plot for a given step-
ratio r with the negative semi-axis of the complex plane.

Step sizes obtained from using this technique are expected
to be smaller than the maximum step sizes used in implicit
methods, which are stable and hence, the step sizes are used to
define the accuracy. However, the advantage of this technique
is speed, given that time-consuming matrices factorization
calculations in implicit methods are avoided.

B. Parallel implementation

The linearised space state system of equations described by
(2) can be computed in a parallel architecture at each time
point tk, given that each state variable can be worked out at
each time point independently of the rest of the state variables.

Algorithm shown in Fig.3 describes the procedure to com-
pute the values of the state variables on a general purpose.
Compared to the fixed step implementation [15], the proposed
variable step algorithm presents the following differences.
First, there are two calls to GPU parallel execution in each
time step. The first call is launched to compute the incremental
values of the state variables, and to compare these values
with the specified tolerances. The second call is run first to
determine if the tolerances have been violated and second to
update the values both of the state variables and the time steps
h.

These two calls to the parallel execution are required to
provide a synchronization mechanism before evaluating if
there has been a violation of tolerance in any GPU thread.

1: t← 0
2: while t ≤ SimTime do
3: GPU: begin ▷ 1st call many-core processor
4: ẋi,k ← Ejex,k
5: j ← 0
6: while j ≤ N do ▷ Compute (2)
7: ẋi,k ← ẋi,k + xi,j,kJi,j
8: j ← j + 1
9: end while

10: ∆xi,m ← hm

∑p
l=1 βlẋi,k−l; k = 1, ...m ∈ [1, 3]

11: if ∆xi,m > tolerance then ▷ Check tolerance
12: ctrl reg[m]← 1
13: end if
14: GPU: end ▷ Synchronization of all threads
15: GPU: begin ▷ 2nd call many-core processor
16: update← 0
17: if ctrl reg[1] = 0 then ▷ If tolerance is ok
18: if ctrl reg[2] = 0 then ▷ If bigger step is ok
19: x← x+∆xi,2 ▷ update x
20: hm ← rhm;m ∈ [1, 3] ▷ and increase step
21: else
22: x← x+∆xi,1 ▷ else, update x
23: end if
24: update← 1
25: else ▷ If tolerance is not ok
26: if ctrl reg[0] = 0 then ▷ but smaller step is ok
27: x← x+∆xi,0 ▷ update x
28: hm ← hm/r;m ∈ [1, 3] ▷ and decrease step
29: update← 1
30: else
31: hm ← hm/r2;m ∈ [1, 3] ▷ else decrease step
32: end if
33: end if
34: GPU: end
35: if update = 1 then ▷ If ∆xi is ok
36: t← t+ h1 ▷ updates time and timestep
37: k ← k + 1
38: end if
39: end while

Fig. 3. Variable step parallelised integration method.

Depending on the many–core architecture, a single parallel
execution can be done, using a synchronization call at this
point instead. A second difference is that there is a step control
routine running inside the second parallel execution call. The
step size control is as follows. In each iteration step, three
values of ∆xi are computed: ∆xi,1 for the current step size,
∆xi,2 for a higher step size, and ∆xi,0 for a lower one.
The three values of ∆xi obtained (∆xi,0, ∆xi,1, ∆xi,2) are
then compared with a predefined tolerance values to determine
which increment must be added to state variables value at the
current step time. The result of the comparison is annotated in
the control register. In the second parallel execution call, if the
value of ∆xi,1 is within the limits of the specified tolerance,



Fig. 4. RC model of the coupled interconnect.

the three step values are increased an amount ∆h and ∆xi,1

is used to update the state variable xi aeig(t each many-
core parallel process, being the new values the current ones
multiplied by a ratio r. However, if the value of ∆xi,0 is larger
that the specified tolerance, then a lower step h is required. In
this case, the value of ∆xi,2 is checked to determine the rate of
decrease of the integration step, r for a slow decrease or r2 for
a faster one. If the value of ∆xi,2 is lower than the tolerance,
then it can be used to update the state variables. Otherwise, the
values of of ∆xi computed in the current iteration step cannot
be used. This provides a fast mechanism to adapt the rate of
decrease of h to the rate of change of the system variables
and to reduce the number of parallel executions.

III. EXAMPLE

Fig. 4 shows the RC model of two coupled VLSI in-
terconnect. In the figure, each interconnect is excited by a
voltage source and is composed by n RC stages. Capacitors
Cc represent the coupling between both interconnects. The
space state equation of this model is given by:

RC(2C + Cc)

C + Cc

d

dt



v11
...

v1n
v21

...
v2n


=

[
J11 J12
J21 J22

]


v11
...

v1n
v21

...
v2n


+



vin
...
0

Cc

C+Cc
vin

...
0


(8)

being the submatrices J11 = J22 equal to:

J11 = J22 =


−2 1 0 . . . 0
1 −2 1 . . . 0

0 1
. . .

...
...

... −2 1
0 0 . . . 1 −1

 (9)

while the value of J12 = J21 is given by:

J12 = J21 =
Cc

C + Cc
J11 (10)

The performance of the proposed algorithm has been tested
on a general purpose GPU. The one used is a NVIDIA

Fig. 5. Required simulation time for different number of stages.

GeForce GTX 1080, 3584 Core, 1531 MHz and 11 GB of
RAM. The host processor is an AMD Ryzen Threadripper
1950X 16-Core Processor, 2180 MHz and 64 GB of RAM.
Different transient simulations of 1µs each have been per-
formed to measure the time required by the whole processing
system, for different number of RC stages. Fig. 5 shows
the time required by each simulation using the second order
variable step explicit integration method. The ratio between h0

and h1 has been set to 1.05 after intensive tests with different
input waveforms to evaluate the speed of the algorithm. In
this example, the value of the passive components were R
= 10 Ω, C = 250 pF and Cc = 2.5pF . So, according to (7)
and table I, the maximum value of h which assures stability is
0.65 ns. Source v2 was grounded and v1 was 1V. The variable
step approach was simulated using square and sine wave input
signals. The initial time step was set to 1 ps.

The performance of the explicit integration technique is
compared to that achieved by a well known variable-step
implicit integration based software such as Ngspice running on
the host processor and also to CUspice [19], an experimental
extension of the former which runs on NVIDIA GPUs. The re-
sults show that for the smaller circuits circuits up to 2,000 RC
nodes approximately, Ngspice proves to be faster. However, for
larger circuits, the parallelised explicit method requires lower
processing times, exceeding one order of magnitude for the
largest circuits. The simulation time achieved by CUspice is
considerably larger, mainly because its improvements are fo-
cused on the speedup the model evaluation process rather than
in the matrix factorization. Also the parallelization algorithm
seems not to be optimized for different number of threads,
since the simulation times are not monotonically increased
with the number of stages.

IV. CONCLUSION

This paper has presented a numeric integration method
based on a variable-step explicit integration technique paral-
lelised on a general purpose GPU. Up to our knowledge, this
is the firs implementation of a variable step explicit integration



method used to evaluate interconnect. The paper has compared
the proposed approach with a traditional implicit integration
based simulators like Ngspice, being one order of magnitude
faster.

Although this technique has been demonstrated using a
GPU, it can be translated to other many-core computer ar-
chitectures. Moreover, it provides a synchronization procedure
between the calculation of the state variables derivative and the
updating of both the integration step value and the state vari-
able values which allow to simulate circuits of any size, being
the only limitation the size of the computing architecture.
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