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Abstract—This paper presents a technique to accelerate transient simulations of analog circuits using an explicit 

integration method parallelised on a many-core computer. Usual methods used by SPICE-type simulators are based on 
Newton–Raphson iterations, which are reliable and numerically stable, but require long CPU processing times. However, 
although the integration time step in explicit methods is smaller than that used in implicit methods, this technique avoids 
the calculation of time-consuming computations due to the Jacobian matrix inversion. The proposed method uses an explicit 
integration scheme based on the fourth order Adams–Bashforth formula. The algorithm has been parallelised on a NVIDIA 
general purpose GPU using the CUDA programming model. As a case study, the RC ladder model of a VLSI interconnect 
is simulated on a general purpose graphic processing unit and the achieved performance is then evaluated against that of a 
multiprocessor CPU. The results show that the proposed technique achieves a speedup of one order of magnitude in 
comparison with implicit integration techniques executed on a CPU. 
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I.  INTRODUCTION 
Nowadays, one of the most limiting factors in the overall performance of integrated circuits is the interconnect. The continuous 

evolution of technology nodes implies an increase of the wire resistance, at a faster speed than the technology scale factor and the 
capacitance [1]. Delays due to RC parasitics can easily void the improvements reached by new device and circuit architectures. Thus, 
a careful analysis of such elements behaviour in the early stages of a system design is a key factor to achieve the desired performance.  

However, the analysis of interconnect usually requires extensive transient simulations which imply long computation times. 
Simulators like SPICE [2], which are based on the modified nodal analysis and implicit integration schemas, use implicit 
differentiation techniques based on Newton–Raphson iterations to solve the analog equations at each time step. Although Newton–
Raphson iterations are reliable and numerically stable, they lead to long CPU times, often hours or even days. Likewise, explicit 
integration methods require significantly smaller time steps compared to implicit methods, but given that their computational work 
load is lighter, the overall computation time is smaller compared to that of implicit methods. In this context, the use of state-space 
equations combined with explicit integration methods to simulate analog circuits [3] or mixed systems [4] has proved to be a suitable 
technique to speed up transient simulations. 

Despite the introductions of alternative integration algorithms, further techniques are needed to speed up the simulation of 
increasingly complex circuits. In the last decade, general purpose Graphics Processing Units (GPUs) have become very useful 
platforms for general purpose computing tasks, taking advantage of their parallel architectures to speed up different types of scientific 
computations. The use of such platforms has become even more popular since the advent of the so called Compute Unified Device 
Architecture (CUDA) [5] in 2006, a programming model that allowed developers to use C as a high level programming language. 
Different works have studied the use of GPUs to accelerate the simulation of analog circuits [6], [7], [8], and more recently, the focus 
has been placed on the sparse matrix solver by LU factorization [9-11]. These techniques attain different ranges of average speedups 
compared with PARDISO [12], a state-of-the-art parallel sparse LU solver, and commercial KLU [13], a software package 
specifically designed for solving sequences of unsymmetric sparse linear systems. However, all of these proposals are still based on 
classical implicit methods used for SPICE-type simulators.  

In this paper, a numerical solution based on an explicit integration schema, parallelizable over a many-core processors is proposed. 
The processor used is a general purpose NVIDIA GPU programmed using the CUDA programming model. The proposed technique 
uses a fourth order Adams–Bashforth formula to solve circuit formulation based on state variables. The method is demonstrated 
through transient simulations of VLSI interconnects and the processing time is compared to that achieved by a CPU executing an 
implicit integration technique. 



The rest of the paper is organized as follows: Section II describes the linearized space state technique. In section III, the 
implementation of the algorithm on a GPU is described. The technique is demonstrated with an example in Section IV. Finally, 
conclusions are drawn up in Section V.  

II. LINEARIZED STATE SPACE TECHNIQUE 
 

Consider the following linearized state equation of a given system at time point tk, k = 0, 1…: 

 𝑥̇𝑥(𝑡𝑡𝑘𝑘) = 𝐽𝐽𝑘𝑘𝑥𝑥(𝑡𝑡𝑘𝑘) + 𝐸𝐸𝐸𝐸𝑥𝑥(𝑡𝑡𝑘𝑘) (1) 
 

where x is the vector of N state variable wave-forms, ex is a vector of excitations and Jx and E are coefficient matrices, being Jk the 
Jacobian of the linearized model at the time point tk. Since the system is passive, the eigenvalues of Jk have negative real parts [14]. 
Although state-of-the-art circuit simulators use implicit, rather than explicit integration, to assure numerical stability, the linearized 
state described in (1) can be solved in a fast explicit march-in-time integration process without Newton-Raphson iterations. In an 
explicit integration process the step-size must be limited not only to control accuracy of the solution but, most important, to ensure 
stability [14]. However, stability control is difficult because it needs estimates of the maximum eigenvalue λk of the Jacobian Jk at 
each step size and this is typically a time-consuming process [14]. To avoid this problem, in this work the stability technique 
described in [4] is used. This technique takes advantage of the passivity of the system and uses a fast method for estimating the 
maximum allowed step size directly from the Jacobian entries. Thus, given a set of ordinary differential equations of the form: 
 

 𝑥̇𝑥(𝑡𝑡) = 𝐴𝐴 · 𝑥𝑥(𝑡𝑡)  (2) 

The Adams–Bashforth integration scheme is described by: 

𝑥𝑥𝑘𝑘+1 = (𝐼𝐼 + ℎ𝛽𝛽0𝐴𝐴)𝑥𝑥𝑘𝑘 + ℎ𝐴𝐴∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑘𝑘−𝑖𝑖;𝑘𝑘 = 1, …𝑝𝑝
𝑖𝑖=1  (3) 
 

where h is the time step and βi, i = 0, …, p are the Adams-Bashforth coefficients [15]. According to [4], the stability of the integration 
scheme in (3) is achieved if: 

 �1 − 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚ℎ�𝑎𝑎𝑟𝑟,𝑟𝑟�� ≤ 1; 𝑟𝑟 = 1, … ,𝑁𝑁 (4) 

Step sizes obtained from using this technique are expected to be smaller than the maximum allowed step sizes used in implicit 
methods, which are calculated from the exact values of the Jacobian’s eigenvalues. However, the advantage of this technique is speed, 
given that time-consuming eigenvalue calculations are avoided. 

III. SIMULATION ON A MANY-CORE COMPUTER 
The linearized space state equation described in (1) must be computed at each time point tk. Algorithm 1 describes the procedure 

used to compute the explicit integration schema. The value of each individual variable 𝑥̇𝑥i at time point tk. is obtained working a 
sequence of multiply and accumulate operations, which can be carried out in parallel for each variable 𝑥̇𝑥i. At the end of each time 
point tk, the values of xk+1.are worked out and the process is repeated for the new tk+1. This means that each state variable can be 
computed at each time point independently of the rest of the state variables, and the algorithm can take advantage of a parallel 
implementation to speed up large transient simulations of analog circuits. So, for a given problem with N state variables, the algorithm 
can run on N parallel processing units, each one of them working out the value of a single variable 𝑥̇𝑥i.  

Among the different architectures of many-core processors, general purpose GPUs have been progressively introduced in the 
field of electronic design automation. Moreover, the development of different software tools has extended their use in recent years. 
CUDA is a programming model which defines GPUs as computing devices having their own memory and running many threads in 
parallel [5]. The program running on a GPU is referred to as a kernel. The threads launched by the kernel are grouped into thread 
blocks, which are distributed to different streaming multiprocessors (SMs). Inside every block, threads are grouped into warps, each 
one containing 32 threads On current GPUs, a thread block may contain up to 1024 threads. Therefore, there are different levels of 
parallelism inside a GPU: blocks, warps and threads, which lead to many possibilities when programming a same algorithm. However, 
in order to achieve the best performance of high-performance parallel algorithms, some considerations must be taken into account 
[16]. All threads in a same block can access a common shared memory, while threads from different blocks can access a global 
memory. Since shared memory is faster than global memory, it is desirable to make extensive use of the first one, according to the 
possibilities of the algorithm. On the other hand, threads inside a same warp execute in single-instruction-multiple-threads (SIMT) 
pattern. When there are divergences of instructions inside a warp, threads corresponding to different instructions are executed serially 
and so the efficiency decreases. Finally, GPU kernels are launched and managed by the CPU. The interaction between the CPU and 
the GPU consumes a great portion of the overall computational resources. In this sense, data movements between CPU and GPU 
should be minimized and, whenever is possible, all the computation should be done inside the GPU, being the only task of the CPU 
launching the kernel and collecting the final results. 



Fig. 1 shows the implementation of the integration algorithm on a GPU proposed in this work. The figure is a simplified schema 
of the GPU architecture. Threads are grouped into thread blocks, which also contain a shared memory, while all the blocks have 
access to a common global memory. 

 

 
Fig. 1. Distribution of multiply and accumulation operations to compute a state variable at a given time step in multiple threads. 

Moreover, each thread can access its own registers for local variables, which are on-chip and are the fastest among the memories 
in GPU. However, they are very limited in size. The rest of blocks have the same architecture of that shown for block 0. The 
integration schema for each single state variable x is executed on a single thread. This allows all the threads access to the same shared 
memory and achieve a higher efficiency. This distribution allows the processing of up to 1024 variables in (2) in a same thread block. 
Larger matrices require additional thread blocks, which decreases the memory bandwidth as the slower global memory needs to be 
accessed more frequently. The calculation of each new xj,k+1 requires to read the values of the xi,k variables, where i=1,…N. The values 
of xj,k+1 are then written into memory to be used in the next integration step. This means that, although each thread runs in parallel, 
the set of variables xj,k+1 is shared by all of them. Moreover, to increase the instructions throughput, there are not divergences between 
the threads. This has been achieved avoiding the use of conditional sentences in the kernel code and decomposing the computations 
into single multiply and accumulate operations as shown in Algorithm 1. 

Algorithm 1: integration scheme 

t=0 
do    // Loops for simulation time 
 i=0; 
 do   // Loops for rows in J 
  𝑥̇𝑥𝑖𝑖,𝑘𝑘 = 𝐸𝐸𝑗𝑗 · 𝑒𝑒𝑥𝑥𝑥𝑥 
  j=0; 
  do  // Loops for columns in J 
   𝑥̇𝑥𝑖𝑖,𝑘𝑘 = 𝑥̇𝑥𝑖𝑖,𝑘𝑘 + 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘𝐽𝐽𝑖𝑖,𝑗𝑗 
   j++; 
  while (j<N) 
  𝑥𝑥𝑖𝑖,𝑘𝑘+1 = 𝑥𝑥𝑖𝑖,𝑘𝑘 + ℎ∑ 𝛽𝛽𝑙𝑙𝑥𝑥𝑖𝑖,𝑘𝑘−𝑙𝑙; 𝑘𝑘 = 1, …𝑝𝑝

𝑙𝑙=1  
  i++; 
 while (i<N) 
 k++;   // Updates step and time 
 t=t+h; 
while (t<simulation time); 

 



IV. EXAMPLE OF VLSI INTERCONNECTS 
The linearized state-space formulation described in Section II was applied to the RC models of an isolated and a coupled VLSI 

interconnect shown in Fig. 2. The circuits are composed of n RC stages, being the first one excited by a voltage source. The space 
state equation (1) applied to the isolated model shown in Fig 2.a is as follows: 
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Fig. 2. Circuit representation of n-stage RC models of a) a isolated interconnect, and b) a coupled interconnect. 

where the jacobian J is negative definite and diagonally dominant. The equation has been obtained through nodal analysis and 
manual transformation, although for more complex circuits, the method detailed in [17] may be useful. For the coupled interconnect 
model shown in Fig 2.b, the space state equation is given by: 
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where the submatrices J11 = J22 are the Jacobian matrix defined in (5) and J12 = J21 are given by: 

 𝐽𝐽12 = 𝐽𝐽21 = 𝐶𝐶𝐶𝐶
𝐶𝐶+𝐶𝐶𝐶𝐶

· 𝐽𝐽11 (7) 

Following the method described in previous section, two different sets of tests have been carried out for an isolated and for a coupled 
transmission lines. In the first test, equation (5) has been programmed on a NVIDIA GPU following Algorithm 1, for different number 
of RC stages. In the second test, equations (6) and (7) have been programmed on the same GPU. In both cases, the algorithm has 
been coded so that each thread computes the value of a single state variable x. The state variables, which are read and written at each 
time step, are stored in the shared memory. However, given that the shared memory is limited to 48 K, the coefficients of J and E are 
stored in the global memory. Although this is a slower memory, it is only accessed to read these coefficients. The values of the passive 
elements of the circuit have been fixed to R = 10Ω and C = 250 pF. The coefficients of the fourth order Adams Bashforth formula 
are β0 = 55, β1 = -59, β2 = 37 and β3 = 9. For these values the time step has been fixed to 100 ps. 

 
a) 

 
b) 



The performance of the algorithm has been tested through transient simulations of 1µs each. Table I details the processor time 
required for a µs transient simulation for different number of RC stages, for the isolated and for the coupled transmission line. The 
many core processor used has been a NVIDIA GeForce GTX 1080, 3584 Core, 1531MHz and 11 GB of RAM GPU. . The results 
are compared with those achieved by an Intel Xeon CPU E5-2680 v4 @2.40 GHz processor, with two physical processor chips, 14 
cores and 56 processors, 35M Cache and 64 GB of RAM. 

Each table shows the average values for five runs in each configuration. For the isolated interconnect model, the CPU processing 
time increases exponentially with the number of stages while the GPU processing time remains approximately around 11ms for a 
number of RC stages up to 100. Then, the GPU time increases proportionally to the complexity of the circuit from 200 to 1000 RC 
nodes, due to the time-consuming eigenvalue calculations required by the implicit integration method. Thus, the speedup achieved 
by the GPU over the CPU remains above one order of magnitude and is increased with the complexity of the circuit (Fig. 3). The 
behaviour of the GPU processing time can be better understood analysing its memory bandwidth. Table I shows how the memory 
bandwidth increases with the complexity of the circuit, although the increase rate slows down continuously as the circuit complexity 
is increased, when bigger number of threads are competing for the access to the same memory banks. This behaviour of the memory 
bandwidth implies that the processing time is linearly increased with the size of the circuit.  

TABLE I.  CPU AND GPU TIMES FOR A TRANSIENT SIMULATION OF 1 µS 

Num.  
RC 
stgs 

Isolated interconnect Coupled interconnects 
Average 

processing time 
GPU 
BW  

(GB/s) 

Average 
processing time 

GPU 
BW  

(GB/s) CPU (s) GPU (s) CPU (s) GPU (s) 
10 0.226 0.009 3.46 0.232 0.023 4.50 
20 0.318 0.010 6.64 0.353 0.024 8.48 
30 0.316 0.010 9.77 0.374 0.240 11.34 
40 0.379 0.011 11.99 0.387 0.027 13.74 
50 0.369 0.011 15.06 0.413 0.031 16.93 
60 0.374 0.011 17.93 0.157 0.031 19.83 
70 0.400 0.011 20.80 0.404 0.033 22.24 
80 0.398 0.011 23.96 0.498 0.032 25.69 
90 0.395 0.011 27.04 0.396 0.033 28.73 

100 0.423 0.011 30.29 0.448 0.033 32.03 
200 0.472 0.015 47.95 0.670 0.046 46.81 
300 0.559 0.022 53.48 1.178 0.060 54.44 
400 0.710 0.026 64.62 1.643 0.067 66.98 
500 0.960 0.030 74.30 2.583 0.079 72.77 
600 1.201 0.037 75.50 3.561 0.092 76.19 
700 1.528 0.044 78.10 4.534 0.108 77.38 
800 1.842 0.048 85.54 5.821 0.120 81.10 
900 2.317 0.055 88.28 7.379 0.137 81.75 
1000 2.870 0.058 96.03 9.364 0.156 81.09 

 

 
Fig. 3. Speedup of the GPU over the CPU for isolated and coupled networks. 

 



 
Fig. 4. Transient simulation of voltages at each node of the a) isolated RC network and b) coupled RC network. 

Results of the coupled interconnect model are slightly different. Both the CPU and the GPU processing times are larger since the 
circuit complexity is increased, remaining the GPU one order of magnitude faster than the CPU (Fig. 3). The results of the GPU 
processing time are in concordance with the parallelism hierarchy of the GPU. So, the GPU processing time is linearly increased, 
while the CPU processing time increases exponentially. Regarding the memory bandwidth, an asymptotic behaviour can be observed, 
as for the isolated RC example, reaching the maximum values between 800 and 1000 stages. Fig. 4 plots the voltage at each node of 
the RC model of the transmission lines for a 1µs transient simulations and a step input voltage of 1v.  

V. CONCLUSION 
The continuous evolution of technology nodes, which implies more RC delays, added to the increasing frequencies in data and 

signal processing require the use of new techniques to accelerate the transient simulations performed during a circuit design cycle. 
This paper has shown an implementation of an explicit integration method on a many-core platform aimed to speed up the transient 
simulations of analog circuits. The parallelized integration technique has been tested on a VLSI interconnect RC model with different 
levels of complexity. 

The results obtained show that the GPU implementation of the explicit integration schema is at least one order of magnitude faster 
than a classic implicit differentiation techniques based on Newton–Raphson iterations executed on a multiprocessor CPU. The results 
also show that memory bandwidth plays a key role in the efficiency of parallelisation techniques. For this implementation, as 
complexity increases and the number of threads reaches a certain number, the GPU processing time is proportionally increased. 
However, this growth is slower than that obtained by multiprocessor CPUs, which supports the validity of the method proposed in 
this paper.  
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