
A library-based tool to translate high level DNN
models into hierarchical VHDL descriptions

Pablo Rubio-Ibañez, J.Javier Martínez-Álvarez, G. Doménech-Asensi
Departamento de Electrónica, Tecnología de Computadoras y Proyectos

Universidad Politécnica de Cartagena
Cartagena, Spain

gines.domenech@upct.es

Abstract. This work presents a tool to convert high level models of deep neural networks into register transfer level designs.
In order to make it useful for different target technologies, the output designs are based on hierarchical VHDL descriptions,
which are accepted as input files for a wide variety of FPGA, SoC and ASIC digital synthesis tools. The presented tool is aimed
to speed up the design and synthesis cycle of such systems and provides the designer with certain capability to balance network
latency and hardware resources. It also provides a clock domain crossing to interface the input layer of the synthesized neural
networks with sensors running at different clock frequencies. The tool is tested with a neural network which combines
convolutional and fully connected layers designed to perform traffic sign recognition tasks and synthesized under different
hardware resource usage specifications on a Zynq Ultrascale+ MPSoC development board.

Keywords. High-Level Synthesis, VHDL, Deep Neural Network, Keras, Tensorflow

I. INTRODUCTION
Deep learning has become one of the most powerful

methods within the paradigm of artificial intelligence to
perform different computer vision tasks. From image
recognition to object tracking, deep learning has reduced the
use of well known feature-extraction based algorithms such
FAST or SIFT; and currently there is a wide range of tools to
develop, train, optimize and implement such deep neural
networks (DNN). Among these tools, we can cite Tensorflow
[1], PyTorch [2], Keras [3], Caffe [4] or even Matlab. These
tools are focused on high performance computing (HPC)
platforms, either using single or multi-core CPUs or GPUs to
speed up both the training and the inference of the networks.

On the other hand, end devices such as Internet-of-Thing
sensors or portable CMOS imagers, require real time
processing capabilities while having a low power dissipation.
So, it is usual to find applications where both deep learning
and edge computing are combined to meet the requirements
from both fields of study [5]. However, edge computing
devices are usually based on cost effective microprocessors,
SoCs or ASICs whose computing performance is far away
from the aforementioned HPC.

Although currently it is usual to find lots of information
regarding DNN training and inference even on personal
computers, there is not so much when the target
implementation is based on a specific hardware platform such
an FPGA or an ASIC. So, when such edge computing devices
for DNN based computer vision applications are designed,
engineers find a gap between the high level tools aimed to
develop DNNs on high performance computers and the
resource limitations of the hardware in which the final
application is being deployed. This means that once a DNN
architecture has been trained on a computer, the designer must
manually translate this network, from scratch, to the target
hardware. This operation is not trivial and requires skilled
designers with both knowledge of high level DNNs modeling

tools and digital electronic design. Even if this is such a case,
it is well known that the electronic system design cycle is
composed by a set of sequential steps from higher to lower
hierarchy levels, where it is usual to find iterative procedures
between two consecutive steps until a satisfactory solution is
found. This is the case, for instance, where a tradeoff between
a high level specification such as accuracy or latency must
meet low level performance such as silicon area / resources
usage or power dissipation.

There are different proposals in the literature of tools able
to transform high level descriptions of neural networks into
synthesizable architectures. In [6] a tool able to build board
level FPGA implementations from high level descriptions is
presented. Also, in [7] an open source tool which translates
Tensorflow designs into Cloud FPGAs is described. A tool to
translate high level Keras descriptions of DNNs into low level
C code is shown in [8]. Finally, in [9] a Python package to
create DNN implementations on low-cost FPGAs is
developed. It is clear then that tools to link high level
descriptions created using common DNN development tools
to low level hardware descriptions is a current research topic.
However, most of these tools are focused on reconfigurable
hardware platforms as target technology. The main advantage
of such devices is that they allow to create prototypes very
quickly, which are cost-effective when small volume
productions are run. However, when a large amount of devices
are manufactured or if the power dissipation specifications are
really tight, ASICs become more competitive and thus, the use
of a translation tool of the type described above becomes
interesting.

In this work, a tool to create VHDL hierarchical
descriptions using a set of parameterizable DNN building
blocks from a high level DNN description is presented. The
tool allows a tradeoff between hardware resource usage and
network latency; and the VHDL code produced is able to be
synthesized on different target technologies such as PFGAs,
SoCs or ASICs. Its performance is tested performing the

synthesis of a traffic sign recognition (TSR) DNN. The rest of
the paper is organized as follows. Section II describes the
structure of the translation tool. Section III shows a
comparison of the results obtained when synthesizing the TSR
DNN under different design strategies. Finally, conclusions
are drawn in section IV.

II. TOOL DESCRIPTION
The general outline of the tool workflow is shown in Fig.

1. The tool reads an HDF5 format file [10] containing the high
level description of a neural network. HDF5 is an open source
file format which supports complex and large data; and its use
is widely accepted by the majority of the high level deep
learning tools such as Tensorflow, Caffe or Matlab. The tool
parses then this file and extracts the network structure, as well
as the weights, of each convolutional and fully connected
layers. The aim is to build a structure of pipelined stages which
maps the sequence of layers in the DNN model, as shown in
Fig. 2. The translation process relies on a VHDL library which
contains structural descriptions of different network
components at different subsystem level, such as
convolutional and fully connected layers; operators like
comparators, adders and multipliers; auxiliary data path
components like FIFO registers, counters, latches,
multiplexers and others and interfacing ones such us clock
domain crossing circuits.

The user preferences include the specification of data path
width for the activations and for the network weights as well
as the level of parallelism of the design, as it will be further
detailed. As a result, the tool creates a refined hierarchical
VHDL netlist which corresponds to the lowest level of the
high level synthesis flow, since it is not based on any target
technology cells. This VHDL description is then suitable to be
processed by a low level synthesis tool to convert it to a
proprietary technology cell based design, either for FPGA /
SoC or ASIC, and later to be placed and routed to obtain the
final prototype.

As shown in Fig. 2, for each layer read from the file, a new
stage is added to the pipeline at the level 2 of the VHDL
hierarchy. Level 3 of the VHDL hierarchy is composed by the
parallel channels inside each layer. Finally, the fourth level of
the hierarchy is a flat one which includes the two main types
of resources involved in the synthesis process: computation
units and memory. In order to balance the usage of
computation resources and the network latency, the degree of
hardware parallelism can be selected during the translation
process. This parallelism is only applicable to the multiplier
structures. In the case of a convolutional layer using an k x k
convolution mask, the user can select to use a fully serial
approach using a single multiplier, a full parallel one using n2
multiplier or finally a mixed one using k multipliers (Fig. 3).
In the case of a dense layer, the user can select whether to use
a single multiplier or to use a multiplier per layer output.

Regarding the multiply operations, the tool does not select
the architecture of the low level operator, i.e. DSP or carry-
and-adder multiplier, being this selected by the low level
synthesis software used afterwards, using the corresponding
compiler directives or flags. From our experience, for DNNs
with weights sizes up to 10 bits, multiplications can be
synthesized using combinational logic without using in-chip
DSPs, so it is easier to find a target technology to fit them in,
like low-cost FPGAs.

Fig. 1. Structure of the translation tool.

Fig. 2. VHDL pipelined structure of the synthesised DNN.

Fig. 3. Usage of multipliers in convolutional layers.

Regarding the memory resources, the current version of
the tool only deals with in-chip memory to store the network
weights. Again, it requires a tradeoff between the complexity
of the network, and the size of the activations and the weights
on the one side and the number of hardware resources on the
other.

Layer 1 Layer 2

DNN

...

Channel 1

Layer n

Channel m

...

Hierarchy
level 1

Hierarchy
level 2

Hierarchy
level 3

Dataflow
(activations)

Weights

Op. 1

Hierarchy
level 4

In
pu

t

O
ut

pu
t

...

...

... ...

0 k
0

k

k x k multipliers

x
x
x

x
x
x

x
x
x

x

x
x
x

xxx

x

...

x

...

x

...

x

...
...

...

k multipliers

0 k

x

......

...

...

1 multiplier

0 k

Conv. mask

The VHDL library (Fig. 1) contains a set of parameterized
VHDL circuits commonly used in DNNs. In order to offer
flexibility for different types of networks, convolutional layers
are fully parameterized and allow any mask size, being the
smallest one a 3x3 pixel size. The stride and padding can also
be parameterized. Fully connected layers also allow different
combinations of input and output sizes. In both types of layers,
the largest sized would be limited by the number of resources
of the target device or the maximum silicon area available.
With respect to the output activation functions, both types of
layers can deal with linear or ReLU functions.

Other layers that are included in the library are the flatten
one, needed to link convolutional layers with fully connected
ones, and batch normalization layers. In this later case their
implementation to perform synthesis is a linear function, given
that, once the values of µ, σ, β and γ have been trained, their
values are constant and the output activation y for a given
input activation x, can be obtained as:

 𝑦𝑦 = 𝛾𝛾 𝑥𝑥−𝜇𝜇
�𝜎𝜎2+𝜀𝜀

+ 𝛽𝛽 (1)

The tool provides some flexibility in order to support an
easy interfacing between the input layer and an external sensor
or device. First, it includes the possibility to use a clock
domain crossing (CDC) circuit to enable the use of different
clocks for the external sensor and for the synthesized DNN.
Following the paradigm of the Globally Asynchronous
Locally Synchronous (GALS) systems [11], these
architectures can enhance the latency of a whole system while
running subsystems at different clock rates. Second, in the
case of a color image sensor, the input format can also be
adapted to read different RGB sequence formats, depending
on how the image bits are ordered at the RGB camera output.

Although the tool can be used for different types of DNNs,
it has been thought to be used mainly for image processing.
So, it can work with input tensors composed by grayscale or
color images, and with different image sizes.

III. RESULTS
The described tool has been tested to model and synthesize

a convolutional neural network aimed to perform TSR tasks
to classify the 43 classes of traffic signs described in [12]. Fig.
4 shows the Keras description of the proposed neural network,
which is composed by four convolutional layers and a dense
layer. None of the layers use bias, in order to cut off on the
number of weights to be stored. The input to the network are
32x32 RGB images and the output is a 43 classes vector.

The four convolutional layers use 3x3 masks and ReLU
activations. The dense layer softmax activation is used only
during the training process and it is replaced by a linear
activation for the inference. Given that both functions are
monotonic, the maximum output value will be the same.
Although softmax has other advantages, such us helping to
clarify the distance between two outputs, its synthesis is not
trivial in an all-hardware implementation. In this example the
synthesis has been performed on a Zynq Ultrascale+ MPSoC
development board [13] using Xilinx Vivado Design Suite
2018 [14]. The absolute and relative usage of resources (logic
LUTs, FFs or RAMB18) is detailed in Table I, where three
different data resolution has been used (6, 7 and 8 bits) for
three approaches of multiplier parallelism.

Fig. 4. Keras description of the proposed deep neural network.

TABLE I. USAGE OF RESOURCES

Resource
Bits Number of parallel multipliers per

convolution
1 Mult 3 Mult 9 Mult

Logic
LUTs

6 237027
(86.48%)

338705
(123.58%)

261360
(95.36%)

7 306830
(111.95%)

455894
(166.34%)

369093
(134.67%)

8 339471
(123.86%)

516992
(188.63%)

508756
(185.62%)

FFs

6 47931
(8.74%)

93108
(16.99%)

47483
(8.66%)

7 98210
(17.92%)

97682
(17.82%)

51192
(9.34%)

8 100924
(18.41%)

101692
(18.55%)

55641
(10.15%)

RAMB18

6 311
(17.05%)

311
(17.05%)

311
(17.05%)

7 311
(17.05%)

311
(17.05%)

311
(17.05%)

8 311
(17.05%)

311
(17.05%)

311
(17.05%)

For a 3x3 mask size, there are three possible parallelism
alternatives from the slowest to the fastest one: a single
multiplier, 3 multipliers (one per mask column) or 9
multipliers. As it is shown in the table, the usage of resources
is not proportional to each one of the described options. In the
case of a single multiplier, the usage of logic LUTs is smaller,
but, however, the multiplier implementation is the more
expensive one in terms of hardware. If we analyze the FFs, the
results are rather good for the 9 multipliers implementation.
The results obtained with respect to the block RAMs do not
vary with respect to the number of multipliers or the weight
size. These results suggest that the low level synthesis process
performed by Vivado performs some type of optimization
which cannot be easily controlled by the user, and deeper
analyses must be performed. Given that the main
computational element of the convolution layers is the
convolution kernel, an efficient design of this component is
essential to minimize the use of logical resources of the DNN
Thus, in the following paragraphs the contribution of this
operator to the hardware resources usage is analyzed in deep.

model = Sequential()

Convolution 1
model.add(Conv2D(26, kernel_size=(3, 3),
 activation='relu', use_bias = False,
 input_shape=(32, 32, 3)))

Convolution 2
model.add(Conv2D(20, kernel_size=(3, 3),
 activation='relu', use_bias = False))
model.add(MaxPooling2D(pool_size=(2, 2)))

Convolution 3
model.add(Conv2D(20, kernel_size=(3, 3),
 activation='relu', use_bias = False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

Convolution 4
model.add(Conv2D(12, kernel_size=(3, 3),
 activation='relu', use_bias = False))
model.add(MaxPooling2D(pool_size=(2, 2)))

Dense
model.add(Flatten())
model.add(Dense(43, activation='softmax',
 use_bias = False))

5 6 7 8 9 10
0

100

200

300

400

500

600

700

(LUTs)

(Nº of bits of the input)

Cnvl. with a non-fixed Mask
Cnvl. with a fixed Mask (median)

1 Mult.
3 Mult.
9 Mult.

Fig. 5. Implementation results of convolution kernels for the three proposed
parallelization alternatives and for the convolution kernels with non-fixed
mask.

Fig. 5 shows the number of LUTs used to implement a 3x3
convolution kernel for the three proposed parallelization
alternatives and different input data sizes. For reference, the
figure also includes the implementation results of convolution
kernels with non-fixed masks, i.e. when the synthesis tool
cannot use the mask constants to simplify and optimize the
arithmetic/logic circuits of the convolution kernel.

For the case of convolution kernels with a non-fixed mask
(three solid lines), the graph shows that, in general, the trend
in the use of LUTs for each implementations is proportional
to both the number of bits in the input and the number of
multipliers, with a slight increase observed for the case of 6-
bit inputs. Experimental data show that this increase is related
to the maximum number of inputs of the LUTs of the FGPA.
It has been found that when the number of bits of the
convolution input coincides with the maximum number of
inputs of the LUTs (6), the possibility of using simultaneously
the outputs O5 and O6 of the LUTs decreases, which results
in a worse use of the LUTs.

For the case of convolution kernels with fixed masks, the
number of LUTs needed for each implementation will depend
on the value of the mask coefficients, i.e. the synthesis tool
may optimize the convolution logic depending on the mask
constants, e.g. a constant equal to 0 or 2 may eliminate the
need to use a multiplier or may replace it by a shift operation.
This optimization, however, affects the different
parallelization alternatives unevenly. Since these results
cannot be described by a single curve, a box-and-whisker plot
created by implementing more than 200 different convolution
masks has been used. The dashed lines show the trend in the
number of LUTs (median) required to implement each of the
parallelization alternatives. These central values, in general,
follow a trend proportional to both the number of bits of the
input and the number of multipliers used, although with a
lower slope than in the case of convolutions with non-fixed
masks.

TABLE II. NETWORK LATENCY

Clock frequency Number of parallel
multipliers Latency (µs)

100 MHz

1 92.035

3 37.855

9 10.805

100 MHz / 300 MHz
(CDC)

1 51.374

3 51.294

9 51.267

The figure shows that, for the case of 6-bit inputs,
especially for convolutions with 1 and 3 multipliers, the
number of LUTs required increases slightly again for the same
reasons discussed above.

For the convolution kernel with a single multiplier, the
trend of the central values remains slightly below the case with
non-fixed masks. In this case, the interquartile range is the
smallest and most stable of the three, appearing some outliers
that correspond to masks whose elements are all zero, one, etc.

The figure shows that for the other two convolution
kernels (with 3 and 9 multipliers) the interquartile range and
the distance with respect to the version with non-fixed masks
increases with the number of multipliers used. The figure
shows that the option that best exploits the optimization
performed by the synthesis tool is the version with 9
multipliers, while the option that least exploits it is the version
with 1 multiplier. This result seems logical considering that
the convolution kernel with 9 multipliers does not use
multiplexers and therefore each multiplier can be optimized
for a specific constant. The kernels with 3 and 9 multipliers
making it more difficult for the synthesis tool to find a
common factor that optimizes the multiplication. It is even
possible that with a proper choice of convolution masks, the
implementation with 9 multipliers will use fewer LUTs than
an implementation with 1 or 3 multipliers.

Regarding the latency, Table II shows the figures achieved
for different number of parallel multiplier used. The results
show that for a fixed frequency (100 MHz) the latency is
approximately inverse proportional to the number of
multiplier, as it could be expected. However, when a CDC
circuit is used to combine a 100 MHz input with a 300 MHz
output, the results are different. Although a speed up is
achieved for a single multiplier with respect to a single 100
MHz clock, the results achieved when using 3 or 9 multiplier
are worse. This is due to the fact that the CDC requires
additional clock cycles to convert data from one domain to the
other and this extra latency is comparable to the own latency
of fast circuits as this is the case when parallel multipliers are
used.

IV. CONCLUSIONS
This paper has described a tool to transform high level

descriptions of DNN models to hierarchical register transfer
level descriptions based on VHDL. The tool allows some
tradeoff between hardware resources usage and network
latency, through the use of parallelism of the multiplier
operator used in both convolutional and fully connected layers
and allowing the specification of both the activation and the
weights size. However, since the tool is aimed to be useful for
different target technologies, such us FPGAs, SoCs or ASICs,
it relies on low level synthesis tools, which take as input the
created VHDL netlists and perform place and route
operations. Thus it cannot perform a fully parameter space
exploration which would lead to optimized designs and
because of that the translation is based on a module library.

To solve this, each module in the library can be
characterized in order to obtain its resource usage or silicon
area for different target technologies, as well as its power
dissipation besides its latency. This would provide a rough
estimation of the whole power dissipation of the neural
network and its silicon occupation. However, our tests have
shown that this would be only an estimation, since the
synthesis of some operators, like the multipliers, depends on
the weights values. In this sense networks with a large amount
of null weights or with a large number of null bits will occupy
less silicon area that others with large number of ‘1’s. Thus, it
is difficult to find a priori a relationship between the number
of layers or the number of channels of a DNN and its silicon
area or number of resources in the case of an FPGA. In this
latter case, the discrete distribution of resources within the
CLBs yields to a more complex estimation of the overall usage
of resources. An alternative is to include the low level
synthesis tools within the translation loop, including an
automatic evaluation of the final synthesized design in order
to guide the optimization.

V. ACKNOWLEDGEMENTS
This work has been partially funded by Spanish Ministerio

de Ciencia e Innovación (MCI), Agencia Estatal de
Investigación (AEI) and European Region Development Fund
(ERDF/FEDER) under grant RTI2018-097088-B-C33.

REFERENCES
[1] https://www.tensorflow.org/
[2] https://pytorch.org/
[3] https://keras.io/
[4] https://caffe.berkeleyvision.org/
[5] J. Chen and X. Ran, "Deep Learning With Edge Computing: A

Review," in Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674,
Aug. 2019, doi: 10.1109/JPROC.2019.2921977.

[6] X. Zhang et al., "DNNBuilder: an Automated Tool for Building High-
Performance DNN Hardware Accelerators for FPGAs," 2018
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2018, pp. 1-8, doi: 10.1145/3240765.3240801.

[7] S. Hadjis and K. Olukotun, "TensorFlow to Cloud FPGAs: Tradeoffs
for Accelerating Deep Neural Networks," 2019 29th International
Conference on Field Programmable Logic and Applications (FPL),
2019, pp. 360-366, doi: 10.1109/FPL.2019.00064.

[8] M. Riazati, M. Daneshtalab, M. Sjödin and B. Lisper, "DeepHLS: A
complete toolchain for automatic synthesis of deep neural networks to
FPGA," 2020 27th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), 2020, pp. 1-4, doi:
10.1109/ICECS49266.2020.9294881.

[9] K. Vipin, "ZyNet: Automating Deep Neural Network Implementation
on Low-Cost Reconfigurable Edge Computing Platforms," 2019
International Conference on Field-Programmable Technology
(ICFPT), 2019, pp. 323-326, doi: 10.1109/ICFPT47387.2019.00058.

[10] https://www.hdfgroup.org/
[11] D.M. Chapiro. Globally Asynchronous Locally Synchronous Systems.

PhD thesis, Stanford University, 1984.
[12] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing and C. Igel,

“Detection of Traffic Signs in Real-World Images: The German Traffic
Sign Detection Benchmark,” The 2013 International Joint Conference
on Neural Networks (IJCNN), Dallas, TX, USA, 2013, pp. 1-8.

[13] https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-
mpsoc.html

[14] https://www.xilinx.com/products/design-tools/vivado.html

.

https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://caffe.berkeleyvision.org/
https://www.hdfgroup.org/
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/design-tools/vivado.html

	I. Introduction
	II. Tool description
	III. Results
	IV. Conclusions
	V. Acknowledgements
	References

