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Abstract. This work presents a tool to convert high level models of deep neural networks into register transfer level designs. 
In order to make it useful for different target technologies, the output designs are based on hierarchical VHDL descriptions, 
which are accepted as input files for a wide variety of FPGA, SoC and ASIC digital synthesis tools. The presented tool is aimed 
to speed up the design and synthesis cycle of such systems and provides the designer with certain capability to balance network 
latency and hardware resources. It also provides a clock domain crossing to interface the input layer of the synthesized neural 
networks with sensors running at different clock frequencies. The tool is tested with a neural network which combines 
convolutional and fully connected layers designed to perform traffic sign recognition tasks and synthesized under different 
hardware resource usage specifications on a Zynq Ultrascale+ MPSoC development board.  
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I. INTRODUCTION 
Deep learning has become one of the most powerful 

methods within the paradigm of artificial intelligence to 
perform different computer vision tasks. From image 
recognition to object tracking, deep learning has reduced the 
use of well known feature-extraction based algorithms such 
FAST or SIFT; and currently there is a wide range of tools to 
develop, train, optimize and implement such deep neural 
networks (DNN). Among these tools, we can cite Tensorflow 
[1], PyTorch [2], Keras [3], Caffe [4] or even Matlab. These 
tools are focused on high performance computing (HPC) 
platforms, either using single or multi-core CPUs or GPUs to 
speed up both the training and the inference of the networks.  

On the other hand, end devices such as Internet-of-Thing 
sensors or portable CMOS imagers, require real time 
processing capabilities while having a low power dissipation. 
So, it is usual to find applications where both deep learning 
and edge computing are combined to meet the requirements 
from both fields of study [5]. However, edge computing 
devices are usually based on cost effective microprocessors, 
SoCs or ASICs whose computing performance is far away 
from the aforementioned HPC.  

Although currently it is usual to find lots of information 
regarding DNN training and inference even on personal 
computers, there is not so much when the target 
implementation is based on a specific hardware platform such 
an FPGA or an ASIC. So, when such edge computing devices 
for DNN based computer vision applications are designed, 
engineers find a gap between the high level tools aimed to 
develop DNNs on high performance computers and the 
resource limitations of the hardware in which the final 
application is being deployed. This means that once a DNN 
architecture has been trained on a computer, the designer must 
manually translate this network, from scratch, to the target 
hardware. This operation is not trivial and requires skilled 
designers with both knowledge of high level DNNs modeling 

tools and digital electronic design. Even if this is such a case, 
it is well known that the electronic system design cycle is 
composed by a set of sequential steps from higher to lower 
hierarchy levels, where it is usual to find iterative procedures 
between two consecutive steps until a satisfactory solution is 
found. This is the case, for instance, where a tradeoff between 
a high level specification such as accuracy or latency must 
meet low level performance such as silicon area / resources 
usage or power dissipation.   

There are different proposals in the literature of tools able 
to transform high level descriptions of neural networks into 
synthesizable architectures. In [6] a tool able to build board 
level FPGA implementations from high level descriptions is 
presented. Also, in [7] an open source tool which translates 
Tensorflow designs into Cloud FPGAs is described. A tool to 
translate high level Keras descriptions of DNNs into low level 
C code is shown in [8]. Finally, in [9] a Python package to 
create DNN implementations on low-cost FPGAs is 
developed. It is clear then that tools to link high level 
descriptions created using common DNN development tools 
to low level hardware descriptions is a current research topic. 
However, most of these tools are focused on reconfigurable 
hardware platforms as target technology. The main advantage 
of such devices is that they allow to create prototypes very 
quickly, which are cost-effective when small volume 
productions are run. However, when a large amount of devices 
are manufactured or if the power dissipation specifications are 
really tight, ASICs become more competitive and thus, the use 
of a translation tool of the type described above becomes 
interesting.  

In this work, a tool to create VHDL hierarchical 
descriptions using a set of parameterizable DNN building 
blocks from a high level DNN description is presented. The 
tool allows a tradeoff between hardware resource usage and 
network latency; and the VHDL code produced is able to be 
synthesized on different target technologies such as PFGAs, 
SoCs or ASICs. Its performance is tested performing the 



synthesis of a traffic sign recognition (TSR) DNN. The rest of 
the paper is organized as follows. Section II describes the 
structure of the translation tool. Section III shows a 
comparison of the results obtained when synthesizing the TSR 
DNN under different design strategies. Finally, conclusions 
are drawn in section IV.  

II. TOOL DESCRIPTION 
The general outline of the tool workflow is shown in Fig. 

1. The tool reads an HDF5 format file [10] containing the high 
level description of a neural network. HDF5 is an open source 
file format which supports complex and large data; and its use 
is widely accepted by the majority of the high level deep 
learning tools such as Tensorflow, Caffe or Matlab. The tool 
parses then this file and extracts the network structure, as well 
as the weights, of each convolutional and fully connected 
layers. The aim is to build a structure of pipelined stages which 
maps the sequence of layers in the DNN model, as shown in 
Fig. 2. The translation process relies on a VHDL library which 
contains structural descriptions of different network 
components at different subsystem level, such as 
convolutional and fully connected layers; operators like 
comparators, adders and multipliers; auxiliary data path 
components like FIFO registers, counters, latches, 
multiplexers and others and interfacing ones such us clock 
domain crossing circuits. 

The user preferences include the specification of data path 
width for the activations and for the network weights as well 
as the level of parallelism of the design, as it will be further 
detailed. As a result, the tool creates a refined hierarchical 
VHDL netlist which corresponds to the lowest level of the 
high level synthesis flow, since it is not based on any target 
technology cells. This VHDL description is then suitable to be 
processed by a low level synthesis tool to convert it to a 
proprietary technology cell based design, either for FPGA / 
SoC or ASIC, and later to be placed and routed to obtain the 
final prototype. 

As shown in Fig. 2, for each layer read from the file, a new 
stage is added to the pipeline at the level 2 of the VHDL 
hierarchy. Level 3 of the VHDL hierarchy is composed by the 
parallel channels inside each layer. Finally, the fourth level of 
the hierarchy is a flat one which includes the two main types 
of resources involved in the synthesis process: computation 
units and memory. In order to balance the usage of 
computation resources and the network latency, the degree of 
hardware parallelism can be selected during the translation 
process. This parallelism is only applicable to the multiplier 
structures. In the case of a convolutional layer using an k x k 
convolution mask, the user can select to use a fully serial 
approach using a single multiplier, a full parallel one using n2 
multiplier or finally a mixed one using k multipliers (Fig. 3). 
In the case of a dense layer, the user can select whether to use 
a single multiplier or to use a multiplier per layer output.  

Regarding the multiply operations, the tool does not select 
the architecture of the low level operator, i.e. DSP or carry-
and-adder multiplier, being this selected by the low level 
synthesis software used afterwards, using the corresponding 
compiler directives or flags. From our experience, for DNNs 
with weights sizes up to 10 bits, multiplications can be 
synthesized using combinational logic without using in-chip 
DSPs, so it is easier to find a target technology to fit them in, 
like low-cost FPGAs. 

 

 
Fig. 1. Structure of the translation tool. 

 

 
Fig. 2. VHDL pipelined structure of the synthesised DNN. 

 

Fig. 3. Usage of multipliers in convolutional layers. 

Regarding the memory resources, the current version of 
the tool only deals with in-chip memory to store the network 
weights. Again, it requires a tradeoff between the complexity 
of the network, and the size of the activations and the weights 
on the one side and the number of hardware resources on the 
other.  
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The VHDL library (Fig. 1) contains a set of parameterized 
VHDL circuits commonly used in DNNs. In order to offer 
flexibility for different types of networks, convolutional layers 
are fully parameterized and allow any mask size, being the 
smallest one a 3x3 pixel size. The stride and padding can also 
be parameterized. Fully connected layers also allow different 
combinations of input and output sizes. In both types of layers, 
the largest sized would be limited by the number of resources 
of the target device or the maximum silicon area available. 
With respect to the output activation functions, both types of 
layers can deal with linear or ReLU functions. 

Other layers that are included in the library are the flatten 
one, needed to link convolutional layers with fully connected 
ones, and batch normalization layers. In this later case their 
implementation to perform synthesis is a linear function, given 
that, once the values of µ, σ, β and γ have been trained, their 
values are constant and the output activation y for a given 
input activation x, can be obtained as: 

 𝑦𝑦 = 𝛾𝛾 𝑥𝑥−𝜇𝜇
�𝜎𝜎2+𝜀𝜀

+ 𝛽𝛽 (1) 

The tool provides some flexibility in order to support an 
easy interfacing between the input layer and an external sensor 
or device. First, it includes the possibility to use a clock 
domain crossing (CDC) circuit to enable the use of different 
clocks for the external sensor and for the synthesized DNN.  
Following the paradigm of the Globally Asynchronous 
Locally Synchronous (GALS) systems [11], these 
architectures can enhance the latency of a whole system while 
running subsystems at different clock rates. Second, in the 
case of a color image sensor, the input format can also be 
adapted to read different RGB sequence formats, depending 
on how the image bits are ordered at the RGB camera output. 

Although the tool can be used for different types of DNNs, 
it has been thought to be used mainly for image processing. 
So, it can work with input tensors composed by grayscale or 
color images, and with different image sizes. 

III. RESULTS 
The described tool has been tested to model and synthesize 

a convolutional neural network aimed to perform TSR tasks 
to classify the 43 classes of traffic signs described in [12]. Fig. 
4 shows the Keras description of the proposed neural network, 
which is composed by four convolutional layers and a dense 
layer. None of the layers use bias, in order to cut off on the 
number of weights to be stored. The input to the network are 
32x32 RGB images and the output is a 43 classes vector.  

The four convolutional layers use 3x3 masks and ReLU 
activations. The dense layer softmax activation is used only 
during the training process and it is replaced by a linear 
activation for the inference. Given that both functions are 
monotonic, the maximum output value will be the same. 
Although softmax has other advantages, such us helping to 
clarify the distance between two outputs, its synthesis is not 
trivial in an all-hardware implementation. In this example the 
synthesis has been performed on a Zynq Ultrascale+ MPSoC 
development board [13] using Xilinx Vivado Design Suite 
2018 [14]. The absolute and relative usage of resources (logic 
LUTs, FFs or RAMB18) is detailed in Table I, where three 
different data resolution has been used (6, 7 and 8 bits) for 
three approaches of multiplier parallelism.  

 

 
Fig. 4. Keras description of the proposed deep neural network. 

TABLE I.  USAGE OF RESOURCES 

Resource 
Bits Number of parallel multipliers per 

convolution 
1 Mult 3 Mult 9 Mult 

Logic 
LUTs 

6 237027 
(86.48%) 

338705 
(123.58%) 

261360 
(95.36%) 

7 306830 
(111.95%) 

455894 
(166.34%) 

369093 
(134.67%) 

8 339471 
(123.86%) 

516992 
(188.63%) 

508756 
(185.62%) 

FFs 

6 47931 
(8.74%) 

93108 
(16.99%) 

47483 
(8.66%) 

7 98210 
(17.92%) 

97682 
(17.82%) 

51192 
(9.34%) 

8 100924 
(18.41%) 

101692 
(18.55%) 

55641 
(10.15%) 

RAMB18 

6 311 
(17.05%) 

311  
(17.05%) 

311 
(17.05%) 

7 311 
(17.05%) 

311  
(17.05%) 

311 
(17.05%) 

8 311 
(17.05%) 

311  
(17.05%) 

311 
(17.05%) 

 

For a 3x3 mask size, there are three possible parallelism 
alternatives from the slowest to the fastest one: a single 
multiplier, 3 multipliers (one per mask column) or 9 
multipliers. As it is shown in the table, the usage of resources 
is not proportional to each one of the described options. In the 
case of a single multiplier, the usage of logic LUTs is smaller, 
but, however, the multiplier implementation is the more 
expensive one in terms of hardware. If we analyze the FFs, the 
results are rather good for the 9 multipliers implementation. 
The results obtained with respect to the block RAMs do not 
vary with respect to the number of multipliers or the weight 
size. These results suggest that the low level synthesis process 
performed by Vivado performs some type of optimization 
which cannot be easily controlled by the user, and deeper 
analyses must be performed. Given that the main 
computational element of the convolution layers is the 
convolution kernel, an efficient design of this component is 
essential to minimize the use of logical resources of the DNN 
Thus, in the following paragraphs the contribution of this 
operator to the hardware resources usage is analyzed in deep. 

model = Sequential() 
 
# Convolution 1 
model.add(Conv2D(26, kernel_size=(3, 3),   
   activation='relu', use_bias = False,   
   input_shape=(32, 32, 3))) 
 
# Convolution 2 
model.add(Conv2D(20, kernel_size=(3, 3),  
   activation='relu', use_bias = False)) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
 
# Convolution 3 
model.add(Conv2D(20, kernel_size=(3, 3),  
   activation='relu', use_bias = False)) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
model.add(Dropout(0.25)) 
 
# Convolution 4 
model.add(Conv2D(12, kernel_size=(3, 3),  
   activation='relu', use_bias = False)) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
 
# Dense 
model.add(Flatten()) 
model.add(Dense(43, activation='softmax',  
   use_bias = False)) 
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Fig. 5. Implementation results of convolution kernels for the three proposed 
parallelization alternatives and for the convolution kernels with non-fixed 
mask. 

Fig. 5 shows the number of LUTs used to implement a 3x3 
convolution kernel for the three proposed parallelization 
alternatives and different input data sizes. For reference, the 
figure also includes the implementation results of convolution 
kernels with non-fixed masks, i.e. when the synthesis tool 
cannot use the mask constants to simplify and optimize the 
arithmetic/logic circuits of the convolution kernel.  

For the case of convolution kernels with a non-fixed mask 
(three solid lines), the graph shows that, in general, the trend 
in the use of LUTs for each implementations is proportional 
to both the number of bits in the input and the number of 
multipliers, with a slight increase observed for the case of 6-
bit inputs. Experimental data show that this increase is related 
to the maximum number of inputs of the LUTs of the FGPA. 
It has been found that when the number of bits of the 
convolution input coincides with the maximum number of 
inputs of the LUTs (6), the possibility of using simultaneously 
the outputs O5 and O6 of the LUTs decreases, which results 
in a worse use of the LUTs. 

For the case of convolution kernels with fixed masks, the 
number of LUTs needed for each implementation will depend 
on the value of the mask coefficients, i.e. the synthesis tool 
may optimize the convolution logic depending on the mask 
constants, e.g. a constant equal to 0 or 2 may eliminate the 
need to use a multiplier or may replace it by a shift operation. 
This optimization, however, affects the different 
parallelization alternatives unevenly. Since these results 
cannot be described by a single curve, a box-and-whisker plot 
created by implementing more than 200 different convolution 
masks has been used. The dashed lines show the trend in the 
number of LUTs (median) required to implement each of the 
parallelization alternatives. These central values, in general, 
follow a trend proportional to both the number of bits of the 
input and the number of multipliers used, although with a 
lower slope than in the case of convolutions with non-fixed 
masks.  

TABLE II.  NETWORK LATENCY 

Clock frequency Number of parallel 
multipliers  Latency (µs) 

100 MHz 

1 92.035 

3 37.855 

9 10.805 

100 MHz / 300 MHz 
(CDC) 

1 51.374 

3 51.294 

9 51.267 

 

The figure shows that, for the case of 6-bit inputs, 
especially for convolutions with 1 and 3 multipliers, the 
number of LUTs required increases slightly again for the same 
reasons discussed above. 

For the convolution kernel with a single multiplier, the 
trend of the central values remains slightly below the case with 
non-fixed masks. In this case, the interquartile range is the 
smallest and most stable of the three, appearing some outliers 
that correspond to masks whose elements are all zero, one, etc.  

The figure shows that for the other two convolution 
kernels (with 3 and 9 multipliers) the interquartile range and 
the distance with respect to the version with non-fixed masks 
increases with the number of multipliers used. The figure 
shows that the option that best exploits the optimization 
performed by the synthesis tool is the version with 9 
multipliers, while the option that least exploits it is the version 
with 1 multiplier. This result seems logical considering that 
the convolution kernel with 9 multipliers does not use 
multiplexers and therefore each multiplier can be optimized 
for a specific constant. The kernels with 3 and 9 multipliers 
making it more difficult for the synthesis tool to find a 
common factor that optimizes the multiplication. It is even 
possible that with a proper choice of convolution masks, the 
implementation with 9 multipliers will use fewer LUTs than 
an implementation with 1 or 3 multipliers. 

Regarding the latency, Table II shows the figures achieved 
for different number of parallel multiplier used. The results 
show that for a fixed frequency (100 MHz) the latency is 
approximately inverse proportional to the number of 
multiplier, as it could be expected. However, when a CDC 
circuit is used to combine a 100 MHz input with a 300 MHz 
output, the results are different. Although a speed up is 
achieved for a single multiplier with respect to a single 100 
MHz clock, the results achieved when using 3 or 9 multiplier 
are worse. This is due to the fact that the CDC requires 
additional clock cycles to convert data from one domain to the 
other and this extra latency is comparable to the own latency 
of fast circuits as this is the case when parallel multipliers are 
used. 

 

 

 

 

 



IV. CONCLUSIONS 
This paper has described a tool to transform high level 

descriptions of DNN models to hierarchical register transfer 
level descriptions based on VHDL. The tool allows some 
tradeoff between hardware resources usage and network 
latency, through the use of parallelism of the multiplier 
operator used in both convolutional and fully connected layers 
and allowing the specification of both the activation and the 
weights size. However, since the tool is aimed to be useful for 
different target technologies, such us FPGAs, SoCs or ASICs, 
it relies on low level synthesis tools, which take as input the 
created VHDL netlists and perform place and route 
operations. Thus it cannot perform a fully parameter space 
exploration which would lead to optimized designs and 
because of that the translation is based on a module library. 

To solve this, each module in the library can be 
characterized in order to obtain its resource usage or silicon 
area for different target technologies, as well as its power 
dissipation besides its latency. This would provide a rough 
estimation of the whole power dissipation of the neural 
network and its silicon occupation. However, our tests have 
shown that this would be only an estimation, since the 
synthesis of some operators, like the multipliers, depends on 
the weights values. In this sense networks with a large amount 
of null weights or with a large number of null bits will occupy 
less silicon area that others with large number of ‘1’s. Thus, it 
is difficult to find a priori a relationship between the number 
of layers or the number of channels of a DNN and its silicon 
area or number of resources in the case of an FPGA. In this 
latter case, the discrete distribution of resources within the 
CLBs yields to a more complex estimation of the overall usage 
of resources. An alternative is to include the low level 
synthesis tools within the translation loop, including an 
automatic evaluation of the final synthesized design in order 
to guide the optimization. 
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