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In this work, we propose ANT, a network of agents which exchange information in a stigmergy-based fashion. InANT, each system’s
actor distributes pheromones as a way of indicating places’ attractiveness, as well as for building a proper routing path to those sites.
The goal of ANT is to improve the chances of discovering points of interest, as well as to reduce the time required for doing so. We
have applied ANT to a tourist mobility scenario, where both people and things (events, restaurants, performances, etc.) participate.
ANThas achieved notable success in this example case.We find that probability of discovering temporary events and dates improves
by more than 35%, while the mean time employed to determine static point decreases by more than a third. We also introduce a
mobile-based architecture which performs ANT tasks efficiently and easily for the user.

1. Introduction

In the last decade, the advances in mobile communications
have been unstoppable. Cell phones are now widespread,
and their regular use is adopted for most of the population
[1, 2]. Mobile communications are changing the way people
conduct their daily activities such as working, sleeping,
cooking, running, reading news, or obtaining information.
One important area of influence is tourism, where mobile
applications have replaced not only maps and travel guide
books but even the human guides. Most of these applications
are recommenders that store and classify points of interests
(POIs) based on previous user opinions with the downside of
losing information on temporary events.

One way of having live data on POIs is through the
social network. For example, applications such as Waze [3]
and Swarm [4] indicate the state of events, thereby helping
participants to make choices. While such systems provide
useful information for specific searches or may inspire going
to new places, they depend on visual information (e.g., maps,
icons, or text) and information collection is for the common
benefit of all participants. This constant flow of information

may create information overload and distract visitors from
exploring and experiencing the atmosphere of a city [5].

An alternative mode of sightseeing entails wandering
around the city using a less intrusive guiding system. A visitor
may want to feel they are finding interesting new places other
people fail to see and share this information. On the other
hand, we may want to visit the places that other tourists
have encountered and to avoid the places already visited. Our
approach combines both goals: serendipitous discovery while
providing this information to the rest of participants. The
core idea is that a central server provides the user the data
to make route decisions. The implementation of these model
results is challenging and, in particular, the planning of routes
is crucial.

In this paper, we explore a guiding system for tourists
based on stigmergy, which is a type of communication
used by some species of insects, for example, ants [6], for
foraging purposes. Stigmergy consists in liberating chemicals
denominated pheromones while moving and leaving a trace
that others can sense. The more individuals follow a trail,
the higher amount of pheromones. This concentration of
pheromone serves other individuals as a stimulus to follow
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a particular path. Additionally, a pheromone trail evapo-
ration mechanism enables the search for food in different
locations.

A systematic approach of stigmergy can resolve a complex
problem via the single action of agents [7]. In our case, the
visitor performs a tour carrying a software agent (e.g., on
a smartphone). This software has two missions: to upload
previously followed paths at interesting locations and tomake
route decisions. Tomake this computation, the agent receives
a consolidated pheromone distribution of all users from the
central server. In these calculations, the server increments the
pheromone concentration of the tourist path to reach a POI,
allowing others to discover it.Moreover, ourmodel associates
a pheromone profile with each agent to avoid any repetition
of visits.

The key new features of our proposal are the following:

(1) Efficient. Finding hard or significant locations for each
kind of user is difficult to achieve by conventional means but
not with our system. It also enables users to bypass previous
attractions.

(2) Transparent. The application directs users to interesting
sites, avoiding the query-decision cycle of standard applica-
tions.

(3) Dynamic. Users can find very short-running events (e.g.,
a street performance). The system can also recognize a new
POI simply by monitoring the agent.

(4) Emphatic. Pheromones act on groups of users according
to their likes.

(5) Customizable. Introducing changes in the stigmergy
operation (easily configurable by a short set of parameters)
facilitates individual adaptation to the environment accord-
ing to user preferences.

(6) IoT Integrated. Objects and other factors may lead and
also govern pheromone liberation actions. For example, a
lighting spectacle could liberate pheromones some minutes
before it is switched on; a restaurant can liberate different
kinds of pheromones at various times for tourists from several
countries, and so on. There is a variety of new ways of
interacting.

To our knowledge this work is the first to use stigmergy
in the design of a tour navigation system. Stigmergy provides
distinct advantages over the existing itinerary and route
planning systems in discovering unexpected live events and
provides a more simple operation and personalization of the
tourist interest (e.g., controlling the associated pheromone
concentration). The rest of the paper proceeds as follows:
Section 2 summarizes the related works on tour planning
and routing systems. Section 3 describes ANT architecture
and provides an overview of its operation. Section 4 analyzes
different mechanisms for tourist path planning, which we
investigated numerically using a simulator in Section 5.
Finally, Section 6 presents the conclusions.

2. Related Work

Itinerary planning is an ongoing problem that has fostered
considerable attention by many researchers. We may catego-
rize the existing works in twomain groups, offline and online,
depending on how they adapt their results with the changing
conditions during the tour.

The offline approaches are adjusted before starting the
visit and offer the user an itinerary for a set of POIs. These
systems allow the tourist to select the POIs they want to
visit. Then they prepare a personalized itinerary [8–11, 20,
21] and in some cases they receive user feedback, which
provides the possibility of recommendation [9–11, 21]. The
systems presented in [9, 10, 22, 23] have mobility support and
are also location-aware, assisting the user with data of the
closest POIs. Cellular broadband connections have enabled
the development of mobile augmented reality-based (MAR)
POI recommendation systems. In addition to an itinerary
of POIs, MAR-based systems can deliver interactive infor-
mation regarding dining, museums, and entertainment and
even show virtual paths and directional arrows to facilitate
navigation [24, 25].

The works [5, 26] follow a different model: they allow
tourists to wander freely around the city and discover new
POIs. Once the user is close to a POI the system signals the
user (vibration in the case of [5]) or plays a recording with
information relating to that POI [26]. These approaches are
stand-alone oriented and, on the road, they are absent of
central support. Similarly to [5], in [26] the authors use the
concept of Audio Bubbles, informative recordings that the
user can listen to when close to a POI. Neither [5] or [26]
provide a navigation plan, only information about the current
POI being visited.

Some other offline systems come with a full set of
functionalities and provide an itinerary taking into account
a variety of parameters.They can compute a touristic journey
based on time scheduling of transport, route distance, user
preference, or sightseeing time. The downside with these
systems is that they have no live feedback from users, and the
associated computation is complicated because they resolve
an optimization problem. For example, [12, 27, 28] use genetic
heuristics. Reference [29] utilizes simulated annealing and
[13] solves a dynamic programming problem. Reference [14]
uses a clustering algorithm based on location and tourist
preferences and then computes the route using a greedy
algorithm on those clusters. Other works iteratively construct
the tour plan based on successive refinements of the initial
user plan [9, 15, 16, 27] and the solution is approximated
via metaheuristics. References [15, 27] use genetic algorithm
whereas [16] uses a local search heuristic and [8] a binary
search tree heuristic. The common term in the literature
for these problems is tourist trip design problem (TTDP) or,
simply, Orienting Problem [30]. In the two cases, the goal is
to create a tour trip with the most desirable sites, subject to
various budget and time constraints. Note that TTDP and
TSP are different problems: the TTDP objective is not the
shortest path but finding a suitable route for a particular
user. The survey works [30, 31] collect the tourism-centered
algorithms to solve this problem. Solving the TTDP is a
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daunting task (commonly, using metaheuristics) and it needs
a lot of information. Our system is much simpler to imple-
ment: stigmergy can build a solution with the combination
of valid individual routes between POIs and does not need
user interaction or additional data. We would point out that
stigmergy does not find the shortest solution, despite the fact
that it finds a tour which passes through a set of POIs ranked
by the concentration of pheromone, that is, the number of
recent visits.

In contrast with the precedent systems, some approaches
aimed to discover unknown POIs. We have labeled those
systems online, as most of them were inspired by common
features of social network platforms, providing access to user-
generated content. Their primary design goal is to allow
collaboration among users and support them in their visits,
for example, using Twitter (https://twitter.com) or Face-
book (https://www.facebook.com) as communication media
(moreTourism [32] and e-Tourism [33]), obtaining the users’
valuation of different POIs from them (Im feeling LoCo [34],
iTravel [17], VISIT [18], and PlanTour [19]), or grouping near-
by users for a joint activity (e-Tourism [33], iTravel [17], and
Swarm [4]).

Most of these systems consider the location of people and
recommend a personalized set of POIs. However, they focus
more on recommending places and advertising new plans
to the closest contacts than on supporting the navigation
of individuals to those places. An illustrative application
designed specially to provide information on transportation
routes is Waze [3]. Waze is a commercial navigation system
where users collaborate by uploading their own experiences
as users. This application provides live visual data, such as
the locations of slow traffic, police controls, speed radars,
and roadworks, and computes the best route to a destination.
Although all this informationmay be important during a trip,
the purpose of Waze is not to discover interesting new places
to go.

ANT stigmergy approach shares with the precedent
online systems the capacity to receive feedback from other
users (i.e., the most visited POIs) by controlling the
pheromone profile of each user (see Section 4). Moreover,
ANT can also discover live or temporary events and avoid the
repetition of POIs. However, we may distinguish ANT from
other online-based approaches for its simplistic operation,
which does not require user interaction, thereby avoiding
distractions and allowing for a more authentic touristic
experience. Table 1 compares the ANT system approach with
a group of representative references of this section.

Finally, to our knowledge, ANT is the first navigation sys-
tem for tourism based on stigmergy. There are a few similar
approaches, such as papers [35, 36], but their objectives are
different from ours.

3. System Description

3.1. Architecture. The main actors of the ANT system archi-
tecture (see Figure 1) are the following:

(i) Final user, ANT agent: the ANT software runs on
end users’ devices (tourists’ smart phones, smart

watches, etc.). Its mission is to detect when a place
is “interesting” for the tourist and to upload the
previously followed path to the server when identi-
fying this site. Moreover, it receives a consolidated
pheromone map from the ANT server, which is used
to make decisions about suitable routes for the user.
Section 3.2 describes the technical details of these
procedures. Figure 1 displays interesting sites that
have been found (marked with blue stars).

(ii) Objects, ANT agent: an intrinsic feature of ANT
is allowing objects to interact with the system; for
example, these related objects can be promotional
events like restaurants, bars, and public places or
features. To that end, an ANT software runs at each
place. It can run on an IoT device (e.g., a raspberry PI)
or even on a smart device, such as a smartphone.They
declare a point of interest to the server and associated
routes, similarly to the previous case. In this case, a
pheromonemap is not necessary. An example of a site
identified event appears in Figure 1 as the red star.

(iii) ANT server: the server is responsible for gener-
ating pheromone information for the agents (i.e.,
tourists), defining its evolution over time (evapora-
tion and reinforcement processes), and distributing
the required information to each agent, for the rout-
ing tasks. Section 4 explains the pheromone control
procedures.

3.2. Operation Overview. As stated in the Introduction, our
approach intends to improve tourists’ ability to find new
POIs by exploiting the foraging mechanism of ants. Similarly
to them, ANT’s actors deposit pheromones (indicating site
popularity). Pheromonemapping is used to decide individual
user routes according to different strategies. For that, the
system assumes the following rules:

(1) In the absence of pheromone a touristmoves at its own
will; that is, there is no influence from other ANT
agents in path selection.

(2) ANT software keeps track of the paths the tourist
has followed, the Route Information (RI), for the last
Memory Path Interval (MPI) minutes.

(3) When a visitor remains in or around a place during a
POI Detection Interval (POI-DI), the ANT software
declares a POI and forwards the RI to the ANT server.
The parameter POI Area Distance (POI-AD) refers to
the space bound to limit the POI triggering. That is,
the user needs tomove less than POI-ADduring POI-
DI.

(4) UponRI reception, the server checkswhether another
actor has previously declared this POI. It does so by
checking whether another POI is within POI-AD of
the current one. If it is a new POI, the server creates
a POI Unique Number (POI-UN). Otherwise, the
system recovers its POI-UN from the database. Then,
the server adds pheromone to the given RI, according
to the route ranking procedure (see Section 4). Each

https://twitter.com
https://www.facebook.com
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Table 1: Tour itinerary planning systems.

Online/offline
approach

Need of user
feedback

Capture
of live
events

Planning algorithm Centralized
architecture

Mobile
support

Location
aware

Map
support

Personalized
itinerary

Gavalas et
al. [8] Offline No No

Heuristic for binary
tree search

(DailyTRIP) to find
POIs

Yes No No Yes Yes

MyMitelene/
Gavalas and
Kenteris [9]

Offline Yes No
𝑘-Means algorithm
to find the POIs for

each day
Yes Yes Yes Yes Yes

Wörndl et
al. [10] Offline

Collect POIs
category from
Foursquare
(https://

www.foursquare
.com)

No
Dijkstras algorithm
to find the shortest

route
Yes No No Yes Yes

RouteMe/
Herzog et al.
[11]

Offline Yes No

Collaborative
filtering based on
users’ ratings to
compute itinerary

between two
locations

Yes Yes No Yes Yes

Hornecker
et al. [5] Offline No No — No Yes Yes Yes No

Zheng et al.
[12] Offline No No

Generic algorithm
heuristic to solve
TTDP. It takes into
account the tourist’s

state of fatigue

— — — — Yes

Gionis et al.
[13] Offline

Collect POIs
category from
Foursquare

No

Dynamic
programming

algorithm to resolve
tour route problem

— — — — Yes

Awal et al.
[14] Offline No No

𝑘-Means algorithm
to cluster POIs

based on location
and user preferences

— — — — Yes

CT-
Planner5/
Kurata et al.
[15]

Offline Yes No

Genetic algorithm
to compute the
itinerary of POIs,
and Google Maps
API to find the best

route

Yes No No Yes Yes

Zhu et al.
[16] Offline No No

Local search
heuristic to compute

a route plan
— — — — Yes

iTravel/Yang
and Hwang
[17]

Online
Users exchange
POIs valoration
on-the-road

Yes

Computes the
itinerary of POIs via

collaborative
filtering technique
on users’ ratings

Yes Yes Yes Yes Yes

VISIT/
Meehan et
al. [18]

Online

Collect user
sentiments from
Twitter and
Facebook

No

Compute the
itinerary of POIs via
a combination of
decision-making

techniques on users’
parameters

— Yes Yes Yes Yes
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Table 1: Continued.

Online/offline
approach

Need of user
feedback

Capture
of live
events

Planning algorithm Centralized
architecture

Mobile
support

Location
aware

Map
support

Personalized
itinerary

PlanTour/
Cenamor et
al. [19]

Online

Collect POI and
user data from
Minitube (http://
www.minube.net)
Travel blog and

Yelp
(https://www.yelp

.com)

No
k-Means algorithm
to find the POIs for

each day
Yes No No Yes Yes

Swarm [4] Online Yes

Yes and
generated
by the

own user

Commercial, n/a — Yes Yes Yes Yes

Waze [3] Online Yes Yes Commercial, n/a — Yes Yes Yes Yes

This work:
ANT Online No

Yes and
generated
by the

own user

Route selection
based on the current

POI popularity
obtained via

stigmergy operation

— Yes Yes No Yes

POI has a particularly associated pheromone type
over the map (identified by the POI-UN).

(5) Each Updating Period (UP), the ANT server evapo-
rates pheromone of all kinds at a predefined Evap-
oration Rate (ER). The next section discusses the
evaporation mechanism. If a pheromone associated
with a POI-UNdisappears entirely, the server releases
its associated information.

(6) Each UP, the ANT server communicates tourists with
their Individualized PheromoneMapping (IPM).The
IPM provides pheromone mapping of unvisited POIs
(once a POI has been visited, visitors are not likely to
focus in this place again).Therefore, it will be different
for each tourist. The next section describes how the
server builds the information into the IPM.

(7) TheANT agent uses the IPM tomake route decisions.
These decisions will most likely drive the agent to
unvisited POIs, which are popular because other
tourists have already visited them.

(8) In addition to the carried actions made on POIs, the
mobile ANT software will inform and submit path
data to the server when a featured event takes place.
Notice that these POIs can be temporary, for example,
the start of a guided visit to some historic building.
In this case, if the server eventually releases a POI,
an object can declare a new one (different POI-UN)
later in the same location, allowing tourists to visit this
interesting reborn site.

The combined operation of the different ANT actors
improves the tourist’s ability to find POIs if compared with
an occasional traveler or even with a local visitor.

Finally, Table 2 resumes the key parameters of the ANT
system.

4. Routing Ranking

In this section, we present threemethodologies for themobil-
ity of tourists: Fitness Proportionate Selection (FPS), Rank
Selection (RS), andGradient Based (GB).Theyuse pheromone
deposited when other agents make a POI discovery to make
mobility decisions probabilistically.

To formalize our mobility model, we first envisage city
streets as a graph𝐺(𝑉, 𝐸). Vertices𝑉 are the crossroads where
tourists make decisions on their next routes, and the edges 𝐸
are the streets. Our model uses the following nomenclature:

(i) 𝐴 = {𝑎𝑖 | 𝑖 = 1, . . . , 𝑛} is a finite set of tourists (agents).

(ii) 𝐵 = {𝑏𝑖 | 𝑖 = 1, . . . , 𝑚} is a finite set of POIs.

(iii) The edges 𝐸 = {𝑒𝑖→𝑗 | 𝑖, 𝑗 = 1, . . . , |𝑉|} of the graph
possess pheromone values for each POI. At edge 𝑒𝑖→𝑗
pheromone is 𝜙 𝑒𝑖→𝑗 = (𝜙𝑒𝑖→𝑗1 , . . . , 𝜙𝑒𝑖→𝑗𝑚 ), ∀𝜙 ∈ R+.

Note that POIs have separated pheromone traces over the
graph. The reason for this design decision is to differentiate
POIs and avoid visiting the same location twice. Therefore,
the distribution of pheromones is different for each agent.
Specifically, guiding a tourist requires controlling the related
amount of pheromone in each arc of the graph, that is,
the IPM. For that goal, the server executes the process
of pheromone reinforcement (related to POIs found) and
evaporation (at eachUP) to enable fast discovery of newPOIs.

Pheromone Reinforcement. An agent reaching an unvisited
POI sends the stored RI to theANT server. If the RI has loops,
the server is in charge of detecting and eliminating them.
The problem with loops is that they may receive pheromone
several times, leading to self-reinforcement loops. During the
update process, the server deposits an amount of pheromone
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ANT Server

Stores pheromones information 
from all the users.

Sends the pheromone 
information to all users.

Applies pheromone reinforcement
and evaporation mechanisms

Can create points of interest to
promote a place.

Smartphone/local storage 

Checks GPS location.
Stores data in a temporary �le. 
Communicates data to the server. 

ANT
server

Agent sends pheromone info

(1) �e ANT’s agent keeps track of 
the location of the user.

(2) When the user stays in the same 
area during a discovery time a new 
POI is created.

Agent receives route planning 

(1) Receives pheromone information 
from the server.

(2) Route selection.
(3) Guidance. 

Promotional event
�e server creates an 
event which is not based 
on the user’s data.

Event discovered
Event not yet discovered

Promotional event

Figure 1: System overview.

Table 2: ANT: list of parameters.

RI Route information Run-time generated

MPI Memory Path Interval Time from last
POI discovered

POI Point Of Interest >5
POI-DI POI Detection Interval >10min
POI-AD POI Area Distance <50m

POI-UN POI Unique Number Run-time
generated

UP Updating Period <10 s
ER Evaporation Rate <20%

IPM Individualized Run-time
Pheromone Mapping generated

on edges of the graph that correspond to the RI. In particular,
if tourist 𝑎𝑖 visits POI 𝑏𝑘, the pheromone is changed as follows:

𝜙𝑒𝑖→𝑗
𝑏𝑘

←󳨀 𝜙𝑒𝑖→𝑗
𝑏𝑘

+ Δ𝜙, ∀𝑒𝑖→𝑗 ∈ RI𝑎𝑖 (𝑏𝑘) . (1)

By this rule, a tourist using edge 𝑒𝑖→𝑗 increases the
probability that future tourists will use the same edge.

An important aspect is the selection of Δ𝜙. Unlike TSP
problems which commonly use pheromone increments as a
decreasing function of the path length, we only aim to attract

tourists to the most visited POIs. In this case, the simplest
choice is using a constant value for all the agents.

Pheromone Evaporation. Pheromone evaporation can be
seen as an exploration mechanism that allows a tourist
(agent) to search different locations. Evaporation decreases
the pheromone trails of the visited POIs with an exponential
speed of value ER. In particular, a tourist 𝑎𝑖 that has already
visited the set 𝐵⋆ of POIs, evaporates pheromone by applying
the following rule to all edges:

𝜙𝐸𝐵⋆ ←󳨀 (1 − ER) 𝜙𝐸𝐵⋆ , (2)

where ER ∈ (0, 1] is a parameter. Without reinforcement,
the pheromone related to 𝐵⋆ will vanish and become 0. This
allows agents to search different locations.

Finally, we would point out that, at every UP, the server
generates the tourist’s individualized pheromone distribution
or IPM required to decide the next road to take. In particular,
a tourist 𝑎𝑖 at the current end 𝑗 of an edge must determine
which of the next possible edges is using his/her IPM𝑎𝑖 . The
possible set of edges isN𝑎𝑖𝑗 .

The next section explains themethods used tomake those
decisions.

4.1. Fitness Proportionate Selection. This method (a.k.a.
roulette-wheel selection) is a genetic algorithm (GA) to
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Figure 2: Parameters involved at the tourist decision points.

select the chromosomes of an offspring [37]. Moreover, FPS
is commonly used in current research on routing vehicles
and transportation logistics, for example, assigning routes to
different carriers to minimize costs [38, 39], or to maximize
the number of deployable targets using a combination of
terrestrial and aerial transportation [40], or even the typical
TSP problem [41]. Similarly to them, FPS suits our need to
select the next street when there are several alternatives (see
Figure 2).

In FPS, each possible next link is assigned a probability in
proportion to its fitness function, which we define as follows:

𝑓 : R𝑚+ 󳨀→ R+

𝜙 󳨃󳨀→
𝑚

∑
𝑖=1

𝜙𝑖.
(3)

Our fitness function 𝑓(⋅) calculates the pheromone of
each road. That is, popular roads have a larger probability of
being taken than the less popular ones. A tourist with low or
no interest in a POI (e.g., one already visited) that is popular
on one road is highly unlikely to take that path.Therefore, our
𝑓 represents the effective pheromone of an event.

The implementation is as follows:

(1) Evaluate the fitness,𝑓𝑎𝑖𝑗 , of each edge ofN
𝑎𝑖
𝑗 for tourist

𝑎𝑖 at decision point 𝑗.
(2) Compute the probability, 𝑝𝑎𝑖

𝑘
, of selecting each mem-

ber ofN𝑎𝑖𝑗 :

𝑝𝑎𝑖
𝑘
=

𝑓𝑎𝑖
𝑘

∑∀𝑙∈N𝑎𝑖𝑗 𝑓
𝑎𝑖
𝑙

. (4)

(3) Compute the cumulative probability:

𝑞𝑎𝑖
𝑘
=
𝑘

∑
𝑙=1

𝑝𝑎𝑖
𝑙
, ∀𝑘 ∈ N

𝑎𝑖
𝑗 , (5)

where 𝑝𝑙’s has been previously ranked from lower to
higher values.

(4) Generate a uniform random number, 𝑟 ∈ (0, 1).

k1

k2

j

i

ai

ei→j



1 2

∇

k
|


 |


|


 |

Figure 3: Gradient scheme of decision.

(5) If 𝑟 < 𝑞1 then select the lowest ranked path, or else
select the path 𝑘 such that 𝑞𝑘−1 < 𝑟 ≤ 𝑞𝑘.

4.2. Rank Selection. FPS method almost always selects the
road with the highest probability when its fitness value is
much greater than the other alternatives. For example, if a
road has the best fitness value corresponding to 90% of all
the probabilities, then the likelihood of other roads being
selected will be very slim. In this case, tourists might have
small chances of discovering new POIs, more so if they are
temporary.

Rank selection first sorts the roads, and then every
alternative receives fitness according to its ranking.Theworst
will have fitness 1, second worst 2, and so on. The best will
have fitness𝑁 (number of paths at the crossroad).

After this, all the paths have a chance of being selected.
Although this method can lead to slower convergence, it
allows for expansion of the search space and discovering new
POIs not visited yet by any other tourist.

4.3. Gradient Based. This strategy reflects the behavior of
many relevant phenomena in nature, where individuals move
towards a major concentration or a greater measure of some
element. For example, animals perform migratory tasks by
leveraging environmental cues such as nutrient [42] and
thermal gradients [43], or magnetic fields [44]. Even at a
cellular level, there is a reaction that triggers lymphocyte
chemotaxis towards the tumor to form a lymphocyte barrier
to contain tumor progression [45].

In our case, we want to direct people towards major
concentrations of tourists, which correspond to the direction
of the gradient vector of the scalar field of pheromone. We
represent this pheromone in the plane by a function Φ :
R2 → R2, which is continuous and differentiable. Therefore,
at a decision location 𝑗 a tourist 𝑎𝑖 follows the next procedure:

(1) Compute the gradient vector at point 𝑗 (Figure 3) of
the pheromone values on the map, ∇Φ(𝑗).

(2) Compute the angles 𝛼1, . . . , 𝛼|N𝑎𝑖𝑗 | between the gradi-
ent vector and each possible path.
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(3) Get the weights

𝑤𝑘 =
𝜋 − 󵄨󵄨󵄨󵄨𝛼𝑘

󵄨󵄨󵄨󵄨
∑∀𝑙∈N𝑎𝑖𝑗 (𝜋 − 𝛼𝑙)

, (6)

𝑘 = 1, . . . , |N𝑎𝑖𝑗 |, which are inversely proportional to
the angle; that is, the lower the weight assigned to
a path, the closer that path to the direction of the
highest concentration of pheromone.

(4) Rank 𝑤𝑘’s and take the path with the lowest value.

In our approach, these computation results are daunting
because we look for different events and because tourists
have different interests. Thus, we must deal with the effective
pheromone, 𝑓, for each event, which increases the computa-
tion load. For the sake of simplicity, we compute

max
∀𝑘∈N

𝑎𝑖
𝑗

𝑓
N
𝑎𝑖
𝑗

𝑘
(𝑗) (7)

so the corresponding path to this value is considered the
closer path (in degrees) to ∇Φ(𝑗).

5. Evaluation and Results

To test the proposed ranking methods we used Netlogo
agent based simulator [46], which is particularly well suited
for modeling complex systems (e.g., natural and social phe-
nomena) developing over time. Programmers can instruct
hundreds or thousands of agents, all operating independently.
This feature makes it possible to explore the connection
between the micro-level behavior of individuals and the
macro-level patterns that emerge from their interaction. Also,
Netlogo can import ESRI shapefiles (.shp), vector files which
allow the simulation of walker agents over a map.

For our trials, we chose the town center of Ghent
(Belgium). Ghent is a tourist town with many visitor sites,
such as old buildings andmuseums and, likemany old towns,
has an entangled network of walkways, making it a suitable
example due to its complexity. For our purposes, we used
a squared area of N, S, E, and W each 525m from location
point 51.05660 N, 3.721500 E. Figure 4 represents a map with
walkways and building footprint of this area, obtained with
the OSMnx [47] Python module. Paths (white lines) on this
map are similar to a maze, which is a challenge for ANT.

We assumed that tourists move along these lines and turn
back when they reach the limits of the map. In the absence
of pheromone, that is, without any guiding information from
others, we assumed a random-walk model; that is, next
edge is selected at random with a uniform distribution. The
goal of our evaluation was to compare the performance,
regarding event detection probability and discovery time of
the random-walk mobility model with the schemes provided
by ANT and described previously in Section 4. We assumed
that events happen in the map and that when tourists reach
one, they will remain around it for a period of visit (PV). To
implement this mechanism for each user, we defined an event
attraction function, which is initialized to its maximum value

Figure 4: Simulation map (Ghent, Belgium).

when the user comes closer to that event (at less distance
than the POI-AD parameter). Afterwards, this attraction
function decays exponentially and is used to modulate the
IPM received by the server before the user triggers the
corresponding POI. We would point out that this attraction
modulation takes place only for simulation purposes, but it is
not part of the route ranking mechanism. If the user remains
in the event for a given time, the POIwill be declared as stated
in Section 3.2. From this time on the IPM no longer contains
pheromone associated with the currently visited event, and
the simulated tourist continues reaching for new events.

Next, we describe the different tests performed in this
simulated environment.

5.1. Static Simulation. First, we evaluated a static scenario,
in which events are at fixed map locations. In this case, we
measured the time taken to visit each event for the first
time. We sorted these times by precedence and characterized
their distributions, as well as the joint one. From these
distributions, we also computed the mean first passage time
(both individual and global). Moreover, we obtained the
POI detection ratio, that is, for each tourist, the number of
discovered POIs from all the existing POIs during the tourist’s
journey.

Table 3 shows the configuration parameters of our sim-
ulator. The simulation goal for each tourist was to find 5
events and to save the time instant of each discovery, or
discovery sample. The program ran a permanent population
of 100 tourists. At the fifth POI (i.e., 5 discovery samples),
the visitor left the scenario, and a new one started the search
for new locations. Visitors stayed in a POI for 8 minutes on
average. Finally, the simulation stopped when there was a
total of 625000 discovery samples.

We ran simulations for each ranking method. Table 4
shows the main statistics obtained by each method, and
Figure 5 plots their pdf fit of their sample times. Note that, for
our purposes, time is inminutes. In addition, for each tourist,
we number the events by discovery order, that is, events 1, 2,
3, 4, and 5.
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Table 3: Configuration parameters in static scenario.

Tourists 100
Tourist pace 5 Km/h
Speed variation 0.3%
Number of POIs 5
Pheromone increment 1 unit
ER 10%
MPI <2 h
POI-DI 8min
POI-AD 40 m
PV 15min
Total visiting tourists 125000
Total discovery samples 625000
(each. mob. model)

At the beginning of a simulation, the streets were empty
of pheromone feedback.Therefore, agents first decisions were
random and as a consequence, the medians (Md) of time
to reach the first event are similar in the four methods.
Moreover, their distributions have modes below 20 minutes
(see event 1 in Figure 5). However, on the next passage times
(i.e., event 2 and forward), the sample mean starts to be
greater with no stigmergy than those obtained with it; this
trend increases in the next passage times (3, 4, and 5). As we
expected, no stigmergy motion gives the worst mean passage
times of the five events.Wewould point out, for example, that
the time spent to arrive at event 4 is >13 hours and to event
5 >23 hours. These results seem logical if we think that the
tourists are visiting other POIs (i.e., the ones they found and
those declared by other people) but, also, because they select
streets at random.

In contrast, the stigmergy methods obtain means at least
50% lower than without stigmergy, and these differences
increase during the simulation. We observe how tourists
using gradient system have the shortest mean passage times.
They discovered the five events in about 5 hours, which is an
outstanding result considering that each visit lasts 15 minutes
and the tourists likely make more than five visits in their
journey. Therefore, the means of the fifth event in Table 4
show thatwith gradient the speed of discovery is 77.3%greater
(on average) than with no pheromone, 39.4% compared to
rank selection, and 40.9% better than FPS. FPS and rank
method result in similar speeds, but rank slightly improves
FPS (2.5% faster).

To better characterize the discovery times we also observe
how disperse they are, that is, their standard deviation 𝑠
with each method. The pdfs of Figure 5 give us a picture
of the distribution of the passage times along the different
events. We see that standard deviation rises with each event
discovered (approximately at the same scale on methods
using stigmergy). In the best case (gradient method), 𝑠 is 28
minutes at event 1 and about 3:45 hours at event 5, whereas
FPS has 52 minutes at event 1 and 5:30 hours at event 5. The
three stigmergymethods show 𝑠 values comparable to their 𝑥,
meaning that tourists who assisted with stigmergy discovered

events much faster than others. However, no stigmergy-
based tourists have the greatest variability in their sample
times, with 𝑠 values that double (at each passage time) the
largest 𝑠 on a stigmergy method (FPS). Consequently, the no
stigmergy pdf result is almost flat at event 2 and its tail, for
all events, is higher than with stigmergy methods. Therefore,
tourists without stigmergy might have a high probability of
large discovery times. Besides, the difference 𝑥-Md indicates
the existence of high sample times that increase the mean
time. The greater this difference, the more possibilities of
their existence. Tourist motion without stigmergy provides
the greatest 𝑥-Md values.

Also, we analyzed the intervisit period (i.e., the time spent
moving between consecutive visits). Figure 6 contains four
plots for each routing method. In each plot, we represent two
consecutive journey times of the tourist (the current journey
on 𝑥-axis and the precedent one on 𝑦-axis).The diagonal line
is the locus of equal values. We observe that the probability
of having longer trips increases on each journey because the
highest values (i.e., white colored points) fall below the line;
the longer the distance of those values from the diagonal, the
greater the difference between the preceding journey times.
Hence, the mean values increase with each journey; thereby,
also, the number of samples plotted below the line is higher
indicating greater 𝑠. Consequently, touristsmight have longer
journey times. This result is more significant on tourists not
assisted by stigmergy. It is worth noting that the times to
discover the first event might have a similar probability on
all routingmethods.This result reaffirms the fact that tourists
spend similar times to find the first event because of the initial
absence of pheromone. Therefore, Figure 6 corroborates the
results of Table 4 and Figure 5 in which tourists assisted
by gradient method achieve the shortest mean times of
discovery.

Finally, we computed the percentage of POIs detected
(POI detection ratio) during the simulation of each tourist.
Let us recall that the server will declare a new POI if a visitor
stays around POI-AD distance (40m) during POI-DI time
(8min). Besides, if the POI has no visits, then its associated
pheromone vanishes and the server will remove its POI-
UN. Therefore, these POIs are active during the time they
receive visits, and a tourist will have a limited time to discover
them. Despite this constraint, the simulations indicate that
tourists assisted by pheromone reach a high number of POIs.
Similarly to the other tests performed, gradient shows the
highest ratio, 70.13%, and the ratio of FPS and rank selection
is slightly lower (see Table 4). In contrast, tourists not assisted
by pheromone only visit a small number of POIs (4.61%).
Without pheromone, the POIs will only be active in the
simulator when tourists are visiting them.

These results confirm the influence of stigmergy in the
improvement of the discovering abilities of tourists in a
static scenario. In fact, the gradient method is the one where
stigmergy has the bigger influence on mobility decisions,
followed by FPS, and ranking selection.

5.2. Dynamic Simulation. Next, we tested our methods in
a dynamic scenario of events. In this scheme, the events
appear and disappear at random times and locations. In this
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Table 4: Statistics for datasets of time discovery samples (in minute time unit) of POIs 1 to 5, and the percentage of POIs detected by each
tourist.

No stigmergy FPS Gradient based Rank selection

Event 1

𝑥 94.04 45.41 27.94 40.60
𝑠 137.98 52.73 27.18 47.41

Md 38.40 26.13 20.53 23.33
𝑥-Md 55.64 19.28 7.41 17.27

Event 2

𝑥 265.87 119.37 69.59 111.18
𝑠 236.14 88.03 48.75 83.98

Md 199.60 97.07 57.47 89.20
𝑥-Md 66.27 22.30 12.12 21.98

Event 3

𝑥 499.87 212.88 124.10 198.84
𝑠 350.66 131.26 77.38 124.49

Md 417.47 186.27 103.33 169.60
𝑥-Md 82.41 26.61 20.77 29.24

Event 4

𝑥 835.11 339.06 196.85 319.26
𝑠 510.23 202.35 114.35 182.25

Md 724.13 302.67 166.80 279.20
𝑥-Md 110.98 36.39 30.05 40.06

Event 5

𝑥 1417.80 544.18 321.34 530.68
𝑠 797.25 334.79 225.85 367.32

Md 1254.40 480.13 268.93 460.93
𝑥-Md 163.36 64.05 52.40 69.75

Mean POI 4.61% 69.46% 70.13% 67.08%
detection ratio

case, our goal was to get the greatest number of tourists to
visit every POI. Therefore, this dynamic problem is far more
difficult than the static one, because tourists can only find the
interesting locations during their lifetime.

The parameters used in the simulator are shown in
Table 5. The events appeared on the map following a Poisson
random variable of rate 𝜆 and were on a location (live) during
an exponential variable time. This configuration enables a
random number of ongoing events that vary over time (see
Table 5). The evolution of the system showed approximately
ten dynamic events throughout the simulation. Also, the
server generated new POIs if a tourist wandered around a
location in a time POI-DI (8min). These POIs were active
as long as pheromone was associated with them or as long as
they had visitors. The period of visit (PV) of each POI was 15
minutes. In this scenario, the goal was to count the number
of tourists visiting each dynamic event and to record the total
once it disappeared in the simulator; we also computed the
ratio of the number of POIs detected by a tourist and the total
number of POIs during de simulation. Finally, we ran 380
simulations with 300 samples (i.e., dynamic events) in each
run, making a total of 114000 event samples for each routing
method. Figure 7 shows the histograms for each scheme and
Table 6 a comparison of their numerical results.

The mean number of tourists’ visits moving without
stigmergy is 34.55, which is remarkable, since we know
that they decide without any assistance or reference guide.
Because tourists select paths at random, they can exploit
the dynamic number of events and reach them without

assistance. Despite this remarkable result, the data in Table 6
indicate that events receive more visitors (on average) if
tourists select routes assisted by stigmergy than without it,
14.02% with FPS, 24.23% with the rank selection, and 35.80%
with the gradient method.

Another remarkable result is that stigmergy is useful for
discovering new POIs, but not all dynamic events receive
visits. Some POIs may end up with no visitors because the
latter are following the pheromones of some other POIs.This
issue is common to all routing methods but is more evident
for FPS and gradient. The reason is that, in FPS and gradient,
pheromone concentration has more leverage on the decision
of path than rank selection and, for that, POIs are more likely
to go unvisited (see Figure 7). In the case of the gradient,
tourists deterministically follow the path of the region with
more pheromone; with FPS tourists are more likely to take
the street with more pheromone. The histograms show a
likelihood of about 15% of POIs with [0, 2.5] tourists using
gradient, whereas with FPS 25% of POIs have [0, 2.5] tourists.
The value of 𝑥-Md corroborates this result; 𝑥-Md is negative
(see Table 6), which indicates that there are more samples
above the mean than below.

The number of unvisited POIs can be huge with FPS and
gradient. In contrast, and precisely because decisions depend
mainly on pheromone concentration, FPS and gradient are
also able to guide a large number of tourist to the POIs;
therefore, some POIs receive a high percentage of visits. For
example, when using gradient, POIs have a 51.5% probabil-
ity of receiving ≥60 tourists; with FPS, POIs have a 34%
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Figure 5: Estimation of the pdf for datasets of discovery samples of POIs 1 to 5 obtained with configuration of Table 3.

probability of having more than ≥60 tourists.Therefore, both
gradient and FPS are convenient if we want to have POIs with
a significant percentage of visitors.

In short, gradient and FPS methods achieve distributions
of visits per POIwith two separated zones of high probability:
low and high number of visits (see Figure 7). We can
corroborate this result by examining their deviations. The 𝑠

values of FPS and gradient are high when compared to rank
and no stigmergy, indicating that their samples are dispersed
around the mean.

On the other hand, the two distributions of probability, no
stigmergy and rank selection, have bell-shaped histograms.
Consequently, the probability of visits to POIs is concentrated
at some positive values greater than 0, that is, there is reduced
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Figure 6: Time differences pdf between consecutive event’s discoveries: 𝑡1 (first), 𝑡2 (second), 𝑡3 (third), 𝑡4 (fourth), and 𝑡5 (fifth event); the
diagonal line are points where 𝑡𝑖+1 − 𝑡𝑖 are equal to 𝑡𝑖 − 𝑡𝑖−1, 𝑖 = 0, . . . , 4, and 𝑡0 = 0 is the start time of the tourist visit.

expectation of having POIs without visits. In particular,
with no stigmergy, POIs have a mean number of visits of
34.55, and the maximum value (mode) of probability (>15%)
corresponds to the bar centered at 25 visits. Based on the
mean values of Table 6, rank method is between FPS and
gradient, whereas, by contrast, rank selection has a reduced
probability of undiscovered POIs (i.e., with 0 visits). In the
case of rank routing, the alternative paths at crossroads have
less different fitness value than with FPS. Therefore, the
selections are less deterministic than with FPS, and tourists
do not always choose the path with the highest pheromone
concentration.

Finally, Table 6 shows the mean number of POIs discov-
ered by tourists. Similarly to the static environment, with
dynamic events tourists can discovermore POIs assisted with
stigmergy than without it. In particular, FPS is 54% and
gradient 55%,which doubles the result of not using stigmergy,
27%. In comparisonwith the static events scenario, stigmergy
methods achieve a lower ratio.The reduction of the discovery

ratio is because of the continuous changes of the pheromone
trails, due to the dynamic appearance of POIs. However, the
detection ratio on no stigmergy tourists is higher than in the
static simulation. The computation of the ratio is similar in
the dynamic and static scenario: at the fifth event discovered
the simulator records a sample of the ratio; this occurs faster
in the dynamic scenario (events may appear in the path of
the tourist). Because of this, the number of POIs discovered
can, for example, only be one but the number of total POIs
was just three, in which case the sample of the ratio is high
(this example, 33.3%). In the static scenario, events are at
permanent locations, and unguided tourists take more time
to reach the fifth event and compute the detection ratio than
in the dynamic scenario. For this reason, in the static scenario
the number of total POIs is high, and thus the mean ratio
remains small (4.61%).

A high percentage of POIs in FPS and gradient receive
a large number of visits (some POIs with almost 100%
of visitors), because of the indirect communication among
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Figure 7: Distribution of visits per POI samples in the dynamic scenario; dataset obtained with simulation parameters of Table 5.

Table 5: Configuration parameters for the dynamic simulation.

Tourists 100
Tourist speed 5Km/h
Speed variation 0.3%
Initial number of dynamic events 7
Pheromone increment 1 unit
ER 15%
MPI (max) 1 h
POI-DI 8min
POI-AD 40m
PV 15m
Event decrease factor 1.5%
Events arrival rate Poisson 𝜆 = 0.005

Lifetime of events Exponential
1/𝜇 = 55min

Events-per-simulation 300
Total event samples 114000
(each. mob. model)

tourists through stigmergy. The downside is the increase in
the events that end with no visits. On the contrary, ranking
selection performs better to find most of the locations (at

Table 6: Statistics for visits per POI and percentage of POIs detected
by each tourist.

No
stigmergy FPS Gradient

based
Rank

selection
𝑥 34.55 40.18 53.81 45.59
𝑠 17.17 29.14 34.40 18.47
Md 31 47 61 47
𝑥-Md 3.55 −6.82 −7.19 −1.41
Mean POI 27% 54% 55% 41%
detection ratio

least for a certain number of tourists) and many POIs have
a high percentage of visits. Therefore, ranking selection has
the advantage of motion without stigmergy, because it can
find almost any event, and the benefit of stigmergy-based
methods, because it can guide more tourists to locations of
interest.

6. Conclusions

This paper presents ANT, a navigation system for tourists.
The problem with current applications is that they do not
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offer real time information or they have to be continuously
monitored by the user. The ANT system allows tourists to
discover new places and share them with other people, while
providing navigation to those locations.Moreover, the system
reduces interaction with the user to avoid distraction from
the experience of exploring a city.

ANT enables unique features for tourist navigation by
using an artificial stigmergy algorithm. It allows the discovery
of highly active temporary functions, beyond the function-
ality of most current navigation applications. The core of
ANT is a route ranking mechanism, able to make decisions
about the most likely directions. We have studied three
techniques: Fitness Proportionate Selection, Rank Selection,
and Gradient. Stigmergy-based routing obtains prominent
results compared with nonstigmergy discovery. In particular,
stigmergy has improvements of 77.3% in the time to discover
five events, and of 38% in the number of visits per POI.
In the two scenarios (static and dynamic) gradient excels
compared to other schemes offering the shortest discovery
times and highest event detection probability. In the dynamic
event scenario, we have found that the rank selectionmethod
allows tourists to discover most of the events.The results also
corroborate the benefits of stigmergy to detect live promoted
POIs.

For our future work, we aim to implement a prototype
and test it in the field with users. Moreover, we intend to
develop haptic devices which enable seamless navigation
without the need to look at any display. We will also attempt
to evaluate user grouping through clustering techniques
to weight pheromone IPMs to support differentiated user
groups.
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sp. la théorie de la stigmergie: Essai d’interprétation du com-
portement des termites constructeurs,” Insectes Sociaux, vol. 6,
no. 1, pp. 41–80, 1959.

[7] M. Dorigo, E. Bonabeau, and G.Theraulaz, “Ant algorithms and
stigmergy,” Future Generation Computer Systems, vol. 16, no. 8,
pp. 851–871, 2000.

[8] D. Gavalas, M. Kenteris, C. Konstantopoulos, and G. Pantziou,
“Personalized routes for mobile tourism,” in Proceedings of the
2011 IEEE 7th International Conference on Wireless and Mobile
Computing, Networking and Communications, WiMob’2011, pp.
295–300, chn, October 2011.

[9] D. Gavalas and M. Kenteris, “A web-based pervasive recom-
mendation system for mobile tourist guides,” Personal and
Ubiquitous Computing, vol. 15, no. 7, pp. 759–770, 2011.

[10] W. Wörndl, A. Hefele, and D. Herzog, “Recommending a
sequence of interesting places for tourist trips,” Information
Technology & Tourism, vol. 17, no. 1, pp. 31–54, 2017.

[11] D. Herzog, H. Massoud, and W. Wörndl, “Routeme: A mobile
recommender system for personalized, multi-modal route
planning,” in Proceedings of the 25th Conference on User Mod-
eling, Adaptation and Personalization, pp. 67–75, ACM, 2017.

[12] Zheng. W., Liao. Z., and J. Qin, “Using a four-step heuristic
algorithm to design personalized day tour route within a tourist
attraction,” Tourism Management, vol. 62, pp. 335–349, 2017.

[13] A. Gionis, T. Lappas, K. Pelechrinis, and E. Terzi, “Customized
tour recommendations in urban areas,” in Proceedings of the 7th
ACM International Conference onWeb Search and DataMining,
WSDM 2014, pp. 313–322, usa, February 2014.

[14] M. A. Awal, J. Rabbi, S. I. Hossain, and M. M. A. Hashem, “A
hybrid approach to plan itinerary for tourists,” in Proceedings of
the 5th International Conference on Informatics, Electronics and
Vision, ICIEV 2016, pp. 219–223, bgd, May 2016.

[15] Y. Kurata, Y. Shinagawa, and T. Hara, “CT-Planner5: a
computer-aided tour planning service which profits both
tourists and destinations,” in Proceedings of the Tourism Recom-
mender Systems, vol. volume 15, RecSys, 2015.

[16] C. Zhu, J. Q. Hu, F. Wang, Y. Xu, and R. Cao, “On the tour
planning problem,” Annals of Operations Research, vol. 192, pp.
67–86, 2012.

[17] W.-S. Yang and S.-Y.Hwang, “ITravel: a recommender system in
mobile peer-to-peer environment,” The Journal of Systems and
Software, vol. 86, no. 1, pp. 12–20, 2013.

[18] K.Meehan, T. Lunney,K.Curran, andA.McCaughey, “Context-
aware intelligent recommendation system for tourism,” in
Proceedings of the IEEE International Conference on Pervasive
Computing and Communications (PerCom ’13), pp. 328–331,
IEEE, San Diego, Calif, USA, March 2013.

[19] I. Cenamor, T. de la Rosa, S. Núñez, and D. Borrajo, “Planning
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