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Introduction

The use of numerical techniques applied to the analysis of microwaves circuits is one of the
most interesting issues in the telecommunications industry. By using these computational
techniques, we can reduce the time invested in development. This allows that the required

components in communication systems could be designed and analysed by a computer.

Among these methods, the integral equation technique [1] has proved to be powerful
due to its possibilities to carry out an efficient analysis of some structures. This tech-
nique has been successfully employed in numerous scenarios: both evaluation of radiated
electromagnetic fields by antennas in free-space, analysis of multilayered radiofrequency

circuits and problems and circuits which involve the analysis of waveguides and cavities.

One of the numerical techniques that can be used to solve integral equations is the
Method of Moments (MoM) [1]. On the other hand, the solution of this kind of elec-
tromagnetic problems in periodic structures requires the computation of periodic Green’s

functions as the kernel of the corresponding integral equations.

The difficulty of the implementation of the integral equation techniques arises from the
fact that these periodic Green’s functions in homogeneous media can be written either as
spatial or spectral infinite series. These series can present singularities and can exhibit
a slowly convergent behaviour. According to this, one of the most important challenge
in the implementation of many integral equation techniques is the efficient and accurate

computation of periodic Green’s functions.

A number of techniques, either analytical or numerical, have been developed in the past
to accelerate the convergence of the series involved in the evaluation of Green’s functions.
Among these techniques, we should mention Ewald’s method [4]. As commented in [5],
the original series that converges slowly can be split into two functions which exhibit
Gaussian convergence. Nevertheless, these new series required the computation of special

mathematical functions that can increase the total computational time.

Another technique employed to accelerate the convergence of slow series is Kummer’s

transformation [3,6]. This technique has been efficiently applied in [2] and consists of ex-

xiii
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tracting the asymptotic behaviour to accelerate the original series and summing efficiently

the retained terms.

In addition to the previous techniques, we should mention Veisoglu’s transformation [7],
Shanks’s transformation [8] and the summation by parts algorithm [9], among other ana-
lytical and numerical methods [3]. Most publications that carry out a comparative study
between the different analytical and numerical methods for the acceleration of these se-
ries [3,10] seem to indicate that Ewald’s method is the best choice in most scenarios. That

is probably due to its versatility and good compromise between accuracy and efficiency.

In the described context, the main aim of this work will be the review of the integral

equation technique applied to the analysis of periodic structures.

Specifically, we will try to extend the formulation of 2-D Green’s functions with 1-D
periodicity reported in [11]. We also go into detail about the acceleration of the functions

involved in parallel-plate waveguide problems.

As a continuation of the work developed in [11], some transformations will be carried out
to 2-D Green’s functions with 2-D periodicity. In particular, we will study Ewald’s method
and the spectral Kummer’s transformation. In addition, we also review the acceleration

of the Green’s functions involved in cavity and rectangular waveguide problems.

By means of the developed software tool, we could compare the convergence and the
computational time required by all the reported methods for both 2-D Green’s functions
with 1-D periodicity and 2-D Green’s functions with 2-D periodicity. Thanks to that,

results and conclusions about the efficiency of the applied techniques will be summarized.

Finally and attending to the second line of research of this project, some structures based
on coaxial to microstrip transition will be analysed by using the software tool FEST3D.
Hence, we will be able to achieve meaningful conclusions through comparing the analysis

of the same structures carried out with FEST3D and with another commercial tool HF'SS.

To conclude, we will report the most important reached conclusions and explain our

future lines of investigation.

Project Structure

Chapter 1. The 2-D Green’s Functions With 1-D Periodicity. This first chapter
is the continuation of my Final Degree Project [11] in the study of the 2-D Green’s functions

with 1-D periodicity.
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On the one hand, the formulation developed in [11] will be extended thanks to the
acquired knowledge in the spectral Kummer’s transformation. We will explain different
approaches when we retain the asymptotic terms in Kummer’s transformation and accord-

ing to this, different ways of summing the retained terms.

On the other hand, we will show how to apply this technique to the functions involved in
parallel-plate waveguide problems with the intention of reducing the computational time.

This means a practical implementation of the theory that was outlined in [11].

Chapter 2. The 2-D Green’s Functions With 2-D Periodicity. In this chapter,
the formulation developed for the 2-D Green’s functions with 1-D periodicity is extended

to the computation of the double series involved in problems with 2-D periodicity.

Firstly, the formulation of both the spatial and spectral Green’s functions is obtained.
We also formulate the gradient of these Green’s functions that can be useful in the inte-
gral equation technique for the evaluation of the electromagnetic scattering produced by

dielectric or magnetic objects inside waveguides.

After that, Ewald’s method and the spectral Kummer’s transformation are applied to
accelerate the convergence of these functions [2]. In the application of Kummer’s transfor-
mation, we also distinguish between different approaches to retain the asymptotic terms.

As a consequence, the extracted terms could be summed in different ways.

On the other hand, we will show a practical implementation of the outlined theory
applying this technique to the Green’s functions involved in cavity and waveguide problems

with the intention of reducing the computational time.

Chapter 3. Numerical Results. In this chapter, the numerical results that have been
obtained when we implement the methods described in Chapter 1 and Chapter 2 for the
2-D Green’s functions with 1-D and 2-D periodicities are shown. These comparisons have

been carried out with a software developed in Matlab.

In relation to the 2-D Green’s functions with 1-D periodicity, the convergence of the
new strategy of applying Kummer’s transformation will be compared with the previous

approach reported in [11].

Regarding the 2-D Green’s functions with 2-D periodicity, the convergence of both
Green’s functions and their gradients for different scenarios will be shown. We compare
these ones with the convergence in the case of applying the techniques that have been

proposed in Chapter 2 (Ewald’s method and Kummer’s transformation). In the case of
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Kummer’s transformation, the advantages of using either approach in the retention of

terms are justified.

Using this software, we will be able to compare the efficiency of the applied methods

and to deduce outstanding conclusions.

Chapter 4. Using FEST3D to Analyse Microstrip Structures. This chapter is
about the second line of investigation carried out in this project in collaboration with
our external partners Marco Guglielmi and Vicente Boria at Universidad Politécnica de

Valencia.

Here, the software tool FEST3D is used in order to analyse some structures based on a
coaxial to microstrip transition. The aim of this chapter is to study the convergence pa-

rameters to obtain accurate simulated performances in comparison to the results obtained
by the use of HFSS.

Chapter 5. General Conclusions and Future Lines of Research. In this last
chapter, we will discuss the general conclusions of this master’s thesis, its applications and

usefulness and we will present the future research lines.



Chapter 1

The 2-D Green’s Functions With
1-D Periodicity

The Green’s functions with 1-D periodicity was previously studied in my Final Degree
Project [11]. In [11], we worked on the demonstration and the acceleration of the spatial

and spectral Green’s functions for the case of 1-D periodicity and their gradients.

Specifically, we applied Ewald’s method and Kummer’s transformation. Consequently,

through programming we could compare the efficiency of the proposed techniques.

In this chapter, the formulation about the spectral Kummer’s transformation developed
in [11] is extended. Different approaches when we retain the asymptotic terms in Kummer’s
transformation are explained and according to this, different ways of adding the retained

terms are studied.

It should be noted that this problem has a practical interest since the Green’s functions
for the proposed problem are the basis for the analysis, through the integral equation
technique, of inductive obstacles in rectangular waveguide [12]. They are widely used in
space applications and in devices with emerging technologies such as Substrate Integrated
Waveguide (SIW) [13] and Substrate Integrated Non-Radiative Dielectric (SINRD) [14].

In fact, we apply the theoretical functions studies to the case of electromagnetic problems
associated with the computation of Green’s functions such as parallel-plate waveguides.
We show how to accelerate the convergence of these functions with the intention of reducing

the computational time.
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AZ
r=(x,z)
. —— e » . -
d Yy F'=(x'+md,z") X
0
ki

Figure 1.1: Physical configuration of an infinite distribution of line sources which are
infinite and invariant on y-direction and are separated with a period d in z-direction.

1.1 Revisited of the Spectral Kummer’s Transformation

It is important to remember that the structure under discussion here is a one-dimensional
array of line sources that are parallel to the z-axis and periodically located in a homoge-

neous medium along the z-direction (see Fig. 1.1).

The periodic 2-D Green’s function generated by this array of line sources is given by

1
G(F,7) = T Z HP (kR,y, e ikwomd (1.1)

m=—0Q

where k;o = ksin(f) is the phase per period imposed by the excitation plane wave and

R,, is the spatial distance between the observation point and the line sources.

Ry =/ (z — 2/ —md)? + (z — /)2 (1.2)

This is the spatial series representation. If the 1-D version of Poisson’s formula is applied

o (1.1), we obtain the spectral representation given by

~ _’lez 2|
fjkzm(xf:p’)
G(r, ) = d Z (1.3)

m=—0oQ

where kyp, = kzo + 27”” = ksin(0) + 27&7” and v, = \/W
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Both series are slowly convergent in most cases. For this reason, Kummer’s transfor-
mation [6] is one of the techniques used to accelerate the convergence of these series.
According to [3], this technique can be applied in the spectral or in the spatial domain.
In this case, we retain the asymptotic terms of the spectral function (1.3), applying the

spectral Kummer’s transformation, as follows

. 1R (el N i
= 5 (CE g et g ) B Gt
—— m —_—
mr;;é(())o mm;éﬂoo

(1.4)

where C~¥0 is the contribution of the term m = 0 in which we do not apply the extraction.

The asymptotic retained term ée(f, 7) has to be efficiently added.

~ 1 ~ . /
Ge(r7') = o= > Gpedhemle=a) (1.5)
i

The novel consideration is that ém can be obtained by two different ways resulting in
two different approaches of formulating the dynamic part. Consequently, two different
ways of adding the retained part can be used. The advantages of each approach will be

studied in Chapter 3, where we can see that the improvement of each approach is different.

It should be pointed out that in both strategies the exponential e Imlz=2"| ig approx-
imated by its first order expansion, so that, we use e~ *=m/l=#'| " This is because when
the observation point is near the source (critical case), |z — 2/| — 0 and the exponential

become not very significant and its first order approximation is enough.

The first option, which is not the strategy explained previously in [11], is the following

L - (1.6)

Using Taylor expansion in v =0

*1+1u—|—§u2—|—fu +§
1—u 278 16 128
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Gy, can be written as

~ 1 1/ kN 3/ k\* 57K\ ,
G = 1 A 2 2 ) o kemllz—2]
’kwm| ( T3 (kwm) - 8 (kwm) - 16 (kfcm> - ‘

N 1.8
kem| — 20kem|®  Slkem|”  16[kzm|” (18)
2
:ZH oZn+1) KT -
— 24 ¢! |kxm‘2q+1

where @ is the number of the retained terms that we use in the approximation of the

asymptotic series CNJm

It is important to note that A%m is positive, so here the absolute value has been omitted
because all these terms are positive due to its own absolutes values. Using this ém

approach, the series ée(f, 7) that we have to efficiently sum is

~ k2 3k4 5k6 ) N ,

Ge 7a7 + + + ... e*|kzm||Z*Z | e*szm(I*x)
2d (lkm! Ukam|®  8lkam|®  16|kym|”

m;éO

s ! +oo
eZheolams) 3 ZH 0Cnt+1) K| e i )
2d | = 20gl kg2
m7#0
fa

(1.9)

In advance, we can realize that this approach will result in a better approximation of
the spectral series and therefore in a faster convergence rate in comparison to the other

one. The options that we propose to sum efficiently this series are:

e Option A.1: Sum by Ewald’s method.
e Option A.2: Lerch transcendent.

e Option A.3: Summation by parts technique.

The formulation of each option will be developed in the subsections 1.1.1, 1.1.2 and

1.1.3, respectively.
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The other approach to extract the asymptotic terms is shown in [11] and is based on

1 1 1
Vo =2 \/(kxo +22m)° — 2 \/kgo o2 4 (20m)? g2
1
- R (1.10)
CONINL L T
™ (T

Carrying out the expansion using Taylor series when m — oo or, what is the same,

u — 0, we have the following approximation

400 -1
1 13, 5., 35, (—1)7 [ @n+ 1)
R T . B coy = ¢ (111
Tra o 208" Tt T 2 24! w1
fa

and taking into account that the powers of u are

(1 kxod 1\ (k2, — k%)d?
v (O) wm <1> (27rm)? (1.12a)
2 2 g2 ) 2\ 42 9 _ 2 4
W2 - kZod 4 kzod (K2, — k?)d i d
0) (7mm)? 1) mm  (27rm)? 2 (1.12D)
(2 Ko (2 Kok - k;2 @, —k2 2d4 '
~\0/ (7mm)? 1 22(7m) 2 24 (mm)*
o () Bl (3 KA (K — R | (3 aod (K — K)Pd!(3) (k2 — k2)*d°
N0/ (rm)3 " \1) (7m)?2  (27m)? 2) (rm)  24(7m)* 3)  26(mm)S

(B Bl (3 Rl — ) (Y k(2 — P (3Y (k2 — )P
0) (7mm)3 1 22(wm)4 2 24(mm)® 3)  26(wm)b

(1.12¢)
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i 4\ ki d* 4\ k3,d® (K2, — k?) d2 4 0d2 — k2)2q*
0) (7mm)* 1) (wm)3 (27rm 2) (mm)? 24 (rm)*
N 4\ kgzod (k2 — k%)3d5 n (k:fjo VA8
3) (mm)  26(wm)6 4 28 (mm) 8
4\ ki d* k3o (k2 4 — k?)2d5 (1.12d)
= - i
<O> (mm)4 <1> 22 (mm)? <2> 24 ()6
o () Raolk2g — BP0 (82 — B2)1d®
3 26(7wm)7 4)  B(zm)8
In general, the powers of u can be expressed as
q (a—a) (1.2 2\a qta
q\ kg (kyo— k)" [ d
ul = Z <a> 0 222 — (1.13)
a=0
therefore, 7% can be approximated by () terms as
Q —a a a
1| () K2, — e .
Y =~ ZZ a 92a+1 m fq (1.14)
q=0 a=0
and finally G, (7, 7) is
~ d kod? (k? — k2,)d? 2
Gm N _ - T z0 ‘ +k¢o||z 2!
") =\ ~ @emp ¥ 2@mmy T
1.15)
Q 4 q a) 1.2 a q+a+1 (
>y (e (kzo — k) (d_ £ |em1Z Hhaolle—
92a+1 m q
q=0 a=0

Using this G approach, the series ée(f, ) that we have to efficiently sum is
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—+o00

. 1 . 2 3
Ge(r ) =57 D d__ kaod® | (K~ ki)

orm  (2rm)2 2(27m)3

| 2mm

+l<:T0“z 2| —gkmm(z z')

+|

TA0
+o0 Q gq 2 2 qt+a+1
kxO k)a < d> _’27rm+k: “_/‘ —ik Y
E: E:E: fe—d zozzejzm(zx)
2a+1 q
QCiT’F_()Oo — - 0() 2%a m™m

(1.16)

On the other hand, if we are interested in grouping the terms respect to the powers of

m, we can proceed as follows

S (é) ’?70: (1.17a)

2 <(2)> (k;f:; N G)W (1.17b)
G T

it o () s (3) ll = (2 (1174)
. (()) ('Zmd) . @ k(fm - ;f)cﬁ .\ @ kzou;;?ﬂ;l f§§>2d5 (1.17e)

Now, if we define t = L%J, we can write the powers of m as

t (q 2a) 2\a
d? k, (k2 —k*)* (q—a
q
md — (wm)q; e < . > (1.18)

where each term goes with its factor f,

dd t k(Q*Qa) k?2 _ k2 a o
mi — Z 20 (2296(10 ) (q a) fq a (1-19)
a=0

The use of this leads to the following -th order approximation of #
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Q t —2a a
AU N B o Sl St Y
VYm - |2mm \ = (rm)T = 22a -
- - (1.20)
B EQI dq+1 Zt: k’(q 2a)(l€ k2)a <q _ a)f
- +1 2a+1 q—a
= (mm)? g 2
and finally G, (7, ) is
2 2 _ 72\ 73
ém(F; /) _ d N kzod (k _kxo)d + .. e—‘%Tm+kzO||Z—Z/|
2tm  (27wm)? 2(27wm)3
(1.21)

o~ |2+ 12

Q@ dq+1 k(q 20)(1{:32:0 _ k2)a qg—a
Z 7Tm q+1 ZO 22a+1 ( a )fq—a

Using this Gm approach, the series ée(f, 7) that we have to efficiently sum is

kzod? (k% — k2))d?

Ge(T,T

+"¢e4%f+mdvﬁﬂejmm@f>

2d 27Tm (2rm)2 2(27m)3
m;éo
@ i (q 20) 2\a
Ja+1 k, kZo — k —a l2em L i
2d Z Z 7-”n)z]—i-l 2(2a+1 ) (q . >fq(l e | 7 +ka:0||z z|e Gkom (z—a')
m——oo p—

(1.22)

It is important to note that 'Y% is positive so here we have to use the absolute value
because not all these terms are positive. In advance, we can realize that this approach
will result in a worse approximation of the spectral series and for this reason in a slower
convergence rate in comparison with the previous one. However, the advantage here is
that the remaining series is quasi-static, so that, it would be better in the case of problems
that require a frequency sweep, such as those corresponding to the analysis of practical

microwave devices like filters.

The options that we propose to sum efficiently this series are:

e Option B.1: Sum by Ewald’s method.

e Option B.2: Polylogarithmic functions.
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e Option B.3: Summation by parts technique.

The formulation of each option will be detailed in the subsections 1.1.4, 1.1.5 and 1.1.6,

respectively.

To summarize, in the option A we are assuming that (kx() + %Tm) is more significant
than k, in the approximation of ﬂ%m but in the option B we are assuming that not only
is (%Tm) more important than k& but also than k. g. For this reason, the approximation
A is more complete than B and therefore the improvement resulted through the option A
would be better. On the contrary, it has the disadvantage of containing the frequency in

the term k,o. Depending on the problem to be solved, we can choose which to use.

In the following subsections, we explain how to sum efficiently the remaining part of

the Kummer’s series G(7,7') using both approaches. Whenever possible, we will try to

explain the methods in a general way for the extraction of ) asymptotic terms.

1.1.1 Option A.1. Approach of k,,,: Sum by Ewald’s Method.

The first alternative to sum the asymptotic retained terms obtained by the application
of this first approach of Kummer’s transformation is using the corresponding terms in
Ewald’s method. This can be considered a combination of both techniques. By using this
proposed Kummer-Ewald technique we are able to choose the effort that we want to invest

in each technique.

We first start with the connection between the first asymptotic term in the spectral
domain and the first asymptotic term in Ewald’s method. Then, we extract the second

term and we show how to sum it by using Ewald’s method.

e Extraction of one term.

In this case, the G(F, ') series that we have to efficiently sum is

~ 1 T e_lkmeZ_Z/' —jkem (z—a')
Ge(w)—QdmZ T (1.23)

m£0
The idea is to identify this series with an approximation of the spectral one and then

use Ewald’s transformation to sum the asymptotic term.
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_ 1 X o—lkemllz—#|

Ge(F,7) = ¢ Ikem(e=)
2d e |kzm|
m##0
—+o00 |, ! _ ) (124)
_ 1 e bl by L e e
2d = |kzm| 2d kol
S
Using this notation, G.(7,7) is
~ 1 e~ lkxollz=2"| ,
Ge(F,P)=8 — ———— ¢ Fkeol@—2') 1.25
Taking into account that the spectral Green’s function is
00 _ —
~ 1 e~ Ymlz=7'| ) ,
Grr)=— > ———— e Sheml=r) (1.26)
2d it Ym
we can obtain its approximation when m — oo as
+o00 _ !
~ 1 e~ ymlz=2| ,
G(7. 7 _ = —Jjkam (z—2')
" )‘m%oo 2d m;OO Tm ‘
e , meree (1.27)
1 e~ |kamllz—2"|

_ c e*jkzm(xf:p’)

"2, 2 T

Now, the series S obtained in the retained first term (1.25) can be identified with

this approximation of the spectral formulation G (7,7 )}m_mO and since

= [Gspectral (7:1 77/) + Gspatial("jy 77,)] ‘m—>oo

(1.28)

G(r, 77/) ‘m—wo = GEwad(T, F/) ‘m—>00

we can sum S by means of Ewald’s transformation by the use of the approximation
of the Ewald’s method components when m — oco. Remembering that the spectral

Ewald’s method component Ggpectrar(7,7) is [5,11]

_ 1 = e—jkzp(m—z/)
Gspectral (Ta r ) = 73

id = ke
4 / ik ; / ik
X [eﬂk“"ZZ erfc (|z — e+ JQZP) + eIkl orfe <—\z — e+ 32'“7)]
e €

(1.29)



1.1. Revisited of the Spectral Kummer’s Transformation 11

where k‘gp = k2 — k:gp. The approximation of Gpectral(7,7) is given by

1 I e—jkxp(af—x/)

-
Gspectr(zl(ra r )‘m—>oo = Q = jkzp
- / k , / ik
X [ejsz"z_z lerfe (|2 — 2'|e + I ) | emdkenle=#l orfe —|z = Z|e + 5 }
2e 2e
m—r0o0
1 T e—jk:cp(x—l"/)
dd |Ezp|
/ k / k
X {e'kaz*z lerfe ( |z — 2/|e + e + e karllz==T erfe [ —|2 — 2'|e + L }
2e 2e
(1.30)

We separate the term p = 0 because we are not interested in summing it directly

1 +oo efjklp(xfz/)

1d 2 ke

ks
erfc <—\z — e+ |p|> ]
2e

9

100 kg (z—a)
1 e IFap o ’k ’ _ o
- c- 7 |kzpl|z—2'] _ [Pap] |kapl|2—2'|
R [ et (2 2 ) el
p#0
L 1 e Ihwolema) lezollz—='| o, Rl
erfc( |z — 2'|e + 5% >] +4d Tooo] X |e erfc | |z z|5+728
helle s kol
+ e Raollz=2l opfe [ —|2 — 2/|e 4+ 221
2e
(1.31)

On the other hand, recalling that the spatial Ewald’s method component Gpqtiai (T, )

is [5,11]
Gspat'ial(ﬁ F/) = E Z e_kaomd Z (26) a Eq+1(Rm2€2) (132)
m=—o00 q=0 '

and taking into account that the approximation when m — oo in the spectral domain

corresponds to k — 0 in the spatial domain, the limit of Ggpatiai(7,7') when k — 0
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is given by
1 = =Xk
lim Gspatial (7, 7') = lim {M mzoo e~ Ikeomd qz_;] <25> ] Eq+1(Rm252)}
_ L f e IHa0md B (R2 )
4 o m

(1.33)

The found approximations of Ewald’s method components can be used to sum the

series S

1 too e—jkmp(x_a“l)
4d 12

p=—00
p#0

ks
erfc (—]z — e+ | p‘)
2e

: kol 1 =
+ e heolls=='] gpfe <—\z—z'yg+ 2’;) +o- D ¢ B

m=—00

S = X [e'kzpzzl erfc (\z — e+ |kxp|> + ¢ kapllz=='|
2e

1 e~ Jkao(z—a’) , |kzo]
- lkzollz—2"] apf, _ z0
4d  |kyol e ere (‘Z Zle 2¢ )

(1.34)

and using this transformation of S, we can rewrite ée(F, ') as follows

_ 1 e—lkaollz=2] ,
=& — o _ —jkzo(z—2') _ =
Ge(rT) =5 =55 ko] ¢ Ad ap]

p=—00
p#0

, k , k
| etenlle=1 et (15 — e + Fzl ) | thonlls=1 g (1 — /) 4 el
2e 2e

1 e—jkzo(a:—z')

1 I e—jkzp(a”_zl)

_l’_

4d kol
lkzollz—='| n. . |kaol Jkao]2—2'] . kol
X |elfe erfc ( |z —2|e+—— | +e " erfc [ —|z — 2'|le +
2e 2e
1 Ix i d 9 9 1 e_IkIOHZ_Z/‘ " ( ,)
_ —IRzoma B (R _ —Jkzo(T—T
! 4 mz_:ooe 1) 2d ka0 ‘

(1.35)
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Regrouping terms and summing together the residual terms in m = 0 and p = 0,

the first asymptotic series ée(F, 7) can be expressed as

+oo e—Jkap(z—2a’)

~ 1
N
Ge(""ﬂ") - 4dpz ‘kxp‘

—=—00

p#0

/ k 1 =
+ e~ Mkenllz=="T orfe <—\z —2|e+ | xp’) ] + Z e Ihaomd B (R2 £2)

/ k
" lemmz—z | orfe <|Z et pr|>
2¢e

2e A

e (1.36)
1 efjkzo(xfm/) 1 ’ ‘k‘ |
2 2] elkeollz=2 _ 1zl

+ 30 Tkl [2 (e erfc (!z Z'le + 5 )

+ e aolle—=] arfe <_‘Z et M) ) ~ €—|kzo||z—z'|]
2e

where the last term 7' contains the residual value when m =0

1le Jkeo(z—2”) 1 / ‘k‘ 0‘
- - |z |kzol|z—2" f _ 1l
1 5 ono] 5\ ¢ erfc | |z — 2'|e + 5

+ e Raollz==" erfe <—Z —2|e + |km0’> ) - e_|k””°”’z_z/|]
2e

Despite there is no problem with 7" when k;9 # 0, we have to use its limit when
kzo = 0.

1 e Jkao(z—2a") | 1 , Kol
lim T = 1 2 2 elkeollz=2 o — 17201
(i, k;&o{w oo [2( it { [ =7+ 75

+ e Thaolle=] g <—|z — e+ "“‘) ) _ e lheollz—+ } (1.38)
2¢e

(1.37)

€7|27Z/|2€2

k= g = 2erf(]z = 2Je)
- 2d 2ed\/T 2d

e Extraction of two terms.

In this part, we try to apply this procedure to the extraction of one more term in
order to accelerate even more the convergence of the spectral 2-D Green’s function

with 1-D periodicity.

In [11], the spectral series was reported by a mathematical development based on the
Sommerfeld identity. To carry out this approach, we need to go into detail about the
spectral proof by the same procedure as the components of Ewald’s method. This

is because we are going to identify the corresponding terms in both developments in
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order to sum the asymptotic spectral terms through Ewald’s method. This can be

consider a way to sum efficiently the non-analytical retained part.
For this purpose, the start from the spatial series (1.1) given by

— N\ —jkesomd (2)
G(r,7) = E e IF=0 —4jH0 (kRy) (1.39)

and we use the Sommerfeld identity for 2-D cylindrical radiated fields

2 2, k2
1 e Fms ™tz

1 o0
Zijf)(k:Rm)— /O C s (1.40)

T or s

where s is the complex variable of integration. On the other hand, 1-D Poisson’s

formula is given by

+oo +oo
> f(md)zé > f<27;m> (1.41)

m=—0oQ m=—0Q

where f(k,) is the Fourier transform of f(€), that is

“+00

Flke) = / F(€)e ¢ de (1.42)

—0o0

If we start from (1.40) and we identify terms, we can write f(md) as

U ikaoma [ e_R%T32+fTQ2
flmd) = eI S (1.43)
™ 0 S

where we can replace R, as

I
f(md) = e_szomd/ s (1'44)
2T 0 s
According to this, f(£) is written as follows
"2 ’ 27 9, k2
1 . 0o ,—l(z=2)+(z—a'=&)°|s*+ L5
f(&) - e_Jk?zoﬁ/ € 4 ds (145)
27 0 s

Using the equation given in (1.42), f(k,) can be expressed as

12

B O e [ o~ lz=2) =2 —€)%)s*+ 15 bt
— _ p,—JRz0 %
f(ky) = /_OO 5.-¢ /0 . dse d¢ (1.46)
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Thus, if k; is k; = %Tm, the previous equation remains

. w0 o l(e— VP a—a' 05+ £y
HEu. / L kw0t / z Y dse I Ge (147)
d oo 2T 0 §

grouping terms

f<27;m> _ 2i /oo dé /oo ds1e,[(zfz/)2+(x7;p',£)2]s2+4k822 e_j(%Tchzo)& (1.48)
T J 0o 0 S

If we name k., as kzm = kzo + %Tm, we can rewrite the previous equation as

T J - 0

Now, we try to find the following relation

400 2
/ o€ g g cia (1.50)
—00

For this purpose, we define I as the integral part of (1.49) which depends on £ and

we proceed as follows

+
_/ oo67[(zfz’)2+(xfx’,£)2}52+% efjkzmﬁ df

—0o0

_ / T =) a5 ke g

—0o0

400 9 (151)
:/ 67(27,2’)2527(:pfz/)232+2(x7:r’)£sz75232+fs—27jkzm§ df
-0
_ /+OO 67(272/)2327($71‘/)282+% 6—5252+§(252(m—m’)—jkxm) d¢
-0
Now, we apply the relation given in (1.50) by identifying a = s2 and
b=2(z —2')s? — jkym, where % is
bj _ (2% (x — 2') — jkum)?
da 452
4t (@ = ') — 45%( — 2 )jhem — K2y (1.52)
N 452
kem
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Consequently,

+oo 2.2 2 N_ik T 2(x—a')?—(z—a')jk _Fem
/ o€ THEQs (=) ~jham) g — /7268 e=2')" = (@=a)jhem =5 (1.53)
oo S

The equation (1.53) leads to the following transformation in (1.49)

f; 2mm _ i /OO dS}e_(Z_Z,)282_(x_x,)282+% EeSQ(gg—x’)Q_(x—x’)jkzm—]ﬁ?
d 2m Jo S a
k2

_ 1 e / T ds LR P bap
2\/’7»7' 0 S
’ a:m_k2
_ 1 6*(17% Vikam /oo dse—(z—z )28267 4s
2
2\/7? 0 S
(1.54)
In the knowledge that the previous integral can be solved using [15] as
o0 efaSQ(z_s% \F
/ ds — YT ~2vavh (1.55)
0 52 2\/

where in this case a = (z — 2/)? and b = k%m%k, (1.54) remains

277 m

If we define 7, as ym = \/k2,, — k2, G(F,7) is given by

~ —k2|z 2’|
1(7) = g2 (156

y —

e —Ym|z— Z| ]kzm(x w/) (157)

G(F, T QdmZoo

As can be seen, the obtained spectral representation is the same as the one presented

in [11] by the other procedure and previously reported in (1.3).

Once we have addressed this spectral proof, we can apply Kummer’s transformation
by the extraction of two terms in the spectral Green’s function. The first term can be
obtained by using the previous first order approximation but when we are interested
in extracting more than one term, we have to analyse what happens in higher orders

when m — oo in the spectral series and in the Ewald’s method components. For this
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aim, the strategy here is to obtain the retained terms by using the Taylor expansion

in these proofs.

The starting point of the development done previously is

T ' S
G,y =5 D, et /0 s (1.58)
m=—o0

and the starting point of the proofs done in [11] of the Ewald’s components is

1 e BB
Gspectral(fa fl) = Z eijkxomd / ——ds (159)
2m m=—00 0 $
1 = . o0 e_RanQ"'%
Gspatiar (T, 7') = o Z ¢~ Ikwomd / —ds (1.60)
g m=—00 € s

All of these components start in the spatial domain, where m — oo is k — 0. So we
have to calculate the limit of these integrals when & — 0. Using the following Taylor

expansion when u — 0
+oo p

=3 % (1.61)

n=0

we can rewrite the exponential of £ in the previous proofs as

452 k
=14+ —++... 1.62
n! + 452 + (1.62)

K2 =
e@ = E
n=0

It can be noted that the first term of the expansion corresponds to the development
done when we extract only the first term because it corresponds to the first order
approximation of these components. The idea is to use the second order Taylor
expansion of e% in the equations (1.58), (1.59) and (1.60). This will allow us to
use the two order expansion of Ewald’s method components to sum the two order

expansion of the spectral series.



1.1. Revisited of the Spectral Kummer’s Transformation

18

Using this expansion in the equation (1.54) of the spectral development, f (%Tm)

remains
2
/9 1 " 00 ,—(z—2')2s? ,— % k2
f T o~ (@—= )Jk'zm/ € - € 1+ — |ds
d 2/ 0 s 4s
k2,
_ 71 e_(l’—$,)jk'x'm /OO ei(z*Zl)zsze_?
- 2ﬁ 0 82
S1
k2
+ 1 —(z—2")jkzm /Oo 6_(Z_Z/)2326_ 152 k2 d
e : ——ds
2\/m 0 s2 452

So

In the knowledge that the previous integrals can be solved using [15] as

—as?—5
/oo T s= ﬁe—%/a\/‘;
5 =
0 s 2v/b
—as?—L
x o 2 ds — \/77‘(1 + 2\/6\/5) 6_2\/5\/5
0 g4 4p3/2

k2 . .
zn the series S1 remains

where in this case a = (z — 2')? and b =

k2
0o ,—(z—2")2s2 — B
S1 = 71 e Jkam(z—a') ¢ c n 2jk,ejkf”ﬂ(yc90/)
2\/77' 0 32 i
Me_ \% kam|?z—2 1 e*‘kImHZ*Z/‘

2/ | kzm |? T2 L

—jkem(z—12")

e

and series So remains

2
2.2 _Fz

5,2 _ Lﬁe_jkwm(x—l’l) /OO 67(272) s e 4s2
2ﬁ 4 0 34
2 93 /
)il%/ e_jkw’fn(w_$/) )ﬁk 2 (1 + ‘Z -z Hkitm‘) e_\/m‘z—?«’/‘

42| kg |3

2
_ L ket ( B El Z") o komllz—
2 Moo 2

(1.63)

(1.64a)

(1.64D)

(1.65)

(1.66)

Using this, we can write the asymptotic spectral series with the expansion of two

terms as
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~ 1 1 k2 K2z — 2| N p
G (r P = — _lkmmHZ_Z | _kam(m_z)
=50 2 <|km| T P 2kl ) ‘ ‘

(1.67)

Now, we can apply Kummer’s transformation to the spectral Green’s function as

follows
o e~ vml== 1 B k-7
(1) = 2d mz—:oo [ <|kxm‘ - 2| kgm ? " 2[kem|?
s (1.68)

e'km”“/'] hente ) 4 Gy + Gl 7)

where éo is the spectral series in m = 0 and ée(F, 7') is the asymptotic retained

part. In this case, the remaining series is

~ k?2 k |Z — Z |> / . ’
G (7,7 + —lkemllz=2"] g=jkam (z—2")
© 2d Z (\kxm| 2kem|®  2|kem|?
+
_ 1 = < 1 K’ + K|z — 2’”) o |kemllz=2'| ,—jkem (z—2')
2d o |kzm| 2]km\3 2| kzm|?
G (7,7
2 2 /
_ 1 ( R |> o lhzollz—| g ikao(a—2')
‘kx0| 2|k:c0| 2|kx0’

(1.69)

where G (7,7) is the same as the series obtained in (1.67) when we calculate the

asymptotic expansion in the spectral series. Accordingly,

~ ~ 1 1 k2 k2’2—2/| / . /
G )= G (F. 7)) — — —lkzol|z—2"| ,—jkzo(z—2")
6(7”,7”) 6(7’,7‘) 9 <|kxo| +2|k3:c0|3 + 2|kx0’2 >e €

(1.70)

As mentioned before, éer (7,7) is the approximation of the spectral series when
m — 400. The idea is to sum this series using Ewald’s method. Through this
proposed Kummer-Ewald transformation, the asymptotic retained part ée/(F, )

can be efficiently calculated by using the rapidly convergent components of Ewald’s
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method as follows

éy(f, 77’) — 6(777 F/)‘m—w,-oo = GEwald(Fa

_y
= [Gspectral(ﬁ FI) + Gspat'ial (77; 77/)]

|m—>+oo

The proof of spectral component of Ewald’s method has been reported in [5, 11].
In this development we have to use the expansion of the exponential that depends
on k when k — 0, as we have done in the spectral asymptotic expansion. For this

purpose, we start from

2 k2
B < _( _ /)2 2 71%%
f(zzm) - 2\1/>€(l’$,)jkzm\/ dse zz 526 4 (1.72)
™ 0 S
ﬁ k’2
and we replace e4s? by 1+ 5
2.2 _ka2cm

~(2mm 1 . N € e (2=t T3
_ —jkam (z—1") d
f< d > 2\/7?6 /0 § s?
e _( _ /)2 2 7k§3m
_ 71 ejkzm(:rz')/ eVTE e 4
- 2
2y/m 0 s ) (1.73)

S1

N _kim
z—2")%s e as? ki2

1 . ’ € 6_(
—jkam (z—1") 2 d
+ 2\/776 /0 52 12%°

Sa

In the knowledge that the previous integrals can be solved by means of [15] as

2 b
. I
/O(S)st—mlerfc<€+\/aﬁ>€

2,2
_2\/5\/5 _(\/EJr\éEs )
—2\/5\/5 @ N _ (& ﬁ e €
+e erfc ( 5 ﬁf—:) 1 + RPEYD

b b b
4D eVavh _ o prtas? Vi +2Vavbe Vi eEtee’ | o pirtac® avavh NZs

—2vavhe ez tas’ pavavh VT — (142 aVb) e ez tast V' erf (il; - \/&5>

+ (_1 + 2 \/a\/g) c 65%+a62 64\/6\/5 \/,Eerf (ig + \/&5) ]

(1.74)
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where in this case a = (z — 2/)% and b = , S1 remains
1 e*jkzm(ffff’f/) , |]€ ‘
Sy = lkam|lz—2"| ot zm |kam ||2—2"|
LT T X |e erfc ( |z — 2'le + —— 5 +e
(1.75)
k
erfc <—|z e+ | xm|>]
2¢e
and series Sy remains
1 ]{52 2 —lkam||z—2'| 92 % |z—2'|2e2
52 = 7eijkzp(x7‘xl)7 € + €
2 ’kxm|3 ﬁg ’kxm|2
ol —1 —erf ('km| |z — z’]s) |z — 2| (1 erf (lkm‘ |z — '\6))
_'_67 zm||Z—Z +
|kzm|? | kzm|?
oz 1—erf(|k“”"| +|z— ’|z~:) |z — 2| ( 1+erf<|k””"| |z—z’|€))
+ e zm ||Z—Z +
|kzml? |Kezm|?

(1.76)

Using this, we can write the asymptotic spectral component using the expansion of

two terms as

_ _ —jkem(z—a’
Gspectral(rv r )’m—H-OO - @ Z e’ o ’kmm‘

m=—00
/ k k
X |:e|kzm||z—zlerfc <|Z |€+ ‘ ;m’>+e kemllz=2| orfe <_’2_Z’€+ ‘ ;m’)]
€ €

12 [9elkemllz=2'| 95— L ,
— + +€_|kwm”z_z‘
2 |kzm |3 VT € |kgm|?
1—erf(|k“”| |z—z’|€) |z — 2| (1—erf(|k””| \z—z’]e)) o[t

+ +€ zm||Z—Z

+

}

(1—erf ('%—;’L'—F \z—z’]e) |z — 2| ( 1+erf(|k”””| z—z’]e)))

(1.77)

If we separate the term in m = 0, Gpectrat (7, 7') ‘mHJrOO is
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1 X 1
- = —jkgm (z—2")
Gspectral (T’T )’m*)+oo o 4d rmzz—oo6 j . { |kxm|
m##0
/ / k
x |elFemllz===l erfe ( |2 — 2/|e + [am| + e Ramllz="T orfe | —|2 — 2/|e + 2 [Fam]
2e 2¢e

k,2 267|k1mH272/‘ 2¢” ‘lkz;n‘ —|z—2'|2€?

- +

2 |kwm |3 VT e |kgm|?

[E - a2

+6lkm||z_zl|<1—erf(lkggnl+|z—z’|€) 2= 2] (1 +exf (g2l — |z—z’|£)>>]}

) 1—erf<|km| ]z—z’|5> |z — 2| (1—erf<|km‘ \z—z’\s))
+6—|kme2—Z‘

e " e

+ Geo(7,T)
(1.78)

where Go(7,7') contains the value of this component when m = 0. On the other

hand, the spatial Ewald’s method component Ggpqatiai(7,7) is [5,11]

2q1

Gspatzal T 47(' Z e_]k omd Z <2€> a EQ+1(Rm2€2) (1.79)

m=—00
k2

where the summation in ¢ corresponds to the expansion of e4s2 previously done in

the proof of the spectral series and in the proof of the spectral Ewald’s component.

This expansion is originally carried out in the development of the spatial Ewald’s

component. For more detail see [5,11]. Knowing that, the second order expansion of

G spatial (T, 7') when k — 0 corresponds to the use of two terms in the g-summation
1 X X k\M 1
lim Gopatial(7,7) = lim { — ¢ Fkzomd — — E Ry, %e?
M Gpaiar(7,77) = lim 4 > qz_; 2¢) ¢ a1 (Fm”e)

m=—00
1 =
- E: efjkwomd
4

m=—00

k 2
E1(R$n€2) + <28> EQ(R?,LEQ)

(1.80)
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Once we have the second order expansion of the Ewald’s method components, we

can summarize how to sum the asymptotic retained part through Ewald’s method.

~ ~ 1 1 k2 k2’Z — Z,’ ’ . ’
Go(F,7) = Go (7, 7') — — ( T + ) e~ lkeollz=l g=sheo(a)
(F,7) = Ge (7, 7) 2d \ |kzol = 2lkz0l®  2|kgol?
(1.81)
The series G (7,7) has been efficiently summed as
é ’(7: F,) = [C{spect?"al("7 'F,) + Gspatial(ﬂ F/)] ‘mg)+oo
f]kzm(a: z’
2 el
m;ﬁO
’ / k:
X [elk””””ZZ lerfe <|z 2 |e + | xm|> + e themllz=#l grfc (—|z — e+ | xm|>]
2¢ 2e

|kzm\ P |2€2

k2 | 2e~lkamllz=21 9™ 742
— +
2 |kxm‘3 ﬁ € |k93m|2

) 1—erf<|k“"| |z—z’|5> |2 — 2| (1—erf<|km‘ |z—z/\e))
4+ o kamllz—]

+
‘kxm’3 ’kl‘m|2

amllz—2| 1—erf(%+|z_z/|€) \Z—z’]( 1+erf<|k“”"| |z—z’|€)>
+e E + oo 2

+ GeO Z e—jkzomd

m—foo

k 2
Ei(R2,€%) + ( 28) Eo(R2 %)

(1.82)
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If we insert (1.82) in (1.81), the asymptotic part G,(7, ) remains

~ / kxm
Ge(F, T 4d Z ¢~ Ikam (@ —a’ {’km‘ [ekmlz—z|erfc <\z—z'\6+ o] ‘)

2e

, qu:m\ 72,2
/ Kzm| k2 [ 2e=lkamllz='| e~ Iz
+ e lRamll==="] o rfc (—z—z’a—i— K ) + = +
| | 2 |k';zcm|3 ﬁ& |kl“m|2

1 —erf <% — ]z—z’]s) |z — 2| (1—erf<|k“”‘ |z — 2'|e ))
_|_€*|kzmHZ*Z‘ +

[ |? | |?

o sz/|<1—erf(|k“’|+]z ’]5>+\z—z’\( l—i—erf('k“”"' |z — ’]5)))]}
olkam

1

- » k\?
+ Geo(F,7) + e S etheomd 1By (R2 ) + (26> Eo(R2 €%
m=—o0
2 2 /
_1 < RN S —§\> o~ lhsollz—2 g~ skao(a—a)
’ka, 2“%0‘ 2‘]%0‘

(1.83)

Regrouping terms, ée(f, 7') remains

66(77 7) = RS ¢~ Ikam(z=2") L x |elkemllz=#T erfe |z — \6—1—’ Fizm|
’ 4d £ | Kzl 2e

|k73m‘

/ 1122
/ Kxm| e e e B P s
+ e lRamll==="l o fc (—z—z’a—i— K ) + = - +
| | 2¢e 2 |kom |3 VT € [kpm|?

) 1—erf<|k“”"| ]z—z’]s) |z — 2| (1—erf<|k§;”‘ —\z—z'\e))
_|_€*|kzmHZ*Z‘ +

|Fam |? [ |?

(1 —erf (% + |z — z’]s) |z — 2| ( 1+ erf <|k1m| |z — z’]e))
_|_€|kzm||zfz| +

[ |? |Fam |?

—+00
§ : e—jkmomd

k 2
Ei(R2e%) + (25> Eo(R2 %)

1 1 k2 ]{72‘2’ — Z/‘ ’ . /
+ Geo(7, ) — < + - ) g~ thaollz=#'| g=ghao(w==)
(7 7) 2d \ |kgo|  2lkz0l® | 2lka0?

(1.84)
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where the last term T contains the residual value when m = 0. Despite there is no

problem with 7" when k.9 # 0, we have to use its limit when k,q = 0.

1t 1 . ko]
— o Jkeo(z—2) ) = kzoll2—2| — z0l
T 3¢ {|k:$0| X [e erfc (]z Z'le + 52 >

/ kg0l 2.2
- —2 kzo| k2 | 2¢—Ikzollz—7'] e a2 |z—2"|%¢
4+ e lkaollz=2"] op e —z—z’g+|x o +
’ ’ 2e 2 ‘kx()‘?) ﬁ& |kx0|2

o lhaolle—] —1 —erf (% — |z — z’|5) . |z — 2| (1 — erf (% — |z — z’|€)>
e x
|ka:0|3 ‘kcc0|2

|kaz0|3 |kar0|2
11 N k2 N k2|2 — 2|
2d \ |kzo| = 2|kzol3 2| k0|2

oz 1 —erf (@ + |z — z’|€) |2 — 2| (—1 + erf (@ — |z — z’|5)>
+ ™0 +

> o lrsollz—#'| ko)
(1.85)

Resolving this limit by the same procedure as the followed in the previous part, the

term T that we have to use when k,9 = 0 is

T lz—2| e =Pz —erf(|z - 2e) |- P2 K2 |z — 2|3
- 2d 2ed\/T 2d 12d 8d 3
€7|zfz’|252 |Z _ Z/‘Qef\zfz’|252 (_1 + 2‘2 _ z/’2€2)67|272’|262

237 * e/ a 6e3/T

_ 13 _ 13
+ 'Z;'u —erf(]z — 2)e)) + ‘Z;(—l +erf(|z — 2)¢))
— 3
‘Z;‘u +erf(|z — 2|e))

(1.86)

In order to summarize, in this subsection we have accelerated the 1-D periodic spectral
Green’s function by using Kummer’s transformation and summing efficiently the asymp-
totic retained part through Ewald’s method.

We have outlined the connection between the first and the second asymptotic term
in the spectral series and the summation of these with Ewald’s method. This approach
has not been generalized to ) terms due to the difficulty that arises from the Ewald’s

integrals when we extract more than two terms. Nevertheless, the development done in



1.1. Revisited of the Spectral Kummer’s Transformation 26

this approach implies a significant improvement over the slow convergence of the original

series, as will be shown in Chapter 3.

1.1.2 Option A.2. Approach of k,,,: Lerch Transcendent.

The strategy of this second alternative in the k., - approach is to develop the formulation
without applying any transformation on it. It can be seen as the analogous technique of
the polylogarithmic formulation for the case of (27”") - approach. The final expression of

this procedure will be expressed in a semi-closed form using the Lerch transcendent.

For this aim, we first remove the absolute value in (1.9) taking into account that for

positive m
2mm 2mm
|kzm| = |—— + kzo| = | —— + kzo (1.87)
d d
and for negative m
—2mm 2mm
V%m’ = ‘ =+ kxo = (d — kzo) (1.88)
Using this, we can write (1.9) as
Ge(r,7) e [f XQ: fy k1 —(35 a0 ) o= | =5 2 (aa')
(7, 7)) = 5T | € @ e
2d m=1 \ ¢=0 (%Tm + kxO) o

qu Tm ! Tm
+ Z Z 2rm qu )2q+1 €_<QT_ 20) 2= 632d (z— ‘E)]
- x0

m=1 qu

jkzo(z—x") 2q
I P Z Z fok o= 2 o] =i 2 (a—a)
- 2q+1
271'm 4 kxO) q

m=1 \ g= 0
St
2q
z()|z Zl'z Z qu’ e 27rm|z le 2Trdm(x m)
27rm 2¢+1
m=1 d a:O)
Sa

(1.89)

Using this notation, G, (7,7) can be expressed as the following summation
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_ —jkgo(z—2x") , ,
Gl ') = g [e7heol Ly - hools=lg, |

We have to sum the series S; and Sy which have the same general form S

(27r)2q+1 29+ 1

a

Knowing that the Lerch transcendent is defined as

k

+oo 5
D(z,8,a) = Z —
— (a+k)

Therefore, the summation that we are interested in can be written as

+o0 k 400 k 1 1

z z
EE—— =% _ =
;(a—l—k)s ;(Hk)s o = PEsa) =5

We can use this notation to express the general summation S as

fq K% kaod
2 1,+ —
Z () (2m\2a+1 720+ 1 27 (:I:kﬂ"o

21

1
d

>2q+1

and consequently, S7 and Sy can be written as follows

(1.90)

(1.91)

(1.92)

(1.93)

(1.94)
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LA P S RERTR)) kaod !
Z 27 e 20+ 1, 5= ) = (m)%” (1.95)
2
fo k1 25|/ |—j(a—a")] kaod !
) — 5T e d 2q+1,— o ) ( quﬂ (1.96)
2w

So, we have accelerated the spectral Green’s function by retaining @ terms in Kummer’s
transformation. These () asymptotic retained terms can be summed using this method as

a semi-closed form with Lerch transcendent formulation.

1.1.3 Option A.3. Approach of k,,,: Summation by Parts.

In this subsection, we study an alternative to sum the remaining part using the summation
by parts technique [9]. In this case, the series G, (7, ) can be written as the sum of two

parts, one analytical and the other numerical but finite.

For this technique, we start from (1.89)

—jkgo(x—2' 2
é (’F 77/) . e’ z0( ) —kz0|z Z/| Z Z qu q 6_27rdm‘z_z‘ —j 27lrim(r_x/)
e 9 -

2 27rm 2¢+1

d m=1 \ g= O +k )
St

/ f k;Qq 2mm / 2mtm
+e kzolz—2'| E E q ) e_T|Z_Z|6J T (z—a')
q
m=1 \ ¢=0 ( d kxO)
Sa

(1.97)

As stated above, ée(f, ') can be expressed as the sum of two series with the same

general form

- e—jkzo(l'—m/) k , E ’
Ge(Fy 77/) = T e wolz—2 ‘Sl +e z0lz—2 |SQ] (198)
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Applying the theory of the summation by parts technique (see Appendix A.1) reported
in [9], the general series S can be split into

“+oo Q

s=> 1Y fo K o= |22 £ (e—a”)]

1 \g=0 (%Tm + kx0)2q+1

M-1 Q

2
_ 3 Jo K7 | e )
2 q
m=1 \q=o (FF* % kao) (1.99)
Sn-1
+oo Q 2
+> (> szq i soyy | ¢ A )
m=M \ q=0 (T + kxﬂ)
Ry
Now, we modify Rjs in order to sum it analytically
+o0 Q 2
fq k=1 _2rm |, _ 2T (.
RM:Z Z 271 | € A S
et \a=o (£ keo)™ — (1.100)
an Y
Using the first order approximation of Ry
Ru =Gy 1172 (1.101)
where
Q 2%
~=1) O A(-1 . fq k _2mm,
GM _ng )’m—M_ Z 2mm 2¢+1 e d Sl
- =0 (7" £ kao) .
o (1.102)
_ Z fq k24 efz%defzﬂ

q=0 (% + k$0)2q+1

and
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¢TI (@)

e M1 a 1_ e?]’%”(ﬂﬁ—iv’)

+oo +oo
j 21k (o
ey | - s e

k=m+1 m=M-—1 k=m-+1 m=M-—1
e:Fj 27-rdM (x—z’)
] — T T @—a)
(1.103)
Ry can be analytically summed as
Q 2 M (o o0
Ru= Y fq k20 -2y €T ) (1.104)
= (£ kx0)2q+1 1 — ¥ (@) '

and therefore, S is given by the summation of the initial numerical part and the obtained

analytical part

M-1 Q

- Z Z fq K% o= 2 |z £ (a—a”)]

(35 = ko) T

m=1 \ ¢=0
(1.105)

Q fq k2q €$j 27rdM (z—a’)

27 M /

o M |z

+ Z (QWM:I:k )2qu1
q=0 d x0

| _ i T )

where M has to be adjusted to sum each part in their optimum region. Using this

general expression of S, the series 51 and S5 that we are interested in are

M-1 Q 2
5 — fo K71 2 |2/ 4 (0—a)
1 2911 | €
1 0 (m +k 0) o
m=1 \g=0 \"¢ @
o , e g (1.106)
N gL, S
e D YA
pucl =AY T L—e it
M-—1 Q 2
fq k q _2mm DV 2 B SN |
S= 3| 2 (2 ) | femEem)
m=1 \qg=0 \"q ~ "z0
(1.107)
Q 2 -27rM( _ /)
i Z qu a ef%lzazq el d,gw z
=0 (M - kx0)2q+1 1— eda(@=a’)
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So, we have accelerated the spectral Green’s function by retaining @) terms in Kummer’s
transformation. Thus, the (Q asymptotic retained terms can be added using the summation

by parts technique as a sum of an analytical part and a numerical but finite part.

A comparison between the different techniques reported in this section to sum the asymp-
totic series using this first approach of applying Kummer’s transformation will be reported
in Chapter 3.

1.1.4 Option B.1. Approach of (27"”) Sum by Ewald’s Method.

The first alternative to sum the asymptotic retained terms obtained by the application
of this second approach of Kummer’s transformation is using the corresponding terms in
Ewald’s method. This can be considered a combination of both techniques. The strategy
is similar to the followed in the subsection 1.1.1 but with the other approach to extract

the asymptotic terms.

In this subsection we report the connection between the first asymptotic term in the

spectral domain and the first asymptotic term in Ewald’s method.

e Extraction of one term.

Here we suggest summing the static first term with Ewald’s method. In this case,

the series G, (7, ) that we have to efficiently sum is

- *‘%Tm“zfzq e_jkwm($_$,)

27rm (1.108)

5. 7) 1 I
Ge r,Tr _7d _Z

m

Therefore, the static series G (7, 7) is

1 |2zm | 2
O (7. 7 = o dkao(z—a") [ = T |e=2"] =i T (a—a)
Ge(7,7') = e Ie0l@= <2dm;w 27Tme d eI 7a xx) -
m+£0 (1.109)
G ()

The idea, like in the subsection 1.1.1, is to identify this series with an approximation

of the spectral one and then use Ewald’s transformation to sum the asymptotic term.

For this purpose, we have to remember that the spectral Green’s function is
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o0

N 1 —Amlz—=Z| ,
G(r,7) = 5 eikem(ea))
m=—o0 Tm
—+o00 _ o _ o 1.110
T T P P S
2d Moo TYm 2d Yo
m#0

where ky,, = kyo+ %Tm and v, = \/k2,, — k?. We want to obtain the approximation
of the previous series when m — oo using this second approach. It is important to

note that we are assuming that -, is approximated by ‘Q’TT’” , that is

2
fym‘mﬁoo =V kgm - kz‘m—)oo = \/(kxo + 27Tdm> — k2

b5 -

For this reason, in m = 0 where we only have k,q, we will use the static limit of

this term when k,g — 0. That is, we are assuming not only is (kwo + %Tm) more

m—00 (1.111)

2mm
d

important than & (like the other option) but also ‘%Tm’ is more important than k..
This leads to believe that both k and k.o tend to 0.

1 X1
A= = _m_/_'kzm_l
I S
+ lim ie*’mlzfz |e—jkzo(w—$’)
kr0—0 2d ’)/0
—+o00 1.112
P S0 )
2d 2mm
m=—00
m##0

Gor (7,7)
4 otim (2L ele—# = keo(z—2)
kz0—0 \ 2d Yo

As seen, we can identify the series ée/ (7,7) as a part of this approximation and
therefore we can write ée/ (7,7) as a function of the approximation of the spectral

Green’s function when m — oo.

Gu(r,7) = G(F, 7 16—70z—z’—jkmo(x—x')> (1.113)

— 1 il
)‘m—m kzggo (Qd Yo
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The idea is to sum G~—'5/ (7,7) rapidly by using the approximation of the Ewald’s
method components when m — oo. Thus, the approximation of é(f, ') can be

summed as [Gspectral (7, 7' ) + Gspatial (7, 7)) ’WHOO.

Remembering that the spectral Ewald’s method component Ggpectrar(7,7) is [5,11]

G apectrat(7, ) = X ikam(e=a’)
spectra 4d e ]kzm
Gkzm|z—2] / Jkzm —jkam|z—2"| / Jkzm
X |elrem erfc | |z — 2'|e + + e Ihm erfc | —|z — 2/|e +
2e 2e
(1.114)
where kg = kg0 + %Tm and k. = \/k? — k2,,,. We sum separately the term m = 0
+oo —Jjkzm (z—x') :
1 J . / k
Gspectral (T, T') = L ekl e (]z —Z|e+ ‘]Zm)
4d it Jkam 2e
m#0
i _ ]kzm 1 e—jkzo(a:—x')
+ Jkzm|z—2'] fol =1z — 2 + -
e erfc [ —|z — 2'|e 5 1
: / ik , / ik
x |eF=0l==# | erfe ( |2 — 2/|e + IE0 ) 4 emdkaola=2| rfe —|z—2le+ J7:0
2e 2e
(1.115)
The expansion of Gpectrai(7,7') is given by
+oo —jkem(z—12")
1 eJ
G G =3 — —_—
m##0
Jkam|z—2'] / Jkzm —jkam|z—2'| / Jkzm
X | elf=m erfc | |z — 2'|e + + e IfEm erfc | —|z — 2'|e +
2¢e 2¢e
1 e Tkaolz=2") : ) k-0
-z jkzolz—2| f o z
+4d T [e erfc | |z — 2'|e + 9
—jkzo|z—2| / jkzO
+ e I%=0 erfc | —|z — 2/|e + —
2e
m—r0o0
(1.116)
Using the following approximation of k.., and kgzpn,
2mm 2mm
m—o0
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(1.117b)

kzm’m—mo - \ k%m‘

2mm '

the approximation of jk,,,, which is the term that we are interested in, can be

obtained as

. 2mm
Gkaml|, . = ‘ (1.118)
According to this, the expansion of Ggpectral(7,7) can be expressed as
+oo _S2mm. 2mm
1 e J=q (75 z ) 27tm L)
Gspectral(ﬁ F/)’ oo A4 Z —Tomm1 X 6‘ o “Z 4 erfc |Z - Z/|5 + M
m—00 4d ‘ h } 2e
m=—00
m##0
27rm —jkgo(z—2")
te erfe | —fe = et = ) |+ Tim | 45 ko

. , ik , / ik
X [ejkw'zz lerfe <|z 2 |e + J ZO) + e~ Ik=0l2=# orfc ( |z — 2'|e + J ZO> ])

(1.119)

As mentioned before, in m = 0 we have to calculate the limit of k., because we are

using the approximation jk,,, = ‘%Tm’ neglecting not only k but also k,o.

On the other hand, recalling that the spatial Ewald’s method component G spqtiqi (7, )

is [5,11]
1 &S roma s~ (R 1 2 2
Gspatial(":; 'F/) = E Z e~ =0T Z <2€> a Eq+1(Rm 9 ) (1.120)
m=-—00 q=0 )

the approximation when m — oo in the spectral domain corresponds to £ — 0 in

the spatial domain. Therefore, the limit of Ggpatiai(7, ™) when k — 0 is given by

2q
1
. — —jkgzomd 2.2
fim, Gapatia(T,7) = iy {M 3 etam Z<2e> g oo ”}

kzo—0 kz0—0 m=—00
1 X
= — E1 R 252
47 Z (Fm”e”)
m=—0oQ

(1.121)

The found approximations of Ewald’s method components can be used to sum the
series Go(7, )
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~ ) Nl ~ 11 s ’
Gl ) = e~iknles >{G<f, ) s = Jim (gd Lommle—sioshatos >> }
20— 0

— e—jkzo(aj—l‘/) { [Gspectral( ) + Gspatzal(_ /)] ’m_>oo

— lim 1 1 e 0l2=2"|=jkzo(z—2")
kz0—0 2d Y0
2tm / ‘27‘(’!’)’1’ 2tm / / |27rTm‘
x | el 7=l erfe |z — 2|e + + e 1Pl erfe —|z = 2'e+ 22—
2e 2¢e

le Jkao(z—2") ; / jk 0
lim R — ]k‘zo‘z z ‘ f _ ! J 20
+ z10 0 ( jkao |:6 €ric ’Z z ’E + -

) , ik 1 1 n_ ’
+ e Ik=0l2=# erfc <—\z —Z|e+ ‘72?)) ] 5 e—Y0lz=2|=jkzo(z—z )) }

(1.122)

where the last term T' contains the residual value when m = 0. As discussed before,
in this approach we have to calculate and use the limit of 7" when ko — 0 in all

cases.

—hso(a—a)
T = lim { 1 e7m0 [e“@zOHZ—Z/\erfC OZ ~ e+ |2x0V> 4+ kol
g

kz0—0 4d |]€$0’
’kx()’ 1 1 _ =ik o
fo [ — }_ e 0lz=2"|=jkeo(z—2")
erc( |z — 2/ |le + —— 5% Qd%

1 efjkzo(mfxl) 1 ’ ‘k‘ O‘
Lo 3TN ko= oy (1 — x
2dk;)ﬁ0{ 20| 2<e erfe { |2 = e+ 5

4+ e kaoll=—=] grfe <_|Z e+ ] wO‘) ) o lhaollz— }

2e
|z =7 e 1=z — ) erf(|z — 2Je)
2d 2edv/m 2d

(1.123)
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Introducing (1.123) in (1.122), G.(7,7') remains

5 tote-a) [ 1§ b, 1 O IEPE)
— N\ —jkyo(x—1'
Ge(r,’r)—e IRz E Z El(Rm€>+Zd Z W
m=—00 m=—o0
m#0

2mm ’ ‘%Tm‘ 2mm ! ‘%Tm‘
x | el ZF 1= erfe |z — 2/|e + 22— + eI I e —|z =2 |e+
2e 2e

N 2= 2| e =Pz — 2 erf(|z — 2e)
2d edy/m 2d

(1.124)

The extension of this formulation to one more term could be carried out by using
2

k .
the Taylor expansion not only for e1s? but also for e /=04 These expansions have
to be done in the spectral development (1.58) and in the developments of Ewald’s
method components (1.59) and (1.60).

+00 —R} s?
1 . o0 e mS k2
G(r,7) = — E ¢~ Ihaomd €152 ds (1.125)
o ~—— 0 s ~—~
M=—00 Taylor expansion Taylor expansion
] i IR 2
Gspectral(T, 1) = — g e~ JMeo e 152 ds  (1.126)
o S 0 S N~
M=—00 Taylor expansion Taylor expansion
_ 1 +oo PR 00 e—Rgns2 &2
Gspatial(T,1") = — E e~ Jh0 e4s? ds  (1.127)
o1 N—— . s N~
M=—00 Taylor expansion Taylor expansion

The extraction of two terms and the generalization to () terms is not carried out due
to the difficulty that arises from the Ewald’s integrals when we extract more than
one term with this approach. This is because we have the product of two Taylor

expansions and the integral resulted by this product become complicated.

But even so, in this subsection we have accelerated the spectral Green’s function by us-
ing Kummer’s transformation and summing efficiently the first asymptotic retained term
through Ewald’s method.

1.1.5 Option B.2. Approach of (2”77”): Polylogarithmic Functions.

This option consists of using polylogarithmic functions to write the asymptotic part when

we use the (2Z2) - approach. This alternative was studied in detail in [11].
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The idea is that the ) retained terms are written in a semi-closed form as polylogarithmic
funtions. The polylogarithm (also known as Jonquiére’s function) [16] is a special function

Lis(z) defined by the following series

> Lk
Lis(2 = 1.12
i ; o (1.128)

where s is the order and z is the argument. Using the notation, when more and more
terms are retained, more series with a higher order appear and more polylogarithms with

a higher order have to be summed. The formulation start from

~ Iod (kQ - k:%"O)dS —|2ZZm 4 koollz—2|  —jkem(z—2"
Ge(r,7 ~ 2d mz 27Tm (27rm)? 2(27m)3 S
O
Q@ z (q—2a)/12 2\a
datt k kZ, —k q—a _|2mm ot ik (!
2d Z Z ﬂ'm)‘l—i—l = 2(2(1-81 ) < a )fq—ae | d +kw0|| |6 Fkam( )
nr—foo q= O a=0
(1.129)
We can remove the absolute value as follows
" —jkgo(z—z') [ +° Q q+1 z (g—2a) 1.2 2\a _
e d kyo ~ (k3o — k) (qg—a
Ge(T;T) = 2 [mZ:l <qzz(:) (7rm)‘1+1 ;) 922a+1 a fq—a
+00 Q +19¢+1 % 1.(¢—2a) /12 2\a
2”"R+kz |z— z| 27m(w z') Cﬁl)q d kxO (kzo‘g'k ) qg—a
(o) 3 (L Uy (1
m q=0 a=0
o (B —kao ) |22 | L3 2 (a— :p)]
(1.130)

Using the definition of polylogarithm given by (1.128), CNJQ(F, 7) can be written as

~ e Jkwo(z—2") ditt & k‘(q QQ)(kgo k?)e

N —kgolz—7'| q—a
Ge(r,7") = — [ 20 Zﬂqﬂ STt ( " >fq—a

a

Q 1,q+1 = 1(q—2a)/12 2\a
. . (—1)9ttqe k (k3o — k*)* (q—a
Ligt1(z1) — efoolz=l E ol = 22(11_81
q=0 a=0

> fo—aLigs1 (22)]

(1.131)
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where
2 = e Tl i) (1.132a)

2y = e~ Flla=#|—j(e=a") (1.132b)

So, we have accelerated the spectral Green’s function by retaining @) terms in Kummer’s
transformation. These (Q asymptotic retained terms can be summed using this method as
a semi-closed form with polylogarithmic formulation. For more detail about the general
formulation see [11]. It is important to note that this development has been outlined in a
@ generic form for both approaches using the Lerch transcendent formulation for the first

one and the polylogarithmic functions as analogue for the second approach.

In addition to this expansion, we can consider an alternative approximation described

in [17,18]. This alternative is reported for second order terms but is not generalized.

The idea starts from the expansion of 7,,. We have that ~,, is

2 2 2 kl‘ 2 2
VT (ka2 iy 2k (Y

B <27rm> 1+ keod k2, — K? (1.133)

S\ )

u

The expansion of v, when v — 0 is

[ 2mm . kiod B k2 . k?:o n
Tm =g 2m Q(M)Q 2(@)2

d d (1.134)
_|2mm T k%d n k2,d n
| d O drm " dam
and thus the expansion of the exponential in the asymptotic term is given by
nm 24 | Kod|
P s (1.135)

We used the first two terms in our approximation [11] due to the third term, e~%/™ when
m — 400 does not improve the convergence. In [17,18] the first two terms of exponential
are also use and the third one results in additional terms by Taylor expansion of the

exponential. According to this, the final expansion of the exponential in the asymptotic
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terms is given by

e~ mlz=7 | oy o= | thaol|z—2'| (1.136)

and the exponential, resulted by the third term in the expansion of v,,, is used as follows

K2dlz—2| K d|z — 2| 1 [(k?*d|z — 2| S k2d|z — 2| s
e amml =14 - 14 - (217 71 — (=20 4
47t|m)| 2! 4r|m]| 3! 47 |m]| ( )
1.137
_1++§ 1 (k)2 —Z]\"
N n! 4m|m)|
n=0
Thus, the asymptotic term can be generally written as
+
L e L ~1 (k2d|z_zl|)n L [y
e =~ 1+ Z e |4
Tm Tm =0 n! 47T|m|
(1.138)

—+00 2 n
I DR 1<kdlz—Z’|> o |25 |22/

Ym o Vm S n! 4m|m)|

the new terms

It can be noted that if we consider the first term of this new expansion, which is 1, the

expansion of 7% is the same we have taken into account in [11].

The improvement that these terms incorporate is the next terms of the exponential
expansion. In addition, the following terms that are obtained in the expansion of ~,, will

result in more exponential expansions like the reported one.

This alternative improves the convergence of Green’s function when the observation
point is far from the source because near the source this new terms are negligible due to

the fact that contains |z — 2’| and near the source |z — 2/| — 0.

The formulation with this consideration can become complicated due to the number of
terms to take into account. In addition, it should be pointed out that far from the source
the spectral Green’s function without any transformation is rapidly convergent and for
this reason, the improvement in the case that we are interested in (near the source) is

negligible.

Because of that, we are going to detail the process following in [17,18] and show the
change in our notation produced by this additional expansion. However, we are going to

continue our formulation without taking into account these terms.
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According to this development, the second order approximation of Kummer’s transfor-

mation can be obtained as

d kyod?
2rm  (2wm)

1
—e€
Ym

—Ym|z—2| ~

2 _ 1.2 Y, )
. <1+ (k* — kgo)dlz Z‘>e]2’§[”+kzo|zz (1.139)

47|m)|

where for positive m is

d kpod? d kpod? d sgn(m)kgod?
_ — — = — (1.140)
2rm  (2rm)?|  2mm (2mm)2  2mm (2mm)?
and for negative m is
2 2 2
B d B kzod _ d N kzod _ d B sgn(m)kzod (1.141)
2rm  (2mrm)2|  2mm  (2rm)?2  2w|m| (2mm)?
and in general for positive and negative m is
2 2
d  ksod _ d  sgn(m)kzod (1.142)
2tm  (2mm)2|  2m|m| (2mm)?

. . _ — . .
Using this, %e ml2=2'| can be expressed as its second order expansion but now we use
m

the previous obtained terms in the expansion of third exponential.

ie_'ym‘Z—Z/‘ ~ d _ sgn(m) kxo d? 1+ (k2 — k?:o) dlz — 2| ef’%Terkwo“zfz’\
Ym 27|m)| (2rm)? 47t|m)|

_ d  sgn(m)kxo d? (k? = k2) d? |z — 2| N sgn(m) (k? — k2y) kzo d® |2 — 2|
27|m)| (27rm)? 2(27|m|)? 2(27wm)3

o~ | +so| 12—

(1.143)

where we have in [11] that the second order expansion of the Kummer’s transformation

is
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(1.144)

where z; = e 7 llz=2"1=3@@=2")] anq 29 = 7 llz=2"1+j(@—=a")] Now, with this alternative

approximation, the second order expansion of the Kummer’s transformation is

~ kel [ T4 (K2 —k2)) d? |z — 2| kypod?
- > |Z—Z | T x0 z0 3
G, {e 5 Liy(21) + ( 222 + (277)2) Lia(z1)

eala (K2 — K2 |2 — 2| keod?\ .
kzolz—2'| | & 20 ~ Ra0
+e !277 Lij(22) + < 2(27)? on)? > Lia(22)

(1.145)

As has been noticed, this procedure can be generalized for all terms presented in the
exponential expansion, nonetheless all these terms would be proportional to the distance
between the observation point and the source point |z — 2’|. In our case, we are interested
in accelerating the convergence of Green’s functions when the observation point is close

to the source and for this case, these additional terms would be negligible.

1.1.6 Option B.3. Approach of ( ) Summation by Parts.

In this subsection, we study an alternative to sum the remaining part using the summation
by parts technique [9]. In this case, the series G (7, 7) can be written as the sum of two

parts, one analytical and the other numerical but finite.

For this purpose, we start from (1.16)

Ge(r,T 2d Z

m;ﬁO

€—|%Tm+kzoy|z—z'| o~ Ikam(z—2')

k(q a) k?c /{:2 a d g+a+1
LS (1) ey

m=—o00 | ¢g=0 a=0

kyod? (k?* — k2,)d?
27rm (27rm)? 2(2rm)3

(1.146)

67| %Tm+kwo ’ |zfz’|e—]k:xm(:v—x )
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According to this, the asymptotic series that has to be accelerated is

e—jkzo(x—z’)

Ge(r,7) = ——7— [e’%'“"

fo @ (q—a) (1.2 2\a g+a+l
Dy q\ kyo (kzo — k) ([ d £, e~ ZP i) _ ghiolz—|
a 22at1 ™m 1

m=1 ¢q=0 a=0

S1

too @ q (¢-a) 1.2 12\a gta+l o
Z Z(_l)q Z(_l)a+1 <Z> 20 g;axj)_l d ) (Cfn> fq€_2T[|Z_Z |—j(z—2")]
Y

m=1 q=0 a=0

~~

So
(1.147)

As stated above, C:’e(F, 7) can be expressed as the sum of two series with the following

general form

7jkw0(xfz/) ’ ’
Ge(fy 77/) = eT [e—kzo\z—z ‘Sl - ekzo|z—z |SQ] (1148)

We name the factors, which are multiplying, F; and F_, respectively.

(g—a) 1.2 2\a q+a+1
q kx (k:pO —k ) d
Fy = (a) 0 s - /4 (1.149)
(g—a) ;.2 2\a q+a+1
_ q at1 Kgo (ko — k) (d
F = (-1)" <a)(_1) D2 p fa (1.150)

Applying the theory of the summation by parts technique (see Appendix A.1) reported

in [9], the general series S can be split into

400 Q@ q 27rm|z z/| M-1 Q q 27Tm|Z ZII
e d -2 e d 2
S = E E Fi i e:F] Tzim(,z’—m’) _ 2 : 2 : Fi . T;lm (z—z")
mata+ ma+a+
m=1 ¢=0 a=0 m=1 ¢=0 a=0
Sm—1

(1.151)
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Now, we modify Rjs in order to sum it analytically

“+oo Q q Qﬁm‘z zl 9 ( )
:F.] T (e !
RM—ZZZ Togatert S 0 1159
m=M q=0 a=0 1) (1.152)
e
Using the first order approximation of Ry; = G po f (+21 where
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(1.154)
Rjs can be summed as

Q q _QWdM‘Z_Z/‘ BIJ27\'M(x IE)

&
Ry = Z ZF:‘: Mata+1 1— €¢]7(m_$/)
q=0 a=0

(1.155)

and therefore, S is given by the summation of the initial numerical part and the obtained

analytical part.

M-1 Q ¢ _2mm,_ 271']” -27rM o
e d|zz|¢j2m“) || (a—a')
(1.156)

Using this general expression of .S, the series that we are interesting in S7 and So are
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M-1 Q ¢ _ZZm‘Z_Z/‘ Q q _27rd1W|Z_Z/| 27 M (LL’—J},)

[ - 2tm / e e_] d
— e * iR (z—a)
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So, we have accelerated the spectral Green’s function by retaining () terms in Kummer’s
transformation. These ) asymptotic retained terms can be summed using the summation
by parts technique as a sum of an analytical part and a numerical but finite part. It
should be pointed out that this development has been obtained in generic form using

either approaches.

A comparison between the different techniques reported in this section to sum the asymp-
totic series in this second form of applying Kummer’s transformation will be reported in
Chapter 3.

Additionally, in Chapter 3 we compare the improvement that implies the use of each
approach in the application of the spectral Kummer’s transformation and we analyse
the advantages of using one or the other strategy. In advance, we could suppose that,
depending on the case that we are interested in, it would be better using one or the other

approach.

As a general conclusion of this section, we have proposed for each approach three meth-

ods of summing the remaining part.

1. The first one is using Ewald’s method.

This alternative allows us to use the acceleration resulted by applying Kummer’s
transformation and sum efficiently the retained terms through Ewald’s method. It
provides that the Green’s function can be written as the summation of two rapidly

convergent components.

The relatively minor disadvantage of the original Ewald’s method could be that
its components require the evaluation of special functions like complementary error

function with complex argument and the exponential integral.
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Thanks to the proposed Kummer-Ewald technique, we can take advantage of the
rapidly convergence of Ewald’s components without the need to calculate all of
these special functions. This is because in this case the error functions have a real
argument and we only have to calculate one or two exponential integrals, not all
of them. These two advantages could result in a significant improvement of the
required computational time respect to the original Ewald’s method. Obviously,
these advantages arise from the combination of both Kummer’s transformation and
Ewald’s method.

2. The second one is using the Lerch transcendent and the polylogarithm.

These functions allow us to express the remaining part as a semi-closed form. As can
be noted, the Lerch transcendent and the polylogarithm are defined as an infinite
summation. In addition, these two functions are analogous, one for the first approach
and the other one for the second approach in the extraction of terms in Kummer’s
transformation. The difference between them lies in the factor k;¢ that appears in

the denominator of the infinite sum.

When this factor is null, the definition of these functions become the same. We
should take into account that the difference between both approaches is that in the
first one we consider k;o in the approximation of -y,, whereas in the second one we

disregard k.

On this basis, the two approaches become the same when k,g = 0. As we have
mentioned before, when the factor that differentiates the Lerch transcendent and
the poylogarithm is null, the functions are the same. As might be expected, this

occurs when kg = 0.

Thus, the approaches become the same when k;q = 0 as well as the Lerch transcen-
dent and the polylogarithm become the same. This is because they are the same

way to express in a semi-closed form the retained part of each approach.

3. The last one is using the summation by parts technique.

This transformation consists of accelerating the series on the basis of their oscillation
behaviours. It allows us to express the remaining series as a sum of an analytical
part plus a numerical but finite part. It is important to note that this technique has

been outlined for the extraction of () terms in both approaches.

The above conclusions will be proved through programming these techniques. Numerical

results will be shown in Chapter 3.
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1.2 Green’s Functions of Parallel-Plate Waveguides

In parallel-plate waveguide, the spatial Green’s functions can be formulated using the
classical theory of images with respect to two perfect electric conductors. This theory
implies that the actual system can be replaced by the equivalent system formed by the

combination of the real and the introduced virtual sources (images) [1].

In this section, we first obtain the different components of the outstanding Green’s func-
tions involved in this problem from the general 2-D Green’s function with 1-D periodicity.
Once these components are formulated, we apply Kummer’s transformation technique

(Subsection 1.2.1) in order to accelerate their convergences.

To obtain the outstanding components of Green’s functions it is advisable representing
the possible scenarios in this problem. The Fig. 1.2(a) represents the combination of the
actual source and its images when a magnetic charge is placed near the electric conductors.
Being a magnetic charge, the images have the same sign as the actual source. This
distribution is employed to evaluate the Green’s function of the magnetic scalar potential

Gw.

On the other hand, Fig. 1.2(b) represents the combination of the actual source and its
images when an electric charge is placed near the electric conductors. Being an electric
charge, the images alternate the positive and negative signs. This distribution is employed

to evaluate the Green’s function of the electric scalar potential Gy, .

The Fig. 1.3 represents the combination of the actual source and its images when a
magnetic current dipole mis is placed near the electric conductors in the z-direction (Fig.
1.3(a)), in the y-direction (Fig. 1.3(b)) and in the z-direction (Fig. 1.3(c)). Being a
magnetic current dipole, the images change the sign or orientation when the actual source
is in the z-direction. On the contrary, the images have the same sign as the actual source
when the magnetic current dipole is in the y-direction and in the z-direction. These
distributions are employed to calculate the dyadic components of the Green’s function of

the electric vector potential G%*, GYY and G3, respectively.

Finally, the Fig. 1.4 represents the combination of the actual source and its images when
an electric current dipole fs is placed near the electric conductors in the z-direction (Fig.
1.4(a)), in the y-direction (Fig. 1.4(b)) and in the z-direction (Fig. 1.4(c)). Being an
electric current dipole, the images change the sign or orientation when the actual source
is in the y-direction and in the z-direction. On the contrary, the images have the same
sign as the actual source when the electric current dipole is in the z-direction. These
distributions are employed to calculate the dyadic components of the Green’s function of

the magnetic vector potential G%*, GY and G%7, respectively.
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(a) Distribution of the actual magnetic charge ¢s and its images ¢; for a parellel-

plate waveguide.
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(b) Distribution of the actual electric charge gs and its images g; for a parellel-

plate waveguide.

Figure 1.2: Distribution of the actual and virtual sources. The width of the parallel-plate
waveguide in the x-direction is a and the images are distributed in pairs separated by a

distance of 2a. It is satisfied that g5 = ¢;.



1.2. Green’s Functions of Parallel-Plate Waveguides 48

+mi , -mi +ms |>-mi 2a +mi ' omi +Mi | +mi +ms | +mi 2a +mi ' +mi
R
 — >

2a

L
f
I

2
®
_"""""_é"""""""
®
®
®

7 7
2._Iv i._IV

(a) Actual and virtual sources produced by a mag- (b) Actual and virtual sources produced by a mag-

netic current dipole oriented in z-direction. netic current dipole oriented in y-direction.
: | |
1 1 1
' a 1 1
! 1 1
1 1 1
! 1 1
! 1 1
' 1 1
' 1 !
' 1 1
' 1 1
+Mi | +mi +ms [S+mi 23! +Mi ' +mi
(I N
! -
' ' 2a |
! | !
! ' |
' 1 1
! 1 1
i | i
1 1 !
| | |
i | |
i ; |
i . |

Z
?._I?

(c) Actual and virtual sources produced by a mag-
netic current dipole oriented in z-direction.

Figure 1.3: Distribution of the actual magnetic current dipole m, and its images m; for a
parellel-plate waveguide. It is satisfied that mgs = m;. The width of the waveguide in the
z-direction is a and the images are distributed in pairs separated by a distance of 2a.
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(¢) Actual and virtual sources produced by an elec-
tric current dipole oriented in z-direction.

Figure 1.4: Distribution of the actual electric current dipole fs and its images j; for a
parellel-plate waveguide. It is satisfied that j; = j;. The width of the waveguide in the
z-direction is a and the images are distributed in pairs separated by a distance of 2a.
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If we define the series Gy (7,7') and G_(7,) as the basis of the Green’s functions
involved in parallel-plate waveguide problems, the most relevant components are expressed

by the following spectral and spatial series

e Green’s function of the magnetic scalar potential

1 1~
Gw = —G4(F,7) = —G4(F,T) (1.159)
Ho Ho

e Green’s function of the electric scalar potential

1
Gy = —G_(7,7) = —G_(7,7) (1.160)
€0 €0

e Dyadic components of Green’s function of the electric vector potential
— x-Dyadic component of Green’s function of the electric vector potential
2 — G_(7,7) = eG_(F, ) (1.161)
— y-Dyadic component of Green’s function of the electric vector potential
GYW = oGy (7, ') = G (7, ) (1.162)
— z-Dyadic component of Green’s function of the electric vector potential
G¥# = oG4 (7, 7) = eG4 (7,7) (1.163)
e Dyadic components of Green’s function of the magnetic vector potential
— x-Dyadic component of Green’s function of the magnetic vector potential
G = oG (7, 7) = oG (7, 7) (1.164)
— y-Dyadic component of Green’s function of the magnetic vector potential
GY = wG_(7,7") = poG_(r,7) (1.165)
— z-Dyadic component of Green’s function of the magnetic vector potential

i =G (7,7) = poG_(7,7") (1.166)
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where the series C~¥+(F, 7) and G_ (7, 7) are going to be formulated using the general spa-
tial and spectral 2-D Green’s functions with 1-D periodicity. The spatial general Green’s

function G(7, ) is given by

1
G(F,7) = 5 Z HE (kR,y, e Ikwomd (1.167)

m=—0oQ

where Ry, = \/(z — 2/ —md)?2 + (2 — /)%

On the other hand, the spectral general Green’s function é(f, ') is given by

~ _7m|z 2|
~Ikam(z=2") 1.1
G(F,T 2d Z —e (1.168)

m=—0oQ

where kzm = ka:O + %Tm = ksm(9) + 27Tdm and Ym = \/W

The series G4 (7, 7) and G_ (7, ) are composed by the combination of two general 1-D
periodic Green’s functions with different sources. In the first one the source is (z/, 2’) and
in the second one is (—z’, 2’). In both cases, the period is d = 2a and 6 = 0° due to the
direction of the incident wave on the array. We use the following notation for these two

sources

Ry =/ (x — ' — 2am)? + (z — 2')2 (1.169)

Ro— =/ (z+2' —2am)? + (z — 2/)2 (1.170)

In the case of the function composed by the addition of the images, the spatial Green’s
function G4 (7,7) can be expressed as the sum of two general periodic Green’s functions

as

G, (7 Z HP) (kR 4 )e=ibeomm + 5 Z H (kR )e=ibeo2mmm

+o00
1
= Z 4—jH(()2)(k\/(aj —a' —2am)? + (z — 2')?) (1.171)

+ %H((f)(k\/(:c + a2’ — 2am)? + (z — 2')?)
J

Using Poisson’s formula, its alternative spectral é+(f, 7') series is obtained
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—+00

Galri) = 3o [

m=—00

677m|272 |e—jkx($—$') N e*’?m|zfz |6—jkx(x+z’)

Ym Ym

(1.172)
]_ oo e_wm‘z_zl‘

:EZ

m=—0o0

[e*ﬂ% (z—a') 4 g=ika (m’)}
Ym

where k, = ko + 273” = T and therefore v, = \/k2 — k? =/ (%)2 — k2. This series

can be rewritten by grouping terms as

~ 1R el kox jk k k
Gy (r,7) = 1a > [6 Hatelba® 4 g=IkaTe™] ”]
m=—oo Tm
T —ymle=2| 2 [ejk” +e jk”}
_ 1 S T ik (1.173)
4a = Ym 2
+oo —
1 é ﬁ/m‘z Z‘
= — Z eIk cos(kya')
4a e Ym

Due to the fact that this is an even function with respect to k,, the exponential e~7%z®
evaluated in m between (—oo, +00) can be written as 2¢,, cos(k,x) evaluated in m between

(0, 400). For more details see Appendix A.2.

According to this, G4 (7, ) is given by

6 ’Ym‘Z Zl

——————— cos(kgx) cos(kz)

>
"f (1.174)
Z

Gy (7, 7) = 4—’”

é ﬁ/m‘z Z‘

cos(kyx) cos(kzz')

where €, = 1/2if m =0 or €, = 1 if m # 0 (see Appendix A.2).

On the other hand, in the case of the functions composed by the subtraction of the
images, we have the sum of two periodic Green’s functions with different sources and

additionally, one of them is inverted. Thus, the spatial series G_(7,7) in this case is
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G_(r, Z HP (KR, )e=ibeo2mm _ Z HP) (KR, )e=ib=o2mm

+o0
= Z % D(ker/(x — 2 — 2am)2 + (z — 2')?) (1.175)
m=—00 J

— LH(()Q)(k\/(x + ' —2am)? + (z — z’)Q)]

The alternative spectral series G_ (7,7) given by the application of Poisson’s formula is

400 — v | 2— / — v |2 — /
G (77) = L S e oy P ks
’ da —~ | Ym Vi
+oo ] (1.176)
_ L y e [e—jm(zz—w') _ e—jmm')}
4a e Ym
This series can be rewritten by grouping terms as
400 —vm|z—2"
G riy=> 3 < - [emdtamites’ — gmikosgshar’
4a = Ym
+oo o 1a—y 25 [ Jkzx! _ —jkzx’}
_ L Z e~ mlz Z'g—jkzx I 16 _e (1.177)
da —~  Ym 2j
—Ym|z—2] .
Z 2]6 ek gin (k')
m——oo

Due to the fact that this is an odd function with respect to k,, the exponential e 7k=®
evaluated in m between (—oo, 400) can be written as —2j sin(k,x) evaluated in m between

(0, 400). For more details see Appendix A.2. According to this, C~;'+ (7,7) is given by

677”774'277",'

—+00
é,(F, ) = ﬁ Z 2j - (_2]')77 sin(k,z) sin(kyx')

(1.178)

e~ Imlz=7'|

- Z sin(kyr) sin(kzx')

where v, = k2 — k%2 = 4/ (%)2 — k2. As the series G (7,7) and G_(F,7) are slowly
convergent, it is important to apply some acceleration technique to improve their conver-

gences. For this reason, they are our starting point in the following developments.
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1.2.1 Application of Kummer’s Transformation

Once we have obtained the functions involved in parallel-plate waveguide problems, the
transformations applied in general Green’s functions will be also applied in this case. As
in the general case of 2-D Green’s functions with 1-D periodicity, when evaluating Green’s
functions of the magnetic and electric scalar and vector potentials, it is also necessary
to accelerate these functions [21]. The same techniques can be used in these problems
and, for instance, Ewald’s method was proposed in [22]. In [20], Green’s functions for

parallel-plate waveguide have been accelerated using Kummer’s transformation.

The difference in this case with respect to the general Green’s function is that kg =0
due to # = 0°. As we have mentioned before, if kg = 0, the two different approaches
considered in Kummer’s transformation become the same and therefore we can take the
advantages of each approach. All the proposed methods in the previous section can be

also particularized for k;9 = 0 to sum the remaining part.

In particular, in this section we continue applying the spectral Kummer’s transforma-
tion through the extraction of one, two, three and @} terms to the spectral parallel-plate
Green’s functions. Specifically, we focus on summing the asymptotic terms through poly-

logarithmic functions. Numerical results will be shown in Chapter 3.

e Extraction of one term.

The procedure to be followed is the same as in the previous section. First, we start

with the series G (7, 7).

~ —Ymlz—#|
Gy (r, 7)== Z ¢ cos (k) cos(kpa')
- 1 e—mlz—7|
= G4o(F,7) + p; Z cos(kgx) cos(kmx')T
~ e e B
= G4o(T,7) Z cos(kyx) cos(kzz') -
Tm o
m 1 a

o 2]

1R
_ ko ka N
+ . leCOS( ) cos(ko') ——F

a

Get
(1.179)

é+0(1’, 7) is the series in m = 0 where we do not apply the extraction. Thus, the

series ée+ has to be efficiently summed
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1 +o00 €_%|Z_z/|

Goy = — kx s(kpt! ) ——— 1.1
Get . Z cos(kyz) cos(ky') —— (1.180)

m=1 a

Applying the following trigonometric identity

cos(A) cos(B) = cos(4 — B) ;L cos(A+ B) (1.181)

G+ can be expressed as follows

_ 1 +o0 ef%|zfz’|
Cor = 5 Zl [cos(kx(a; — &) + cos(ka(z + x’))} —
m= (1.182)
1 +oo 6_%|Z_Z'| 1 +o0 6_%|2_Z/|
=5 Z cos(ky(z — x’))T +o- Z cos(kg(z + ZL‘/))T
m=1 m=1
Since k is defined as k, = ©*, ée+ is
+oo —Im 2| +oo —Im|z—2|
~ 1 ™m N € @ 1 ™m A € e
Ger = g D €08 (74 =) T T (Fytwtah) = —

In the knowledge that the summations in (1.183) can be analytically expressed (see

Appendix A.3) as follows

Jf cosiLn:L‘) e " = —Re {ln [1 — e(_z"’jx)] } (1.184)

m=1

Get can be written as

o | Re{ In 1 — =711~} } - Re{ In [1 - ¢~ Elle= -5t }]
! Re{ In [(1 — e_§[|z_zl|—j($—x')]) (1 _ e—g[z—z’—j(z+a:’)]):| }]

T or

(1.185)
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Now, we continue with series G_(7, 7).

~ 1 2 g—mlz—2]
G_(r,7) = " Z 677 sin(kyz) sin(kyz") (1.186)
m=1 m

Applying Kummer’s transformation

é 'Y’m|z 2|

G_(F,7) == Z sin(kyx) sin(kga")

—+o00 _ ! _mm
1 Ym|z—2'| | z—2'|
== E sin(kyx) sin(k,x') <e _C —

a mm

1 Tm p (1.187)
1 +oo 67—|z 2|
+ p Z sin(k;x) sin(kxx’)T
Geo—
Where we have to sum G,_ efficiently
~ 1 &= e~ Tatlz=7|
Geo = — Z sin(kgyx) sin(kyx) —— (1.188)
a m=1 o
Using the following trigonometric identity
A—-B)-— A+ B
sin(A) sin(B) = cos( ) 5 cos(4 + B) (1.189)
G._ can be expressed as follows
— 1 +oo e ﬁmlz P I
Ge_ = 5 2 [cos(kw(ac — ")) — cos(ky(z + x'))} -
oo _amp_y oo Camp,y (L190)
1 e a 1 e a
=5 cos(ky(x — 2')) ~ 5 cos(kz(z + 2))
m=1 m m=1
where k; = T* and therefore
“+00 _Tmmy, “+o00 _Tm |, )
1 , e o e 1 ™m , e~ 2=
Gom = g7 2 cos (Trte =) = - o S eon (@ ))
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Using the relation proved in Appendix A.3 and given in (1.184), G._ can be written

as
Go = 1] Re{ n [1 _ efgnzfzwfj(zfx’)]} } + Re{ In [1 _ efgnzfzwfj(m')]} H
27
1 — e Ellz=2'|=j(a+a’)]
= % Re{ hl (1 _ e_g[lz_zll_j(m_x/)]

(1.192)

Through Kummer’s transformation we have been able to accelerate the convergence
of the spectral series involved in parallel-plate problems by the extraction of one

term and the analytical sum of this one.

e Extraction of two terms.

In this part we are interested in the extraction of one more term in order to accel-
erate even more the convergence of these functions. The disadvantage is that the
following retained term is not analytical. Nevertheless, it is rapidly convergent and

its convergence is independent of the frequency (semi-static).

We are looking for the asymptotic terms of the part which is involved in the conver-

gence of the series
6_’777L‘Z_Zl‘
_ (1.193)
Tm

Using Kummer’s transformation proof in [11] the asymptotic expansion when we

extract two terms is

d kzod?

G, = ¢~ | F™ Hhso| 22| (1.194)

2tm  (2mm)?

Particularizing for the case of parallel-plate waveguides, d = 2a and 0 = 0° — kg =
ksin(0) = 0, G, is

’
L el

I — (1.195)

™m
a

As can be seen, it is the same as the term retained in (1.179) and therefore we
do not improve the convergence. According to the analysis done in [11] about the
particular case of # = 0°, the retained terms that contain the factor k.o are cancelled

and therefore there is no improvement when we extract these terms.
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Thus, in this case there is no improvement with the extraction of the second term
in the general Kummer’s transformation due to the cancellation of the new term

because of 8 = 0.

Even so, we can apply here the extraction of the terms explained in [17,18] and
reviewed in the subsection 1.1.5. Following this procedure, the asymptotic expansion

when we extract two terms in general case is

G| A B Kol | s
2m 2(27m)? (2mm)?

(1.196)

In the case of parallel-plate waveguide, d = 2a and k,o = ksin(f) = 0 because § = 0

s0 G, is given by this second order approximation

a k2a?|z— 7| _alml,
= 7+7 (&4 a
™m 2(mm)?

o)
3

Bl (1.197)

Based on this, the spectral Kummer’s transformation in Green’s functions of parallel-

plates waveguide can be applied.

First, we start with the series G (7, 7).

foo —2!
~ 1 e~ Ymlz—=#|
Gi(r, 7)== ——cos(ky k2’
+(7,7) " mz:o - cos(kyx) cos(kyx')
~ e~ Tmlz=7'|
= Go(F,7) Z cos(kgx) cos(kzx )7
Tm
~ e~ mlz=2| a k2a? |z — 2|
:G ’ ZCOS xl’ CcOoS k‘ml‘)[ . _<7rm+2(7rm)2>
k:g 2 - / mm !
L Z cos(kzx) cos(kya') <7Tjn + W) e o =
Gey

(1.198)
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The series éeJr has to be efficiently summed

a  k2a%|z—7| P’
™m 2(m)?

+oo
- 1
Gey = — Z cos(kyx) cos(kzx') (

= Z cos(kzx) cos(kya') ( a ) el (1.199)
™m
1 = ’ ]{72@2‘2—2/‘ —m‘z—z/‘
+ o mz:lcos(kx:c) cos (k') (2(7””)2) e a

The first series éel-{— is summed in the previous part (One term: 1.185)

! Re{ln [(1—6’;[22’1@1/)}) (1_6 allz=2=j(z+a’ ”)H] (1.200)

Gerp = —
el+ o

The second series éngr is the subject of study in this part. Using the trigonometric

identity written in (1.181), Gezy can be summed as follows

652-1- = l <=2 (W) 5 [cos(kz(:ﬁ — x/)) +COS(kx(x —|—3;’))} e*flz 2|

m=1
k2a|z — 2| <X e a7
_ i mZ::l cos(ky(z — 2')) —
k2alz— 2| +oo € I |z—7|
2n)? n; cos(ky(z + 2)) 3
(1.201)
where k; = % and therefore
_ — Tz
=~ z Z (&4 a
Geay = ‘ ZCOS( m—x))T
(1.202)

‘Z_Z ZCOS( :U—l—m))T
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In the knowledge that the summations in (1.202) can be expressed in a semi-closed
form (see Appendix A.3) as follows

+00 iy

Z en2 cos(nz) = Re {L12 |:€(—z+jac):| }

m=1

(1.203)

where Liz(z) is the second order polylogarithm of the argument z C~¥€2+ can be
written as

~ 2 a |Z — Z/| i N ’ ™ s ’
Geor = ———5— |Req Liz [675“272 G )]} + Re] Lio [675”'272 =izt )]}
(2m)?
(1.204)
Next, we continue applying the same procedure with the series G_ (7, 7).
e ’}/m|Z z |
Z sin(k,) sin(kya') ———
Tm
1 . . ’ e_ﬂymlz_zl a k2a2|2—2/| 7m| _ /|
= a Tnz::lsln(kxﬁ) Sln(kxﬂf ) (%n - % + W e Ta IFTF
too 2 2 /
1 . . a k“a®|z — z _mmy,_
+ ; Z sin(kyx) sin(kzz') <7Tm + 2(7r|m)2|> e a7l
m=1
Geo_
(1.205)
The asymptotic part that has to be summed is
oo 2 2 /
-~ 1 . . a k“a“|z — z _mmy
Go = amzlsm(k‘xx) sin(kyz') (m + W) e
a Tm /
== k Roa') (= ) e 1.206
Zsm »x) sin(kz") ——)e ( )

k2 2 - / mm !
+ - Z sin(k,z) sin(ky') ( 2(71;)22 ‘) e~ a7

The first series G;_ is summed in the previous part (One term: 1.192)

Gel— = 27

1 1 — e~ allz=I—i(@+a)]
. Re{ In (1 - P e (1.207)
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The second series Gea_ is the subject of study in this part. Using the trigonometric
identity defined in (1.189), Gea— can be expressed as follows

Gez- = % f (W) 5 [cos(kx(x — ') — cos(ky(z + gj/)):|e_7|z 2|

— 2(mm)?
k2 _ g oo -T2
= (22";)2 dl mzjl ¢ 3 [COS(k‘m({L‘ —a')) — cos(kz(x + ac'))]
k2a|z — 2| <X e "o lr
_ i mzzjl cos(ky(z — 2')) -
Ka|z— 2| e~ a7l

(1.208)

where k; = T and therefore

~ \z—z e~z
G =8 (e )
2 cos (x —2') 3
_Kalz—4| Zcos( Hx))ea/
m2

(1.209)

Assuming that the summations in (1.209) can be expressed in a semi-closed form

(see Appendix A.3) by using (1.203), Geso— can be written as

Re{ Lis [efgnzfzwfj(wfx')]} } _ Re{ Lis [efgnzfz'w(m’)]} }]

(1.210)

~ kra|z— 2|

Cor- = 52

This can be an alternative to improve the convergence of Green’s functions involved
in parallel-plate waveguide problems using only the second order approximation in
Kummer’s transformation. Nevertheless, these new terms will be not very significant
when the observation point is near the source. The acceleration of the Green’s
functions in this particular case is the most interesting problem for us due to the
fact that they are slowly convergent. For this reason, the new terms that appear not

only here but also in this alternative extraction are negligible, as discussed in 1.1.5.

e Extraction of three terms.

To improve the convergence with respect to one retained term, we have to follow
the development done in [11] when we extract three terms. The asymptotic term in

general spectral Green’s function is given by
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— the option A: k;,, - approach

~ 1 k2 TR
Cm = (Ikzm! " Q\kxml?’)e S (21

— the option B: (%Tm) - approach

Gpm =

(1.212)

d . kx0d2 (kQ_k?cO)dg €—|27’%+k10||z—z/|
2tm  (27wm)? 2(27m)3

Particularizing for the case of parallel-plate waveguide, d = 2a and 6 = 0° — k9 =

ksin(f) = 0, the two previous alternatives become the same and G, is

k2a3

Gp =

a e el (1.213)

m T 2(mm)?

Therefore, we can apply Kummer’s transformation to the spectral parallel-plate

Green’s functions. First, we start with the series G (7, 7).

too —z
~ 1 Y |z—2']
Gy(r,7) =~ Z S cos(kyx) cos(kzx')

a Tm
m=0
1 =
= Go(7,7) Z cos(kyx) cos(kyx')

m 1

—Ym|2—2 | kz 3
_ F ) € @ a — IR |2
- Z cos(kyx) cos(kyx )( - — <7rm + 2(7rm)3) e )

1 a k2a3 m ’
- k$ kCC ! e - ~a a ‘Z z ‘
+ E COS( .T) COS( X ) < + ) e

mm  2(wm)3

e—vm\z—z’|

Tm

m=1
Get
(1.214)
The asymptotic part that has to be summed is
oo 2.3
~ 1 ’ a k“a _mm /|
Gey = amzzjlcos(kxx) cos(kyx') <7Tm + 2(7rm)3> e Tatlz—z
1 <X a
== Z:lcos(ka;x) cos(kzx') (%> e o =7 (1.215)
m—

1 = k2a,3 mm ’
+ p mZZI cos(kyx) cos(kyx') <2(7rm)3> e~ fale=7
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The first series ée1+ is summed in the previous part (One term: 1.185)

1 Re{ I [(1 — -l 1-se-al) (1 - e—gnz—z’|—j<x+x'>})} }] (1.216)

Gers = —
el+ o

The second series 6624’_ is the subject of study in this part. Using the trigonometric

identity written in (1.181), Geot can be summed as follows

Geor = 1 (k:a) 1 [cos(kx(a: —a')) + cos(ky(z + x’))} e a7

3
a—~ 2(mm)3 ) 2
/~c2a2 +oo e—%|z—z’|
=1 Z 3 [cos(k:x(:n — ) + cos(kz(z + x'))]
" o (1.217)
k2a2 , 677\272 |
= 1 mz_:l cos(kz(z —2')) 3
k2a2 +oo . e—%\z—z’\
= mZZI cos(kz(z + 2)) 3
where k, = % and therefore
_ k22 +oo m ) 67%|zfz/|
Gers = 473 — o8 (T(Q: - )) m?3
e o (1.218)
k2a2 , e_T|Z_Z |
+ s 2. cos (—(ZE +z )) 3

In the knowledge that the summations in (1.218) can be expressed in a semi-closed

form (see Appendix A.3) as follows

;22 e;: cos(nz) = Re {Lig [e(*” ”)} } (1.219)

where Liz(2) is the third order polylogarithm of the argument z, éeg+ can be written

as

~ k2a?
Ge2+ - 47T3

(1.220)
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Next, we continue applying the same procedure with the series G_ (7, 7).
e 'Y’m|z z |
Z sin(kpx) sin(kpr') ———
Tm

1 _')’m|Z—Z| 2.3 o ,
== Z sin(k,z) sin(kyx') c - <a + /{:a3> e~ a1l
a Tm mm  2(7m) (1.221)

m=1

]. k2 3 mm !
+ - Z sin(k,z) sin(kyz") (ﬂc:n + 2(7”(;)3) e~ a7l

J/

Ge—

The asymptotic part that has to be summed is

+o0 2 3
~ 1 a k*a mm,
e =~ Y sin(kr)sin(kpa’) | —— + o | e 0 7
G , sin(kzx) sin(kzx’) < > e

— mm  2(7wm)3

- Z sin(kyx) sin(kzx') ( a >e Tl (1.222)
™m
too 2.3
1 . . k‘ a _mmy
+ p Z sin(k,z) sin(kyz") <2(77m)3> e fale7
m=1
The first series éel_ is summed in the previous part (One term: 1.192)

1 — e~ allz=I—ji(z+a)]
Req In PR P oy (1.223)

The second series éeg_ is the subject of study in this part. Using the trigonometric

~ 1
Ge1o = —
el o

identity defined in (1.189), G.a_ can be expressed as follows

- T 2,3 / 1 e
Gea— = clzmzjl (2(k7rm)3> %[cos(kgc(x—m)) —COS(k$(x+x>):|e a 17—

kgag +oo

L Py
a

e
=13 1 3 [cos(kx(x —a')) — cos(kz(z + x'))]
k2a? X e 220
kol — ) S —
3 mzzl cos(ky(z — ")) 3
E2q2 I e~ a7l
— k, !
= cos(kx(z +2)) 3
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where k; = % and therefore
~ k22 IX ™m ; el
Gea— = T Z_:l cos (—a (x -z )) 5
’j; o (1.225)
k2a? m e~ o 1=
- Z cos (—(:U + x'))
43 — a m3

Assuming that the summations in (1.225) can be expressed in a semi-closed form

(see Appendix A.3) by using (1.219), Ges— can be written as

Re {ng [e Z{lz—2"|—j(a— w)]] } _Re{hg [6 2{lz—2"|—j(a+a’ >1} H

(1.226)

~ k2a?
Gorm ="
/I

e Extraction of () terms.

The idea in this subsection is to generalize this acceleration technique to the extrac-

tion of ) terms. The procedure is the same as the followed previously.

For this purpose, we start from the equation (1.8) where we have obtained the @

retained terms for the general 2-D Green’s function with 1-D periodicity.

~ H (2n+ 1 qu _“ﬁLmH _ /|
Gm = Z T e (1.227)
q 0 rm

Now, we particularize this expression of the retained terms to the case of parallel-

plate waveguide, that is, # = 0° — k;0 = 0 and therefore Ky, = ™*.
Q 2
2 1 k=4 wm /
E ntl), i (1.228)
2q q! (nm) q+1
:0 a

Using this expression of the asymptotic retained part, we can apply Kummer’s trans-

formation to the spectral parallel-plate Green’s functions. First, we start with the
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series G (F, 7).

- 1 X e—mlz—2|
Gy(r,7) =~ Z —— cos(kyx) cos(kyz")
a Ym
m=0

~ —Ym|z—2|

= Go(F,7) Z cos(kzx) cos(kya') S
Tm
m 1
~ —ymlz— ZI 2 k24
- ) e (2n+1)
= G4o(F,T Z cos(kyx) cos(kpx') | ———— Z 214! 7rm)2fI+1
q=0

oo Q -1
1< I—(2n+1 ;24 _amp,_,
+ ; g 1cos(kz:L') cos(kyz') EO [0 ). e~ a1
m= q=

2q+1
2‘1(]' (%) q+

Gey
(1.229)

The asymptotic part that has to be summed is

Q —1 2
Hq: (2n+1) kq _Tm
€+— E cos(kyx) cos(kz2') E L 02‘1q! ‘(M)Q'ﬁ_l e~ alr=7
q=0

a

IR 2n + 1)

q gl
@ = 2q

Z cos(kyx) cos(kya') _mm |, .
(& a
2q+1 m2da+1

(1.230)

Using the trigonometric identity written in (1.181), ée+ can be summed as follows

n 2q g2a 20 | cos(ky(x — ') + cos(ky(x + ')
e+_ZH L2+ 1) k | }

24 q' m2q+1 2m2q+1
m=1

Ly
a

e

e

ZQ: 1= 2n +1) k24 20 £ [cos(k:x(:v —2')) + cos(ky(z + :c’))}

2q+1 q! x2q+1 m2a+1 €
m=1

(1.231)

In the knowledge that the summations in (1.231) can be expressed in a semi-closed
form (see Appendix A.3) as follows
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Jf L cos(nz) = Re {Li2q+1 {e(*zﬂx)] } (1.232)
m=1 n2q+1

where Liggy1(2) is the (2¢ + 1)-th order polylogarithm of the argument z, Ge, can
be written as

G MIZh@n+1) k2 a2
et = Z 24+1 g T r2q+1
q=0

Re{ Ligg41 [e—i[lz—z’l—j(x—w’)l} }
—i—Re{Liqu [e llz=2!|=j(z+a’ )}] H

Once we have summed efficiently the asymptotic part of é+, we apply the same
procedure to the series G_ (7, 7).

(1.233)

“+o00

G (7.7 1 e~ mle—% n(k (oo
_(r,7) = ; Z:l - sin(kyx) sin(kya')
m=
+oco _ _ Q -1
1 e~ mlz=# [T¢Z,(2n + 1) k24
== Z sin(kyr) sin(kyx') [ — Z n=0 5T
¢ =t m =0 21¢! (%) !
e’ii"l“’ll (1.234)
H 2n+1) qu _m|z_zl‘
+ - Z sin(k,x) sin(k,x') Z 2q g (m)qu e a
m 1 a
Ge-

The asymptotic part that has to be summed is

+oo Q -1 2
1R o [[ion+1) K |z
== Z sin(kyz) sin(kzx') Z 21 g1 . (m)qu e
m=1 q=0 a
1 ZQ: HZ;B(QTL—&— 1) Z sin(kyx) sin(kza') e
= u p 29 q' 2q—|—1 m2q+1

(1.235)

Using the trigonometric identity written in (1.189), Ge_ can be summed as follows
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Q701 (20 1 1) K o2 £ | coslhule — @) — cos(ha(z +a7))]

5o sy
Gew = ) S e 2m20+T ‘
q=0 m=1
Q rra-1 2 2 T [cos(k (z — 2')) — cos(k (az+$'))}
“Lon+1) k2% g2 . v o
- Z 1_[712(6)1&1”!+ ). 7r2qurl m2q+1 el
q=0 A m=1
(1.236)

Assuming that the summations in (1.236) can be expressed in a semi-closed form

(see Appendix A.3) using the relation given in (1.232), G.— can be written as

& _N~Ilchen+1) K
e- Z 20+1 ¢l " r2q+1

Re{ Lisgs1 [efgnzfzwfj(mfx/)]} }
- Re{ Ligg+1 {e—ﬁ[lz—z/l—j(wﬂ’)}] }]

In order to summarize, in this section we have accelerated the functions involved in the

=0 (1.237)

evaluation of Green’s functions in parallel-plate problems. The acceleration technique that
has been used for this purpose is the spectral Kummer’s transformation. It is important

to note that this technique has been reported to the general extraction of Q) terms.

Thus, the ) asymptotic retained terms have been expressed in a general form as the
summation of polylogarithmic functions which need to be numerically evaluated but are
rapidly convergent. This implies a significant improvement thanks to the possibility of
particularizing this general technique to the number of terms that we need in each case,

as will be shown in Chapter 3.

In addition, it is important to highlight that the polylogarithms that appear in these
terms are independent from the frequency, so that, in problems that require a frequency
sweep, they do not have to be evaluated at each frequency point. This implies a significant

reduction on the computation time in these common problems.

As a general conclusion of this chapter, we have attempted to improve the convergence
of the 2-D Green’s function with 1-D periodicity as a continuation of our work developed
in [11] and apply the acquired knowledge to accelerate the series involved in the practical

case of parallel-plate problems.



Chapter 2

The 2-D Green’s Functions With
2-D Periodicity

The solution of electromagnetic problems in periodic structures, as has been mentioned
previously, requires the efficient computation of the periodic Green’s functions. In this

chapter, we continue dealing with the 2-D Green’s functions but with 2-D periodicity.

The 2-D homogeneous Green’s functions with 2-D periodicity are the basis of the func-
tions involved in rectangular waveguides and 2-D cavities problems. These functions can
also be used to express in closed form the nonperiodic Green’s functions of multilayered
media as a linear combination of spherical and cylindrical waves in homogeneous media [2].
Because of this, the problem of accelerating the evaluation of the periodic Green’s function

is addressed here for 2-D configurations.

This chapter is organized as follows. Section 2.1 shows all the theoretical development
required to formulate the spatial and the spectral 2-D Green’s functions with 2-D period-
icity. This formulation has been obtained for both general scenario and particular scenario
of phase-shifted array. We also obtain the gradient of the 2-D periodic Green’s functions
with 2-D periodicity that will be useful in future studies when the integral equation tech-
nique will be used for the analysis of microwave devices including dielectric components.
The series involved in the computation of this particular Green’s functions can be written
either as spatial infinite series or as spectral infinite series and can exhibit a very slow
convergence. For this reason, once we have formulated these functions both in spectral
and spatial domain and their gradient, we apply different acceleration techniques for the
efficient computation of these periodic Green’s functions. Due to their versatility and good
compromise between accuracy and efficiency, the increasingly used acceleration techniques

are Ewald’s method and Kummer’s transformation.

69
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Thus, in Section 2.2 we detail the formulation needed to apply Ewald’s method to the
2-D Green’s function with 2-D periodicity according to [2]. This technique is also applied
to the components of its gradient. In addition, we review the detail about the estimation

of the splitting parameter for this case.

To compare different techniques of acceleration, in Section 2.3 we show the mathematical
formulation involved in the application of Kummer’s transformation. Here, we suggest two
different strategies to extract the asymptotic terms in this technique. According to this,

we outline a study about different procedures to calculate the retained part.

Finally, in Section 2.4 we apply the acquired knowledge about this general Green’s
function to rectangular waveguide and 2-D cavity problems. In this regard, we carry out
the mathematical development to obtain the Green’s function of the magnetic and electric
scalar and vector potentials involved in cavities and waveguides problems. To accelerate

the convergence of these series, we apply Kummer’s transformation.

Numerical results from the formulation and the techniques proposed in this document

are shown in Chapter 3 and the conclusions are summarized in Chapter 5.

2.1 Green’s Functions and the Gradient of Green’s Func-

tions

In this section, we formulate the spatial and the spectral 2-D Green’s functions with
2-D periodicity. This formulation is obtained for both general scenario and particular
scenario of phase-shifted array. The case of general scenario can be useful because it can
be particularized according to the required topology of particular problems. On the other
hand, the case of phase-shifted array can be widely used in rectangular waveguide and

cavity problems, which is our intention.

In both cases, the 2-D periodic Green’s function will be expressed either as spatial
infinite series or as spectral infinite series. It should be noted that these series exhibit a

very slow convergence.

Moreover, in this section we also obtain the gradient of the 2-D periodic Green’s functions

that will be useful in future studies when the integral equation technique will be applied.

2.1.1 Formulation of Green’s Functions

Let us consider a two-dimensional spatial array of line sources with 2-D periodicity on x

and y-directions which is parallel to the z-direction (see Fig. 2.1). This array is located
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Figure 2.1: Physical configuration of a 2-D infinite distribution with 2-D periodicity on =

and y-directions of line sources which are infinite on z-direction.
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Figure 2.2: Physical configuration of a 2-D infinite distribution with 2-D periodicity on x

and y-directions of phase-shifted line sources which are infinite on z-direction.

in an homogeneous media. Consider also, the case of a two-dimensional infinite array

of phase-shifted line sources located at (z',y’) (see Fig. 2.2). With these scenarios as

a starting point, we would like to determine the radiation at an observation point (x,y)

from these periodic geometries.

The notation that we are going to use is:

e Position vector for observation point: p =z + yy

e Distance between the observation point and the source: |p — p'| = |Azz 4+ Ayy| =

[(z —2")z + (y — y')7|

e Basis of periodicity: a1 = a1,% + a1yy and a2 = a2, + ag,y
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e Spatial shift of sources: ppmn, = may + nas

e Position vector for line sources: p'+ ppn = (2' +maiy +nag, )T + (Y +mary +nasy)y

Formulation of the Spatial Green’s Function
Now, the formulation developed in [11] for the 2-D Green’s function with 1-D peri-
odicity is extended to the computation of the double series involved in problems with

2-D periodicity. First, the formulation of the spatial Green’s functions is obtained.

In [11] it is reported that the 2-D Green’s function in the spatial domain for just one

line source located at (z/,y’) is

1

G(p.p) = 15 (bR) (2.1)
where R = |(z — 2)Z + (y — ¢/)g| is the spatial distance between the observation

point and the source. By superposition theorem, the Green’s function produced by

a two-dimensional infinite array of line sources can be expressed as

“+oo “+oo
_ 1 —iFwo-B
G(p, p/) = @ Z Z HE)Z)(kSmn)e JkwoPmn (22)

where Sy, = |p— P’ — Pmnl is the spatial distance between the observation point and

the infinite line sources. Using the previous presented notation, Sy, is

S = |AzE + Ayg — (may + nas)| = [(z — ')z + (y — y')§ — (may + nas)| 2.3)
= |[z — 2’ — (mai, + nag)]E + [y — ¥ — (mayy + nagy)y|

and ko is the projection on the x — y plane of the wavenumber vector of a wave

incident on the array.

kwo = ksinf (cos¢ & +singy) = ksinf cosp & + ksinf sin gy (2.4)

Therefore, Ewo - Pmn 1S

kwo - pmn = (ksinfcos ¢ & + ksin@sin ¢ §) - (may + nas) (2.5)
= kgo(maiy + nagy) + kyo(maiy + nagy) '

The series obtained in (2.2) is the spatial representation of the 2-D Green’s function

with 2-D periodicity for a generic case. If we are interested in the special case of
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two-dimensional infinite array of phase-shifted line sources, the vectors a; and ao
have to be particularized as a; = d1Z and as = dogy. According to this, the spatial
Green’s function is (2.2) where

Spn = |(x =22+ (y — y)§ — (md1& + nda2g)| = |(x — 2’ — md1)E + (y — ¥ — nda2)J|

= \/(m—x’—md1)2+(y—y’—nd2)2

(2.6)

and

kw0  Prm = (ksinf cos ¢@ + ksin 0sin ¢9) - (mdy@ + ndsy) 27
= ksin 6 cos ¢ mdy + ksin 0 sin ¢ ndy = kyomdy + kyonds

The spatial formulation is extremely slowly convergent, as will be shown in Chapter

3, and therefore its spectral representation will be obtained.

Formulation of the Spectral Green’s Function

From the spatial representation of the 2-D Green’s function with 2-D periodicity
obtained previously, we obtain the spectral representation by applying Poisson’s

formula.
The Sommerfeld identity for 2-D cylindrical radiated fields is given by

1 | [ e T
4s
ZjHéz)(kR):— /0 IR (2.8)

27 S

Using the spatial definition given in (2.2) and the Sommerfel identity

[e’¢) +oo
1 e
o) = SN HY (kS e e pmn (2.9)

m=—0o0 nN=—0o0

we can write the spatial series as

+oo +oo

Gpi)=5 S

m=—0o0 N=—0o0

_ o _Sgnn52+k722

_jka'ﬁmn € 4s

e —ds (2.10)
0 S

Now, Poisson’s formula provides an alternative series for the computation of (2.2) in

the spectral domain. Poisson’s formula for the case of 2-D non-orthogonal mapping

in the Fourier transform is detailed in Appendix A.4. It could suggest that the

generic 2-D Poisson’s formula is
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+o0 400 o
> Z flmar + na) = ) Z f< WZHAn(gxal))
(2.11)
Or in x — y subspace
+o0o +o0o
Z Z f(maiy + nage, mayy + nagy)
e (2.12)
o= 27
A Z Z ( (magy — naiy), Z(—maggC + nalx)>
m=—oo nN=—oo
where f(ky, k) is the Fourier transform of the function f(£;, &), that is
~ too  ptoo . )
Pk ky) = / F(&1, &)™ M1 dgydey (2.13)
—0oQ —0o0
From the equation (2.10), we identify terms so we can write
+o0
e + nae, many +na) = b 3 S e Talrnetna)bones o)
m=—00n=—00
%0 e*[(I*f*(malz+nagz))2+(y*y/*(maly+"a2y))2}32+fj22
X / ds
0 S
(2.14)
And therefore f(ky, ky) can be written as follows
=€)+ -y @)+ ,
f ke, k: / / dé1d€y x / e~ IFkz0€1 o —=7kyo&2
s
. e—szfle—]kyEQ ds
(2.15)
where we have to replace k, = 2 (masy — nayy) and ky, = ZF(—mag, + nay).
According to this, we can define kyp,, and kypy, as
2
kymn = kzo0 + ks = kzo + Z(magy — Naiy) (2.16a)
27
kymn = ky() + ky = kyo + —(—maggc + TLCLla;) (2.16b)

A
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and then f(k,, ky) is

1 ﬁ ! 2 2_.k
f kxak dfldfgx dsfe432 e (z—a'=£1)" 5" —jkamn&1
s (2.17)

2 .
e_(y_y/ _62) 52 —J kynLngZ

Now, we try to find the evaluation of the &-integrals in a closed form using the

following formula
+oo 2
/ L I g (2.18)
o a

For this purpose, we define I; and I3 as the integrals of (2.17) that depend on &

and &9, respectively

+0oo / 2.2 .

I = / o2 =€)’ jkamnéa ¢, (2.192)
—0o0
+oo / 2.2

I = / o~ (V' ~©) jkymn&a e, (2.19D)
—o

If we proceed, the relation (2.18) leads to

+
I = / OO e—(a:—w’)252+2(00—$')5182—61282—jkxmn§1 d&,

—0oQ
2 AW/ .
e 8 &62+(2(x — 2')s” — Jkymn) &
()22 a‘
— ¢ (@=a)"s / e b dé
—00
2(x—a’)s— kzmn zmn2
_ ei(xix/)Qsz 126( ( ) i W [T Me jkzmn(z—a') k452
S

) kzmn?
— 1 e—Jk:cm(z_x/)e* x4TSn2n
52

where a = 5% and b = 2(x — 2)s% — jkzmn have been identified. Equivalently, the

. ’ kymn>
_[2 — \/fejkymn(yy )efyALT (221)
S

So, interchanging the order of integration and replacing I; and Io by the previous

(2.20)

integral Is is

results, f(kq, k,) remains
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~ 1 co T . _k 2 e . 7kymn2 2 1
fka, ky) = 5= = e Hhamn(z=a") = RIS [ 2 emkymn (=) o T 07 = ds
» VY 92 2 2
T Jo s s s

(2.22)
If we define k,,,, as
- - 2w _ . .
Emn = kwo + " [m(ag x 2) +n(z x ay)]
2 2
= (kg0 + kyoy) + —W(magy — nayy)t + —W(—magx + naiz)y
A A
2 2
= (kazO + Zﬂ-(ma2y - naly)) T+ (kyO + Zﬂ-(_ma&x + nalx)) :g = ka}mnf% + kymn@
(2.23)

the exponentials can be merged into
e—jkxmn(z—x’)e—jkymn(y—y') — e—j[kwmn(z—$,)+kymn(y_y’)] — e_jicmn'(ﬁ_ﬁ/) (224&)

_ kxan _ ky7nn2 _ (k:crnn2+ky7nn2) _ |Emn|2

e T aS e T —e 12 = as2 (2.24D)

and f(kg, ky) can be rewritten as

~ 1 .= o (1 Emnl?-k?
[k, ky) = §e*]km"'(p*p )/ 3¢ 2 ds (2.25)
0

Now, if we apply this change of variable s’ = 1/s, the limits change s =0 — s’ = oo,

s =00 — s’ =0 and the differential remains ds = —s2ds’.
7 1 g oy [0 8 _UEmnPoi®)s?
Fllea, y) = ek t? p>/ = T g (2.26)
o0

Next, we proceed as follows

~ - o, 0 —_ 9|k 2 _ g2 B2 p2y4/2
f(kx,ky) _ ;ejkmn'(Pp)/ (—S/) ] 2(|km1| k ) ) e,(\kmrﬂfk)
0o
B 12 32y4/2/0 _ 2.27
4 B T Sl

. — 3 dS/ — e_j/;‘mn‘(ﬁ_ﬁ,) — 3 — — 5
2(|kmn|” — k2) |Fnn|” — K |k |” — K



2.1. Green’s Functions and the Gradient of Green’s Functions 77

Once f(k‘x, k,) has been obtained, the spectral representation of 2-D Green’s function

with 2-D periodicity can be written as a function of J}V(kx, ky)

I e—Ikmn-(p—p')

+00
G(p.p) = |Wa2‘ Z Z F(ka, ky) Z Z TR (2.28)

=—X0N=—0o0 m*—oo n=—oo
where k,,, is defined as

- 2
Fomn = Fuo + Zﬂ [m(az x 2) +n(z x a)] (2.29)

and A is the area of the unit cell of the 2-D lattice

A= ((_11 X (_12) cZ= ’(_11 X C_L2| = A1202y — G201y (2.30)

The series obtained in (2.28) is the spectral representation of the 2-D Green’s func-
tion with 2-D periodicity for a generic case. If we are interested in the special case
of two-dimensional infinite array of phase-shifted line sources, the vectors a; and
az have to be particularized as a; = d1& and as = doy. In other words, a1, = dj,

aly == O, a9y — 0, azy = dg (see Fig. 2.2).
According to this, the spectral Green’s function is (2.28) where

A= |C_Ll X C_L2| =dy - ds (2.31)

and

Emn = kwo + Z [mdgx + nd1g] = ksinf cos ¢z + ksinfsinp y + Z [’I’I’Ldgl‘ + nd1 9]

2w 2
ksinf cos ¢ + Amd2> <k sin @ sin ¢ + an1> 7

1 da

27Tm R 2mn\ .
xO +— )+ k?yo + df Yy
2

<’fsm9c:os¢+ dm> &+ (ksin&sinqﬁ-ﬁ-m) j

(2.32)

This spectral formulation exhibits a better convergence than the spatial one, as
will be shown in Chapter 3. Nevertheless, it could be possible to obtain faster

convergences through applying mathematical methods of series acceleration.
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2.1.2 Formulation of the Gradient of Green’s Functions

Once the spatial and spectral Green’s functions have been obtained, we are interested in
the gradient of these functions. It will be necessary to formulate the integral equations
where electric and magnetic currents appear in the same problem coupled by differential
operators. In this application, not only the potential but also the gradient of the periodic

Green’s function is required.

The gradient of spectral and spatial Green’s functions is obtained by applying the gra-
dient operator to the functions (2.2) and (2.28).

Formulation of the Spatial Gradient of Green’s Function
To obtain the spatial representation of the gradient of 2-D periodic Green’s function

we start from the spatial series (2.2)

1 I

400 B
S Y B (kSp)e o (2.33)

m=—00 N=—00

Gwﬁ@:@

and we use the 2-D gradient operator

:aGmﬂxj+am@ﬁyg

R
VG(p,p') D 9y

(2.34)

As can be noted, we need the partial derivatives of the function of several variables
with respect to each of those variables. Due to the present symmetry in Green’s
function, we only demonstrate the partial derivative of this function with respect to

x. So, we obtain the partial derivative with respect to y by analogy.
8G(ﬁ7 15/) a 1 = = (2) - 'l_cw ‘Pmn
T "o\ 2o 2 S m)e e 25
m=—00 Nn=—00

Making use of the following relation

oHy) (2)

b =) (2.36)

and remembering that S,,, is

Smn = |[x — x’ — (maiz + nagy)|® + [y — y - (maiy + nagy)]y|
(2.37)

= \/[33 — 2’ — (maie + nag,)|?> + [y — ¥’ — (mayy + nagy)|?
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aGg;’ﬁ ) is calculated using the chain rule as

9G(p, Ix .
L{E 4] Z Z k‘Smn Gkwo-Pmn

' —k 2 [z — 12 — (may + nazy)]
7 \/ [z — &' — (maiz + nag)]? + [y — Yy — (may, + nagy)|?

“+o00 “+o00

—k‘ ZL‘ . — (mam + nagx)] (2) — kw0 -Pmn
43 >y - H{Y (kS ) e Ikwo P

m=—00n=—o0
(2.38)
Proceeding in a similar way for the other component, %’Z’ﬁ/) is
0G(p.7) _ 1 N~ N~ —kly—y = (mayy +naz)] po) o ks
Z Z S 1 (kSmn)e

(2.39)
The gradient of the spatial 2-D Green’s function with 2-D periodicity can be written
as
00 B
VG p, kSmn) —Jkwo Pmn
T4y m;oo n_zoo 5 (2.40)

x {[z — 2’ — (maiy +nag)| - &+ [y — y' — (maiy + nagy)] -}

Formulation of the Spectral Gradient of Green’s Function
To obtain the spectral representation of the gradient of 2-D periodic Green’s function,

we start from the spectral series (2.28)

e—ikmn(p—p")

+o00
Z Z (2.41)

m—foon—foo |kmn| — k2

and we use the 2-D gradient operator given by (2.34). We need the partial derivatives
of the function with respect to each of those variables. As said before, due to the
present symmetry in Green’s function, we only demonstrate the partial derivative of

this function with respect to . So, we obtain the partial derivative with respect to

9G(p.p) _ 0 ( 1 *i:” *2'0 e—jkmn~<p—pf>> o)

y by analogy.

oz dr\ A mn|” — k2

m=—o0onN=—oo

where
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K - (ﬁ_ ﬁ/) = (kxmni + kymng) : [(.T - x/)ii + (y - yl)g] = kzmn (37 - l‘/) + kymn (y - y/)

~ (2.43)
and then, %’;’ﬁ/) remains
0G(p,7) 0 (1 &8 IR edhemn(e=a) gmikymn(y—y)
Oz - % Am;oo n=—00 |k |2 — k2
e (2.44)

e —jkmn- (p—p")

+o0
A Z Z —Jkemn——5——

m=—00 N=—00 |kmn|

(= A
Proceeding in a similar way for the other component, %@’p) is

e kan (p—7")

G(p =
o A > Z —jkymn—————— (2.45)

y m=—00 n=—00 ‘km”‘ - k2

Finally, the gradient of the 2-D Green’s function with 2-D periodicity in the spectral
domain can be written as
1 IX X cdkme(p—0)

VG(p,p) = 2 > > m[_jkxmn'j:_jkymn'g] (2.46)

m=—oco n=

In order to summarize, in this section we have demonstrated the obtaining of the spatial
and spectral 2-D periodic free-space Green’s functions with 2-D periodicity and their
gradients. These functions will be our starting point in the following sections. This is
because the convergence of these series is slow and we will try to improve it through

applying widely used techniques of series acceleration.

2.2 Ewald’s Method

The spectral and spatial Green’s functions formulated in the previous section exhibit
extremely slow convergence. A way to avoid this slow convergence is to introduce new
transformations that allow the evaluation of these functions with less number of terms,

that is, improving their convergences.

According to this, the first acceleration technique that we will apply to 2-D Green’s
function is Ewald’s method [4]. This method consists of splitting the series into two
parts, one spectral and the other spatial. Then, each component has to be transformed

in its corresponding domain in order to be evaluated as efficiently as possible. The final
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expressions of these components are very rapidly convergent. Thus, the advantage of this
method is its rapid convergence in comparison to the computation of the direct series.
Consequently, its advantages are high accuracy and efficiency. For these reasons, this
method has been applied to the 2-D Green’s function with 1-D periodicity in [5,22] and
2-D periodicity in [2].

The idea in this section is to review the formulation needed to obtain the components
resulted by the application of Ewald’s method. This is because they will be used to
compare with future techniques proposed in this project. First, we focus on applying this
technique in the Green’s function under study. We obtain the components Gpectrar and
G spatial, Whose sum leads to the total Green’s function. It is important to note that the
split of these components is addressed by the splitting parameter. This parameter has to

be optimally adjusted to calculate each component in their optimal region of convergence.

Unlike [11], in this case there is not an equivalent development for the switching method
because the observation point does not distance from the source in z-direction. The
observation point is always in the z — y plane and therefore near the source. So, the

convergence does not depend on the z-direction distance.

Finally, the same procedure will be followed in the gradient components of Green’s

function.

2.2.1 Green’s Function Using Ewald’s Method

From the spatial representation of the 2-D Green’s function with 2-D periodicity obtained
in the previous section, we apply Ewald’s method. For this purpose, we start from the

Sommerfeld identity for 2-D cylindrical radiated fields, which is given by
2.2 k2

1 2 1 /OOeRSJ%s?

—H;"(kR) = — —d 2.4

GaPmR) = o [ s (2.47)
Using the spatial definition given by (2.2) and the Sommerfel identity

1 o] “+oo @) B
— N\ —Jkwo Pmn

we can write the spatial series as

2
2, k
mnS +

1 +o00 +o00 s 006_52 12
Glp.p) == D, Y R /0 & s (2.49)

S

m=—0o0 nN=—0o0
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Ewald’s method is applied by splitting the previous integral into two parts G(p,p’) =
Gpectral (P, P') + Gspatial (P, P'), where € is the splitting parameter and determine where the
integral is divided.

Using this parameter, we can consider the total Green’s function as the summation of

two contributions

2
2 2, k
oo mnS +72

Ee_s 4s
> 3 e s (2.50a)
0 S

m—foo n=—oo

Gspectral (ﬁ> f_)/)

2
2 2, k
too mnS +4 2

1 o0 g5 s
Gspatial(ﬁa ﬁ/) Z Z € ~ikwor Pmn/ €7ds (250]3)

S

m=—0o0 nNn=—0o0
The subscripts indicate the domain in which each component will be formulated. Accord-
ing to this, the next step will be transforming each component to obtain the final Ewald’s

contributions.

Spectral Component of Ewald’s Method Gpeciral
As the series Ggpectrar do not exhibit an exponential decay, we transform it into a

spectral domain series using the 2-D generic Poisson’s formula (see Appendix A.4)

+00 +oo
Z meal—i—nag) |a1><a2] Z Z ( agxé)—i—%:;n(éxal))

- (2.51)
Or in x — y subspace
+oo +o0
Z Z f(maiz + nagy, maiy + nasy)
T (2.52)
1 +oo 400 o o
=3 2 2 J(F(maz —nai). F(-maz + nai)
where f(ky, k,) is the Fourier transform of the function f(£;, &), that is
~ +oo  ptoo ) )
f(ka,ky) = / F(&r, &a)eThettem TRt dey dgy (2.53)

From the equation (2.50a), we identify terms so we can write
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1 —+00 —+00
f(maiz + nage, maiy + nagy) = o E g g~ Ikzo(marztnazs) o —jkyon(maiy+nazy)

m=—00 N=—00

2

P (G (maiz+naz.))’+(y—y'—(maiy+nazy))’)s?+ £
>< /
0

ds
s

(2.54)

and therefore f(ky, k,) can be written as follows
R R U < T ,
f krak / / d§1d§2 X/ 5 6_31%0516_]’%/052
. G*sz&e*ﬂfy& ds

(2.55)

where we have to replace k;, = 2Z”(magy — nayy) and ky ( magy + naig).

According to this and using the definition of k., and kymn written in (2.16b),
f(ks, ky) is

f(kwak / / d€1déy x / ds—ez;g (J*’ @' —£1)? 52— jkamn€1

e*(y*y *52) S *Jkymn&

(2.56)

Now, we try to find the evaluation of the &-integrals in a closed form using the

following formula

+o00
e o HbE ge — T e% (2.57)
o a

For this purpose, we define I; and I3 as the integrals of (2.56) that depend on &

and &9, respectively

+oo / 2.2 .

I :/ e~ (=" =6)"s" —jkamnts ge, (2.58a)
—00
+00 , 2.9 .

I — / e~y ~£)*~jhymntz e, (2.58b)
—00
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and we use the results obtained in (2.20) and (2.21)

. ! k?zan
I = \/fe_szmn(x_x )6_ 452 (259&)
S
T ik ’ _kym"Q
Iy = | e ibmn -y~ 4 (2.59D)
S

So, interchanging the order of integration and replacing I; and Iy by the previous

results, f(kz, ky) remains

~ 1 € m™ o _w m™ o _ky’m’ﬂ2 ® 1
flla ky) = — —e Fkamn(z—a") = 03 e TRymn(Y=Y") 0™ "052 0152 = dg
2 Jo s 5 s

(2.60)
where we have defined k,,,, as
- - 2w B . . . .
kmn = kwo + — [m(az x 2) + n(2 x a1)] = kemn@ + kymn¥
A
5 (2.61)
T R 2 .
= | kzo + Z(maQy —nay) | &+ <k‘yo + Z(—mam + nau)) (]

As has been done in the spectral development, the exponentials can be merged into

e~ Ihamn(@=a") g=ikymn (W=y') = =ilkomn(@=2"VHhymn(4=9)] = o=dkmn-(P=F)  (2.62a)

_kzan _kym”z _(k:vmn2+kymn2) _|Emn|2
e 452 e 452 =g 452 =e  4s2 (2.62b)
and f(ky, ky,) can be rewritten as
= 1 -7 = = € 1 7“;mn‘2*k2
flke,ky) = Eefﬂkmw(ﬂfp ) / —e T ds (2.63)
0o S

Now, if we apply this change of variable s’ = 1/s, the limits change s =0 — s’ = oo,

s =¢— s’ =1/ an