

Accepted Manuscript

A family of experiments to evaluate the understandability of TRiStar
and i∗ for modeling Teleo-Reactive systems

José Miguel Morales , Elena Navarro , Pedro Sánchez ,
Diego Alonso

PII: S0164-1212(16)00004-2
DOI: 10.1016/j.jss.2015.12.056
Reference: JSS 9655

To appear in: The Journal of Systems & Software

Received date: 21 July 2015
Revised date: 1 December 2015
Accepted date: 31 December 2015

Please cite this article as: José Miguel Morales , Elena Navarro , Pedro Sánchez , Diego Alonso , A
family of experiments to evaluate the understandability of TRiStar and i∗ for modeling Teleo-Reactive
systems, The Journal of Systems & Software (2016), doi: 10.1016/j.jss.2015.12.056

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jss.2015.12.056
http://dx.doi.org/10.1016/j.jss.2015.12.056

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 1

Highlights

 An i* extension for Teleo-Reactive (TR) systems named TRiStar.

 A novel approach to modeling software requirements of TR systems using

TRiStar.

 An empirical proof of the higher efficiency of TRiStar vs i* for TR systems.

 An empirical proof of the higher effectiveness of TRiStar vs i* for TR systems.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 2

A family of experiments to evaluate the understandability of TRiStar

and i* for modeling Teleo-Reactive systems

José Miguel Morales

Systems and Electronic Engineering Division (DSIE),

Universidad Politécnica de Cartagena

Campus Muralla del Mar s/n, Cartagena, Spain

josemiguel.morales@upct.es

Elena Navarro

LoUISE Research Group, Computing Systems Department,

University of Castilla- La Mancha

Avda. España s/n, 02071 Albacete (Spain)

tel +34 967 599 200 ext. 2624, fax +34 967 599 343

Elena.Navarro@uclm.es

Pedro Sánchez

Systems and Electronic Engineering Division (DSIE),

Universidad Politécnica de Cartagena

Campus Muralla del Mar s/n, Cartagena, Spain

pedro.sanchez@upct.es

Diego Alonso,

Systems and Electronic Engineering Division (DSIE),

Universidad Politécnica de Cartagena

Campus Muralla del Mar s/n, Cartagena, Spain

diego.alonso@upct.es

Abstract. The Teleo-Reactive approach facilitates reactive system development without losing sight

of the system goals.

Objective: To introduce TRiStar as an extension of i* notation to specify Teleo-Reactive systems. To

evaluate whether the notational extension is an improvement in terms of effectiveness and efficiency

over the original language when it is used to specify Teleo-Reactive systems.

Method: A family of experiments was carried out with final-year engineering students and

experienced software development professionals in which the participants were asked to fill in a form

designed to evaluate the efficiency and effectiveness of each of the languages.

Results: Both the statistical results of the experiments, analyzed separately, and the meta-analysis of

the experiments as a whole, allow us to conclude that TRiStar notation is more effective and efficient

than i* as a requirements specification language for modeling Teleo-Reactive systems.

Conclusion: The extensions made on i* have led to TRiStar definition, a more effective and efficient

goal-oriented notation than the original i* language.

Keywords:

Teleo-Reactive; i*; TRiStar; Requirements Engineering; Understandability

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 3

1 Introduction

The Teleo-Reactive paradigm (TR) [1] is a goal-oriented approach for modeling systems in

which actions, outputs and states are computed as a response to a stimulus received from the

system’s surroundings and from the system itself. Teleo means "to reach a goal". "Reactive"

means "highly sensible to perceptions". As a consequence, the TR approach offers engineers a

formal high-level goal-oriented way to develop reactive systems, allowing developers to define

behaviour without losing sight of the goals and state changes ocurring in the environment.

A TR specification can be defined as a set of prioritized condition/action rules. The conditions

are defined by inputs from sensors or from a model of the world created by the system. The

actions change the world in some way from a physical or logical point of view (the model of the

world). The condition of the rule with the highest priority represents the main goal of the

system-to-be. At the same time, actions can be TR specifications, thus allowing the creation of

hierarchical decompositions of the goals. The subgoals are therefore those objectives to be

reached in each of the sub-specifications and are needed to fullfil the main goal. For more

details on this topic, see Morales et al. [2], which gives a systematic review of works published

between 1994 and 2011, as well as the extensions provided by Keith Clark with TeleoR [3].

Although the TR paradigm has proved useful when it comes to specifying reactive sytems

[4][5], it is nonetheless true that developing TR systems is a hard and error-prone task. The

main challenges involved have been identified in [6] and can be summarized as follows:

1. Rule priorities: a small change in priorities or order in the rules may lead to a very different

system behaviour.

2. Regression property: a sound TR specification must guarantee that acomplishing a subgoal

takes the system closer to reaching a higher priority goal, which in turn takes the system

closer to the main goal. The demonstation of this property for a given system is not a trivial

issue.

3. Modularity and encapsulation: in spite of the fact that the paradigm considers the use of

subgoals (allowing a certain degree of encapsulation) the textual representation makes the

understandability of the behaviour of the system particularly difficult at a single glance.

4. Reuse: as a result of the above, the creation of reusable components has not been a key issue

in the evolution of the TR paradigm. The most remarkable exception can be found in [7], in

which the authors propose a model-driven approach to obtain architectural components

starting from a TR specification.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 4

With the aim of overcoming these difficulties, it would be useful to find a Software Engineering

approach to specify the requirements of TR systems. Morales et al. [6] argue that the most

suitable Requirements Engineering technique for modeling TR systems is the Goal-Oriented

approach, as both systems share the same foundations (goals). In the study cited, two techniques

are proposed that use goal-oriented requirements languages to demonstrate that i* [8] gives

better results in terms of understandability. Starting from these results and going deeper into the

study of the technique based on i*, we detected a sort of weaknesses that, if fixed, would

improve the understandability, efficiency and effectiveness of i* as a specification language for

TR systems. For this reason, and following the path used in other approaches, such as [9], we

propose here an i* extension that overcomes the limitations mentioned above. This extension,

named TRiStar, was first presented in [10]. In the present paper we delve deeper into the

definition of TRiStar and analyze the results by means of a family of experiments carried out to

compare the efficiency and effectiveness of the original notation using i* with the TRiStar

extension. It is important to clarify that TRiStar extends the i* notation but does not limit it in

any way. Thus, all the expressiveness of the original language is available to deal with topics

from the early stages of requirements engineering, such as uncertainty, conflicts among multiple

agents or alternative ways of achieving the same goal. All these topics may be very useful when

specifying complex TR systems in which several agents collaborate or compete with each other

to achieve the goals in an application (see [3] for examples of such systems).

The Oxford English Dictionary defines the word “understandable” as “that can be understood;

intelligible” [11]. The understandability of a given notation is therefore something inherently

subjective and linked to the modeler’s capacity to understand such notation. In this vein, many

studies, besides measuring what can be called "subjective understandability", have looked for

other more objective ways of evaluating understandability by means of performance-based

measures. For instance, Genero et al. [12] define the concepts used throughout this document as

follows:

 Understandability Time (UT): The time needed to understand a TR diagram (expressed in

minutes).

 Understandability Effectiveness (UEffec): The number of correct answers reflects how well

the participants performed the required understandability tasks.

 Understandability Efficiency (UEffic): The number of correct answers divided by UT

relates the understanding performance of the participants to their effort (in terms of time

spent).

In this paper we introduce a family of experiments in which the above concepts have been

evaluated for each of the notations introduced: i* and TRiStar. The rest of the paper is organized

as follows: Section 2 gives an overview of related works on the development of TR systems and

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 5

goal-oriented requirements engineering techniques needed to understand the contents of this

paper. Section 3 gives a brief introduction to i* and its use for defining TR systems. Section 4

describes in detail the TRiStar extension, starting from the limitations detected in i* notation.

Section 5 details the family of experiments carried out, while Section 6 describes possible

threats to the validity of the experiments. Finally, Section 7 summarizes our conclusions and

some worthwhile future lines of research.

2 Related work

The TR paradigm has obtained many important results in distinct fields of research, perhaps

with the most valuable outcomes in the Robotics and Artificial Intelligence domain. In [2] a

detailed summary of the existing literature on the TR paradigm is given, including several

contributions to TR formalism, platforms for TR program simulation and validation purposes,

as well as methodologic and engineering concerns for creating TR programs or generating

executable code.

Among the existing Requirements Engineering approaches [13][14], Goal Oriented

Requirements Engineering (GORE) has been shown to be particularly helpful in many stages of

the system development process [15]. In addition, Yu and Mylopoulos state in [16] that “some

researchers have considered goals to be an important construct in a number of different areas

of RE.”. Those areas include, among others, requirements acquisition, clarifying requirements or

driving design, which are very useful in the latter stages of requirements specification in TR

systems. Morales et al. [6] state that GORE is the most straightforward choice for developing

TR systems, as both paradigms share the same fundamental concept: 'goal'. The choice of the

GORE paradigm to specify TR systems is not only based on this coincidence. The search for a

graphical notation to help stakeholders to understand the specification of a TR system and avoid

wrong interpretations was motivated by the desire to increase the abstraction level. TR systems

need a notation which allows the concept of ‘goal’ to be represented in the most natural possible

way and at the same time specifies the rules with the appropriate level of detail. GORE offers

both these advantages. Other approaches, such as the rule-based approach [17], are not suitable

as they stay at the same abstraction level as that of the TR program. In addition, the mapping

between TRiStar and TR programs means that the corresponding code can be obtained directly,

which obviously makes the work of the developers easier. The study in [6] compares the most

common GORE languages (i* [8] with KAOS [18]) and concludes that i* is the best GORE

language to specify TR systems. In spite of the advantages of using i*, the notation has some

weaknesses when it comes to specifying TR systems, and this is why we decided to create an

extension that would overcome these limitations.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 6

There are many examples in the literature of extensions to well known languages with the aim

of adapting them to specific domains. In this context, CSRML [9] (Collaborative Systems

Requirements Modeling Language) is a representative extension for i*, targeting collaborative

systems to create the well-known Computer Supported Cooperative Work (CSCW). These

systems allow users to do collaborative tasks, communication and coordination, besides other

tasks, on common software applications. However, the specification of such systems using

traditional Requirements Engineering techniques is rather complicated, while an i* extension

provides the expressiveness needed to specify CSCW more simply.

In [19], the authors make a comparative analysis of the original i* language with its two most

widespread variants: Goal-oriented Requirement Language (GRL) [20] and the language used in

the TROPOS methodology [21]. It also analyzes the following three i* extensions:

 The REDEPEND tool [22], which extends i* and allows new types of Means-End

relationships using satisfaction arguments, Contribution relationships, and other minor

differences. It provides systems engineers with i* modeling and analysis functions,

coupled with additional functionality and the reliability of Microsoft Visio. It provides a

graphical palette from which systems engineers can drag-and-drop i* concepts to

develop Strategic Dependency and Rationale models.

 The Formal TROPOS Language. Formal Tropos adds to i* temporal specification

primitives [23]. It allows specifying cardinality constraints in the dependencies among

intentional elements and also allows a new dependency type (prior-to) to be defined to

specify temporal order between intentional elements.

 In [24] the authors propose new types of dependencies among actors and intentional

elements: responsibility dependencies between an agent and a goal or a task; authority

dependencies between two agents; audit dependencies between an agent and a goal or a

task; and capability dependencies of an agent with respect to a goal or task.

On the other hand, controlled experiments to determine the understandability of a given notation

or language is a widely accepted practice. Jamison and Teng [25] carried out an experiment to

determine the perceived ease of use of several types of textual and graphical database

representations. They concluded that graphical notations were more easily and efficiently

accessed and the participants declared that graphical representations were much easier to

understand.

Lee and Choi [26] compared a set of conceptual data-modeling languages to determine which

gave more accurate and understandable models in the shortest time. The best results were

obtained by the Extended Entity-Relationship Model (ERM) and the Object Modeling

Technique. Bajaj [27] studied the influence of the number of metamodel concepts on the

readability of schemes created using such metamodels. They carried out an experiment using

many variants of the original ERM, each one with a different number of concepts in order to

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 7

evaluate efficiency, effectiveness and learnability (defined as an improvement in efficiency and

effectiveness over time). The results led the authors to conclude that the variants with most

concepts allowed higher precision in the domain conceptualization and at the same time were

easier to learn, although the time needed to process the schemes was increased significantly.

Many other approaches are based on ERM: in [12] a set of objective metrics were defined on

ER diagrams and an experiment was performed to determine whether these metrics had any

correlation with the "subjective understandability", efficiency and effectiveness of ER diagrams.

Three of the proposed metrics (number of entity attributes, number of 1:1 relationships, and

number of 1:N relationships) were significantly correlated with scheme understandability: the

more attributes and relationships a diagram had, the less understandable it turned out to be.

A family of experiments was carried out in [28] to compare the understandability of i* and

CSRML when specifying Collaborative Systems in which the users could perform

collaborative, communication and coordination tasks. Similarly to the system used in the

present study, they used two replicas in which the subjects answered a set of questions related to

the understandability of the two notations. The statistical analysis showed that the specifications

made by CSRML scored higher than i*, especially in collaboration aspects. The study

concluded that in terms of understandability CSRML outdid i* as a specification language for

collaborative systems.

More recently, a controlled experiment was performed in [6] to determine the understandability

of i* versus KAOS as a language for specifying TR systems. The results showed that both

languages obtained similar scores in terms of understandability, although i* notation stood out

slightly. The statistical analysis of the results led to the conclusion that i* notation was more

understandable than KAOS as a specification language for TR systems.

Following the strategy defined in [6], the aim of the present study is to statistically validate

whether or not the notational extensions are an improvement of the original i* notation by

means of a family of experiments

3 Previous background: i* for TR system requirements specifications

The i* framework guides the stakeholders through the different phases of the software

development process, namely from the early requirements analysis up to the detailed design. As

already mentioned, i* can also be employed to specify the requirements of TR systems.

The work by Morales et al. [6] introduces the language and gives a detailed description of the

technique developed for specifying TR systems. Table 1 briefly summarizes the mapping from

i* concepts to TR concepts, which constitutes the kernel of the technique described in the work.

Table 1. Mapping concepts between i* and TR

i* TR

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 8

Main Agent System-to-be

Agent Sensor

Goal Goal

Task Action

Resource Percept

Resource Dependency Condition

Figure 1 shows the application of this approach by using a simplified version of the i*

specification of one of the examples used in the family of experiments described in Section 5.2.

The example consists of a drone that always goes back to its origin, no matter where it has taken

off from.

Figure 1. Drone application specification using i*

The details of the application of the tecnique described in [6] to the i* specification shown in

Figure 1 are given below. The resulting TR program is shown in Code 1:

 Every i* goal in Figure 1 becomes a TR goal (in bold text in Code 1, as for instance, Land

or MaintainHeightOK).

 Every i* agent becomes a sensor or device, such as GPS or altimeter.

 Every i* resource that has a dependency relationship with an agent becomes a condition

monitored by the homologous sensor, such as ground with the altimeter. i* goals or tasks

that lack dependency relationships, such as go_down, are mapped to TR rules whose

condition is always true (True → goal/action).

 Every i* task, such as followGPS, becomes an action.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 9

 i* tasks and goals linked by a task-decomposition link to an i* goal become rules of the

same TR goal. For example, the Land goal is decomposed into the tasks go_down and nil.

Therefore, two rules are created for the TR goal named Land: one whose action is go_down

and another whose action is nil, as shown in Code 1.

 The relative position of the items in the i* specification states the priority of the rules in the

TR program. For example, Land is drawn farther to the right than followGPS (see Figure 1).

As can be seen in Code 1, the rule whose action is Land is over the rule whose action is

followGPS because it has higher priority.

Code 1. TR program for Figure 1

3.1 Shortcomings of i* for TR systems

As shown in the previous section, it is possible to specify the requirements of a TR system using

i*. Although the validity of the proposed mapping between i* and TR programs has been

established in previous works [6] [10], in this last paper the authors pointed out some limitations

found in applying such a technique and briefly presented an extension to i* named TRiStar,

which aims to overcome them. We firstly summarize these limitations by an illustrative

example, while the following section describes the enhancements provided by TRiStar for

specifying TR systems employing i*.

 S1. Setting the priority by using the order in which tasks or goals refining a goal are

positioned in the diagram constrains the likely position of subtasks or subgoals in it.

Occasionally, this may result in messy diagrams hard to interpret. In addition, it is difficult

to automatically process a diagram in which the relative position of two items has an

important meaning. The example shown in Figure 2, a variation of Figure 1, will help us to

explain this shortcoming. Task go_down must be placed far away from the Land goal

DronAtOrigin:

 overOrigin  Land

 NOT(height > hMax) AND NOT(height < hMin)  followGPS

 height > hMax OR height < hMin  MaintainHeightOK

MaintainHeightOK:

 height < hMin  go_up

 height > hMax  ReduceHeight

ReduceHeight:

 True  go_down

Land:

 ground  nil

 True  go_down

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 10

because it needs to be on the left of go_up, as the priority of go_down when refining

MaintainHeightOK is lower than that of go_up.

Figure 2. Ambiguous i* specification

 S2. If the same task is involved in two or more goals, it may then depend on different

resources when refining one of the goals. This may cause ambiguity when obtaining the

conditions of the associated TR rule. Considering the i* specification of the drone

shown in Figure 2, it can be seen that it is is very similar to that of Figure 1. In this case

we introduced a goal named ReduceHeight to avoid the ambiguity around the go_down

task. If this artificial goal is not used (note that there is no goal IncreaseHeight, as there

is no possible ambiguity with the go_up task), it is not possible to say whether go_down

depends on height > hMax when refining MaintainHeightOK or when refining Land, or

in both cases. Code 2 shows a TR program that fits this specification. Note the

condition of the lowest rule in the subgoal Land; a drone programmed with Code 2

would crash when it flew over its origin. When overOrigin became true, the subgoal

Land would take control, but as none of the conditions of the rules in Land are actually

true, the drone would do nothing and thus would fall to the ground.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 11

Code 2. A TR program fitting the specification in Figure 2

We got around this problem in the i* version shown in Figure 1 by using the additional

subgoal ReduceHeight. The resource height > hMax depends on this new subgoal, which is

decomposed into only one task, freeing this task (go_down) from dependencies. With this

alternative specification a correct TR program can be generated, but the extra item needed

reduces the diagram’s readability.

 S3. The conditions of TR rules are usually composed of logical combinations of percepts

given by the sensors. In i* there is no way to graphically represent a Boolean combination

of some of the percepts provided by sensors. Retaking the example shown in Figure 1, in i*

there is no symbol to represent a dependency on height > hMax OR height < hMin, for

instance. We got around this limitation by adding resources that are labeled with the

Boolean expression we wanted to represent inside the boundary of the system. These

expressions may become difficult to read in systems with a certain degree of complexity.

4 TRiStar Enhancements

To overcome the limitations identified in the previous section, an extension to i* is proposed.

The following three main new features compose this extension, named TRiStar:

 E1: Prioritized decomposition links.

 E2: Dependent decomposition links.

 E3: Logical resources.

In this section these new features are described in depth.

 E1: Prioritized decomposition links. To avoid relying on the relative position of the

diagram elements when information about their priority is needed (shortcoming S1), a new

decomposition link has been defined. This new type of decomposition link provides the

priority of the rule whose subgoal or task is at the end of the link by changing its own

DronAtOrigin:

 overOrigin  Land

 NOT(height > hMax) AND NOT(height < hMin) 

followGPS

 height > hMax OR height < hMin  MaintainHeightOK

MaintainHeightOK:

 height < hMin  go_up

 height > hMax  go_down

Land:

 ground  nil

 height > hMax  go_down

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 12

representation. The standard i* decomposition link has a short perpendicular line at the end

that is closer to the goal being decomposed. The new decomposition links have as many of

these short lines as needed to show the priority of the subgoal or subtask. One line means

the lowest priority. The more lines a decomposition link has, the higher priority its related

subgoal or subtask has. Now, the position of these lines on the diagram does not have any

intended meaning. Figure 3 shows a diagram in which these new decomposition links can

be seen. Note that although the highest_priority_subgoal is in the middle of the subgoals, it

has the highest priority as its decomposition link has three short perpendicular lines. In the

TR program corresponding to this specification, the rule containing

highest_priority_subgoal would be the uppermost rule in Goal, then

medium_priority_subgoal would be next, and finally lowest_priority_subgoal.

Figure 3. Prioritized decomposition links

In order to avoid scalability problems when a goal is refined into many tasks or subgoals,

the short perpendicular lines can be substituted by a circle with the priority specified in its

interior, with ‘1’ being the lowest priority. Although this notation facilitates the insertion of

new subtasks or subgoals and avoids the excessive cluttering that can be generated by the

addition of many perpendicular lines, we recommend the use of short lines to maintain the

similarity with the original i* notation.

 E2. Dependent decomposition links have been introduced to avoid linking dependencies

directly to subgoals or tasks (limitation S2). It is worth remembering that the condition of a

rule in a TR program cannot be generated from a dependency on a task or subgoal alone,

but the relationship between the task and the goal it refines is also needed. This relationship

is obviously represented by the decomposition link that connects them and explains why a

dependency link between the decomposition link and the resource has been introduced. For

example, as Figure 4 shows, the decomposition link between Goal and Subgoal depends on

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 13

resource1, which is in Sensor1’s boundary. Similarly, the decomposition link between Goal

and Task depends on resource2, which is in Sensor2’s boundary.

Figure 4. Dependent decomposition links

Note that the new prioritized decomposition link has been used in the example. As the link

between Goal and Subgoal has a higher priority than the other, the first rule in the TR

program is the one whose condition is resource2. Code 3 shows the TR program generated

from this specification.

Code 3. TR program for Figure 4

 E3. To overcome limitation S3, we introduced a specialization of i* resources to represent

the logical combinations of percepts. These specialized resources are related to all the

percepts they involve by using directed dependency links. In addition, the logical resource

is given a name, which acts as an alias for such combinations of percepts. A table is

provided to link every name with its logical expression. Figure 5 shows an example of this

new kind of resource.

Figure 5. Use of logical resources

The decomposition between Goal and Subgoal depends on a logical resource which is the result

of an OR operation between resource1 and resource2. As the logical resource uses the percepts

Goal:

 resource1  Subgoal

 resource2  task

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 14

resource1 and resource2 as operands, dependency links are established from the logical

resource to its two operands. The expression represented by LogicalResource can be seen in the

table just under System’s boundary. Code 4 shows the TR program that corresponds to this

specification:

Code 4. TR program for Figure 5

Lastly, although it cannot be considered an extension to i*, the dependencies between a percept

and the sensor that generates it are represented by inserting the resource inside the agent’s

boundary, as already shown in Figure 4 and Figure 5. In this way, only a dependency link is

needed to represent the condition of a rule, unlike plain i* specifications, which require two

such links.

The mapping from a TRiStar specification to a TR program is very similar to that of i*. In fact,

Table 1 still remains valid. There are however some differences:

1. The main TRiStar agent is transformed into the TR system-to-be. The main TRiStar agent is

the one that has the goal that the final system wants to achieve in its boundary.

2. TRiStar goals become TR goals.

3. TRiStar tasks are specified as TR atomic actions.

4. TRiStar resources (except logical resources) become percepts generated by sensors.

5. A logical resource will be translated into the expressions found in the table associated to its

alias.

6. Considering that a TR rule is defined as condition → goal/action, every TRiStar resource

having a decomposition link as a dependee is transformed into a TR rule whose condition is

that resource and its action is the task or goal that is at the end of the decomposition link. A

decomposition link not depending on any resource is transformed into a rule of the form

True → goal/action.

7. Since a TR goal is defined as a set of prioritized TR rules, a TRiStar goal being refined into

goals and tasks through task-decomposition links is transformed into a TR goal formed by

as many rules as TRiStar tasks or goals refine the original i* goal.

8. Rule priority, given by the order of the rules in TR programs, is specified in TriStar

diagrams by using prioritized decomposition links. So, the tasks or goals placed at the end

of the highest priority decomposition link will be translated into the action of the highest

priority rule in the TR program. The resource on which the highest priority decomposition

link depends will be transformed into the condition of that rule.

Goal:

 resource1 OR resource2  Subgoal

 True  task

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 15

Figure 6 shows the specification of the same drone as that in Figure 1 but using TRiStar.

Figure 6. Drone specification using TRiStar.

All the proposed extensions have been employed in this example:

 Prioritized decomposition links allow positioning go_down near both MaintainHeightOK

and Land, which helps keep the diagram organized and uncluttered, with no crossing lines.

 Dependent decomposition links enable the artificially created subgoal ReduceHeight to be

removed. The resource height > hMax depends on the link between MaintainHeightOK and

go_down and not on the link from Land, so that the ambiguity of the rule condition is

eliminated.

 Two logical resources have been introduced: HeightOK and HeightKO, whose expressions

can be found in the table in Figure 6. The aliases make it easier to understand the conditions

that apply to the rules involved.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 16

Code 5 shows the TR program obtained by applying the mapping rules described in Section 4 to

the TRiStar specification depicted in Figure 6:

 Every TRiStar goal in Figure 6 becomes a TR goal (in bold text in Code 5, as for instance,

Land or MaintainHeightOK).

 Every TRiStar agent becomes a sensor or device, such as GPS or altimeter. The resources

within their boundary are mapped to the percepts provided by each of them. See ground

inside Altimeter’s boundary, for example.

 A decomposition link depending on a resource, logical or not, becomes a rule whose

condition is the percept represented by the resource and its action is the goal or task at the

end of the decomposition link. See for example in Figure 6 the link between DronAtOrigin

and Land, which depends on atOrigin. It is mapped to the first rule in goal DronAtOrigin as

can be seen in Code 5.

 Logical resources are mapped to the conditions corresponding to their aliases in the table.

For instance, HeightKO is mapped to height > hMax OR height < hMin.

 Decomposition links that lack dependency relationships, such as that between Land and

go_down, are mapped to TR rules whose condition is always true (True → goal/action).

 Just as in the i* case, every TRiStar task, such as followGPS, becomes an action.

 TRiStar tasks and goals linked by a task-decomposition link to a TRiStar goal become rules

of the same TR goal. For example, the goal Land is decomposed into the tasks go_down and

nil. Then, a TR goal named Land appears with two rules: one whose action is go_down and

another whose action is nil, as shown in Code 5.

 The number of short perpendicular lines in the decomposition links states the priority of the

rules in the TR program. For example, the decomposition link from DronAtOrigin to Land

DronAtOrigin:

 atOrigin  Land

 NOT(height > hMax) AND NOT(height < hMin)  followGPS

 height > hMax OR height < hMin  MaintainHeightOK

MaintainHeightOK:

 height < hMin  go_up

 height > hMax  go_down

Land:

 ground  nil

 True  go_down

Code 5. TR Program for Figure 6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 17

has three of these perpendicular lines, while the decomposition link between DronAtOrigin

and followGPS has only two (see Figure 6). As can be seen in Code 5, the rule whose action

is Land appears before the rule whose action is followGPS.

5 The family of experiments

In order to assess the understandability of both the newly created TRiStar extension and i*

when modeling the software requirements of TR systems, a family of experiments (see Figure

7) performed to compare both of them based on the guidelines described by Kitchenham et al.

[29]. In this section we will describe the context, the design and how the experiments were

conducted. All the three members of the family were designed in a similar way, so that only one

description is given.

Figure 7. Chronology of the family of experiments

5.1 Experimental Context

The main goal of this family of experiments was to study the requirements specifications of TR

systems using both i* and TRiStar and evaluate their effectiveness and efficiency from the

perspective of requirements engineering researchers, using undergraduate B. Sc. students and

experimented software developers as subjects. To achieve this goal, the null hypotheses shown

in Table 2 were defined using the Goal Question Metric template [30].

Table 2. Main features of the family of experiments

Null-

Hypotheses

HUEffee0A: i* has the same average score for understandability effectiveness as TRiStar

when specifying TR requirements. HUEffec1A: ¬HUEffec0A

HUEffec0B: The understandability effectiveness average score is the same regardless of the

domain used in the experiment. HUEffec1B: ¬HUEffec0B

HUEffec0AB: i* has the same understandability effectiveness average score as TRiStar when

specifying TR systems requirements, regardless of the domain used in the experiment

and viceversa. HUEffec1AB: ¬HUEffec0AB

HUEffic0A: i* has the same average score for understandability efficiency as TRiStar when

specifying TR requirements. HUEffic1A: ¬HUEffic0A

HUEffic0B: The understandability efficiency average score is the same regardless of the

domain used in the experiment. HUEffic1B: ¬HUEffic0B

HUEffic0AB: i* has the same understandability efficiency average score as TRiStar when

specifying TR systems requirements, regardless of the domain used in the experiment

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 18

and viceversa. HUEffic1AB: ¬HUEffic0AB

Dependent

variables

Understandability effectiveness of requirements modeling languages, measured by

UEffec

Understandability efficiency of requirements modeling languages, measured by UEffic

Independent

variables
The system the models specify and the language used to specify these models

Location
ETSII at UPCT (Cartagena,

Spain)

ETSIT at UPCT (Cartagena,

Spain)

SAES Facilities

(Cartagena, Spain)

Date February 2015 February 2015 February 2015

Subjects

31 undergraduates of the

B.Sc. in Industrial

Electronics and Automation

Engineering (16 Group 1; 15

Group 2)

25 undergraduates of the B.Sc.

in Telecommunication Systems

Engineering (13 Group 1; 12

Group 2)

13 experienced

software development

professionals (6 Group

1; 7 Group 2)

As Table 2 shows, the subjects in the experiments were engineering students and software

development professionals. All were familiar with requirements engineering but none had

previously used either i* or any other GORE language and none had any previous experience

of TR systems.

The Sociedad Anónima de Electrónica Submarina (SAES) collaborated in this study and

allowed almost all their software engineers to be subjects for the second replication. SAES is a

Spanish company specializing in underwater acoustics and develops undersea security and

environmental protection systems. The company has more than 25 years of experience in

developing advanced technology in the fields of Sonar, Acoustic Signal Processing, Underwater

Signature Measurement and Management, Simulation and Training. Highly skilled and

experienced engineers and scientists in various disciplines make SAES an innovative and

competitive company in both national and international markets.

5.2 Experimental Design

All the experiments in this family were aimed at evaluating the understandability of the

requirements specification of two different TR systems specified by both i* and TRiStar. The

first system consisted of a drone which was able of deliver a package to a destination and go

back to its origin, always keeping at a safe height. GPS informs the drone when it is flying over

its origin, over the destination and gives it directions to reach both places. Weight is monitored

so that the drone knows whether it is loaded or not and an altimeter is in charge of updating

height information. The actions the drone is able to carry out are limited to going up, going

down, following GPS directions and releasing the load.

The second system was a variation of one of the systems used in [6], which was a soccer robot

which plays in defensive positions. When the robot considers the danger is over, it goes back to

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 19

its own goal. The robot can find the ball and knows who is controlling the ball: i.e. himself, an

opponent or a teammate. The robot can identify other members of its own team, in fact, its main

goal is to keep the ball in his team’s possession. To do this, the robot can turn, move forward,

dribble and kick the ball.

The subjects in all the tests were divided into two groups, Group 1 and Group 2, each group

using one of the languages. Table 3 summarizes these decisions:

Table 3. Experimental design

System

Drone Football player

Language

TRiStar Group 1 Group 2

i* Group 2 Group 1

Dividing the subjects into 4 different groups starting from the combination of the two

independent variables makes up a 2x2 factorial design with confounded interaction [31] and

thanks to this combination system-language among the groups, the learning effect is cancelled.

Every subject answered a brief questionnaire on both models. The questionnaire (see Appendix)

consisted of some TR program fragments from the presented models using the appropriate

mapping. In every fragment there was an element missing and the subject was asked to fill in

the blanks. They were also asked to record the time they need to answer the questions. With this

information, effectivenes (UEffec) was calculated as the number of correct answers divided by

the total number of questions. Efficiency (UEffic) was calculated as UEffec divided by the

number of minutes required to fill in the questionnaire. In the final question the subjects were

also asked which language they thought was most understandable in specifying TR systems.

Since all the participants had previous experience in requirements engineering but not in GORE

or TR systems some filtering criteria were laid down to eliminate any subjects whose previous

experience would give them an advantage that could adulterate the results. Those that matched

any of the following criteria were discarded:

 Those more than 5 years older than the group’s average age.

 Previous experience in GORE languages.

 NO previous experience in requirements engineering

 Previous experience in TR systems.

Finally, each subject was interviewed on his opinion of the questions and the answers were

recorded for subsequent analysis.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 20

5.3 Test Procedure

The tests were carried out in three different sessions: one for the original test and two more for

the replicas. The first session took place in the Industrial Engineering School of the University

of Cartagena and the second in the Telecommunications Engineering Faculty of the same

university. The third session took place in the SAES facility in Cartagena.

The same procedure was used for all three sessions. An instructor initially briefed the subjects

on TR systems, i* and TRiStar, and how to represent TR systems requirements in both

notations. The examples used in the experiment, the drone and the football player, were also

described. The time needed for the complete briefing was about 20 minutes. Before giving the

models to the subjects, the following information was obtained:

 For subjects in groups G1 and G2:

 Gender (Male/Female)

 Age

 Qualifications

 Average score

 Have you had any previous experience of working with goal-oriented requirements

engineering?

 Have you had any previous experience of working with any other requirements

engineering technique?

 Have you had any previous experience of working with teleo-reactive systems?

 For subjects in group G3:

 Gender (Male/Female)

 Age

 Years of experience in software development

 Have you had any previous experience of working with goal-oriented requirements

engineering?

 Have you had any previous experience of working with any other requirements

engineering technique?

 Have you had any previous experience of working with teleo-reactive systems?

The subjects were asked to record their exact start and end times from an online clock projected

on a screen.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 21

5.4 Analysis of the Results

Error! Reference source not found. shows the participants’ subjective preference in the form

of the combined answers for the three experiments to the question “In your opinion, which

language is more understandable?”.

Figure 8. Subjective Understandability.

As can be seen in Figure 8, the answers show that TRiStar is more understandable than i*. 45

subjects declared that they found TRiStar more understandable, vs less than 15 who preferred i*

or the 10 people who did not give a clear answer (Don’t Know). As regards the effictiveness

and efficiency aspects; the factorial design of the experiments in this family makes them

particularly appropriate for a two way ANOVA test in order to analyze the results. The three

main assumptions for this test are the following:

 Independence of observations.

 The distribution of the residuals must be normal.

 Homocedasticity: homogeneity of variances.

In the following subsections the original experiment and its replications will be analyzed to

check firstly whether these assumptions are achieved or not. In those cases in which the

assumptions are achieved, the results of the ANOVA tests will be presented and anlyzed. The

way in which the data was obtained guarantees the independence of the observations, so that

only normal distribution and homocedasticity need be proven. The results were analyzed by

IBM SPS Statistics v. 22.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 22

5.4.1 Original Experiment (E1)

The answers of 5 participants in this test were discarded from the sample either because they

did not comply with one of the criteria in Section 5.2 or they had not completed the

questionnaires. The total number of remaining subjects in the sample was 31. According to the

central limit theory [32], the normality of the sample may be assumed.

UEffec: as can be seen in column “Sig.” in Table 4, Levene’s test [33] for homogeneity of

variances provides a p-value of 0.493, allowing us to assume the homocedasticity of the

sample. This test was designed to fit the two-way ANOVA test to be performed: language +

system + language * system, each of these elements corresponding to one of the three null

hypotheses to be evaluated (HUEffec0A, HUEffec0B and HUEffec0AB).

Table 4. Levene’s test for UEffec in E1

F df1 df2 Sig.

0,814 3 58 0,493

The results provided by the ANOVA test are shown in Table 5.

Table 5. ANOVA results for UEffec in E1

Source
Type III Sum of

squares
df Mean Square F Sig.

Model 33.907
a
 4 8.477 415.250 0.000

Language 0.085 1 0.085 4.154 0.047

System 0.016 1 0.016 0.797 0.376

Language * system 0.012 1 0.012 0.573 0.453

Error 0.980 58 0.020

Total 34.887 62

a. R Squared= 0.972 (Adjusted R Squared = 0.970)

As the p-value obtained for language is 0.047 (see column “Sig.”) and therefore less than α =

0.05 HUEffee0A can be rejected and it can be concluded that there is a statistically significant

difference between the UEffec results obtained from i* and those obtained from TRiStar. On the

other hand, as the p-values for system and language*system are much bigger than α, neither

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 23

HUEffee0B nor HUEffee0AB can be rejected. We can thus be sure that language influences UEffec, but

neither the system nor the combination of language and system does so.

To calculate the confidence interval of the mean differences between i* and TRiStar: [-0.15986,

-0.00168], as all the values in the interval are less than 0, we can say with a 95% confidence

level that the effectiveness of TRiStar is higher than that of i* when modeling TR systems.

Table 6 shows the homocedasticity of the sample for UEffic as it provides a p-value of 0.869.

Table 6. Levene’s test for UEffic in E1

F df1 df2 Sig.

0.238 3 58 0.869

Table 7 shows the results of the ANOVA test. As with UEffec, HUEffie0A may be rejected but

HUEffie0B or HUEffie0AB may not, given the p-values obtained for language (0.029), system (0.309)

and language*system (0.091). Then, as in the case of effectiveness, we can conclude that the

language used does affect the efficiency, but the system or the combination of language and

system does not.

Table 7. ANOVA results for UEffic in E1.

Source
Type III Sum of

squares
df Mean Square F Sig.

Model 1.388
a
 4 0.347 47.809 0.000

Language 0.036 1 0.036 5.008 0.029

System 0.008 1 0.008 1.052 0.309

Language *

system
0.021 1 0.021 2.953 0.091

Error 0.421 58 0.007

Total 1.809 62

a. R Squared = 0.767 (Adjusted R Squared = 0.751)

Once we know that language does affect UEffic, we will obtain the confidence interval of the

mean differences between i* and TRiStar in order to determine which language obtains the best

results. The calculated interval is [-0.09175, -0.00373] and we can conclude at a 95%

confidence level that TRiStar is more efficient than i* when specifying TR systems

requirements.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 24

5.4.2 First Replication (R1)

For the first replication of the experiment, after discarding 6 students that did not comply with

the criteria in Section 5.2, we had a sample of 25 subjects, whose normality had to be shown as

the sample size was less than 30. As the ANOVA test is robust before moderated normality

deviations, a graphical proof of the distribution was enough. Figure 9 contains a box graph

showing the normality of the UEffec distribution:

Figure 9. Normal distribution of UEffec in R1

As in the case of E1, a Levene’s test was performed to check the homocedasticity of the

samples. This test is also designed to ensure the homogeneity of variances for language, system

and the combination of both (language * system). The results are shown in Table 8 in which a

p-value of 0.922 can be seen to prove the homogeneity of the error variances.

Table 8. Levene’s test for UEffec in R1

F df1 df2 Sig.

0,16 3 46 0.922

After checking the assumptions, the ANOVA test was performed and the results are shown in

Table 9. In this case, the p-values displayed in column “Sig.” for language (0.017), system

(0.437) and language*system (0.101) support the same conclusions as in E1: only language

affects the effectiveness of the specification.

Table 9. ANOVA results for UEffec in R1.

Source Type III Sum of df Mean Square F Sig.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 25

squares

Model 29.151ª 4 7.288 254.738 0.000

Language 0.177 1 0.177 6.188 0.017

System 0.018 1 0.018 0.616 0.437

Language * system 0.080 1 0.080 2.801 0.101

Error 1.316 46 0.029

Total 30.467 50

a. R Squared = 0.957 (Adjusted R Squared = 0.953)

To show that TRiStar provided a better UEffec value, the confidence interval of the mean

differences between i* and TRiStar was calculated: [-0.2152, -0.02]. As all the values in the

interval were lower than 0, TRiStar obtained the best language effectiveness values. In other

words, TRiStar is more effective when specifying TR systems requirements.

Figure 10 shows the normality of the UEffic samples:

Figure 10. Normal distribution of UEffic in R1

Homocedasticity was proven again using Levene’s test (see Table 10). The small p-value

(0.086) obtained was still higher than 0.05 and therefore the null hypothesis of the homogeneity

of variances could be assumed.

Table 10. Levene test for UEffic in R1

F df1 df2 Sig.

2.336 3 46 0.086

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 26

Table 11 summarizes the results of the ANOVA test to analyze UEffic in this experiment:

Table 11. ANOVA results for UEffic in R1.

Source
Type III Sum

of squares

df
Mean

Square
F Sig.

Model 0.789
a
 4 0.197 230.751 0.000

Language 0.084 1 0.084 98.500 5.17 x 10
-13

System 0.000 1 0.000 0.198 0.658

Language *

system
0.002 1 0.002 1.933 0.171

Error 0.039 46 0.001

Total 0.829 50

a. R Squared = 0.953 (Adjusted R Squared = 0.948)

The p-value for language is 5.17 x 10
-13

 so that HUEffie0A can be rejected. The p-values for system

(0.658) and language*system (0.171) do not allow us to reject HUEffie0B or HUEffie0AB thus

reaching the same conclusion as in E1: language affects the efficiency of the specifications but

system or the combination of both do not.

As in the previous cases, the confidence interval of the mean differences was calculated, giving

[-0.09878, -0.06522]. As the whole interval was formed by negative values, we could conclude

that TRiStar was more efficient than i* in specifying TR systems.

5.4.3 Second Replication (R2)

The small sample of the second replication (13 subjects) forced us to check the normality of the

distribution. This was not possible for effictiveness because the sample hugely deviated from

normality, so we could not use an ANOVA test. As the use of non-parametric tests is

recommended for this type of sample, we chose the Kruskal-Wallis test to check the equality of

the distributions among the categories of the samples. As this test only allows one factor to be

checked at a time, two tests were necessary: one for language and one for system.

Kruskal-Wallis does not need the normality assumption but it does need the homocedasticity

condition. To prove this, we performed a Levene’s test for language that provided a p-value of

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 27

0.079 and another for system, giving a p-value of 0.359. These results are summarized in Table

12.

The Kruskal-Wallis test provided a p-value for language of 0.046 with a significance level of

0.05, which indicated that language did affect the UEffec distribution. We obtained a p-value of

0.217 for system, which prevented us from concluding that UEffec was affected by the system.

Therefore, if only language affects the UEffec distribution and taking into account the

distribution shown in Figure 11, we can state that TRiStar is more effective at specifying TR

systems.

Table 12. Results for UEffec in R2.

 Levene’s Test Kruskal-Wallis

Language 0.079 0.046

System 0.359 0.217

Figure 11. Distribution of UEffec in R2

Figure 12 shows the normality of the UEffec distribution. Homocedasticity was checked by

Levene’s test and the result is shown in Table 13. As its p-value is 0.214, the homogeneity of

variances can be assumed.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 28

Figure 12. Normal distribution of UEffic in R2

Table 13. Levene’s test for UEffic in R2

F df1 df2 Sig.

1.616 3 22 0.214

After checking all the conditions, the two-way ANOVA test was performed. The results are

shown in Table 14:
Table 14. ANOVA results for UEffic in R2.

Source
Type III Sum of

squares
df Mean Square F Sig.

Model 1.398
a
 4 0.349 39.589 0.000

Language 0.072 1 0.072 8.181 0.009

System 0.000 1 0.000 0.013 0.909

Language * system 0.000 1 0.000 0.017 0.899

Error 0.194 22 0.009

Total 1.592 26

a. R Squared = 0.878 (Adjusted R Squared = 0.856)

Language obtained a p-value of 0.009 so we could reject HUEffic0A. System and language*system

obtained p-values well over 0.05, preventing us from rejecting HUEffie0B or HUEffie0AB. From these

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 29

results ir can be concluded that, as in the previous cases, language does affect efficiency when

specifying TR systems but the selected system or the combination of language and system do

not.

In order to determine the language which obtains the best results in terms of UEffic, the

confidence interval at 95% of the mean differences was calculated and the result was [-0.17945,

-0.03132]. As all the values in the interval were less than 0, we could assume that TRiStar is

more efficient at specifying TR systems.

5.5 Meta-analysis

After analyzing the isolated results of every experiment in the family, we performed a global

analysis of all the experiments. First, we performed a similar study to those performed for every

isolated experiment but using all the data from the original experiment and the two replications.

This meant performing a two-way ANOVA test both for UEffec and UEffic, keeping the null

hypotheses given in Table 2.

The sample size (31 + 25 + 13 = 69) was big enough to satisfy the normality assumption. A

similar Levene’s test to those described in the previous section (language + system + language *

system) was applied to the data to prove homocedasticity. Table 15 shows the results of the test

for UEffec and Table 16 for UEffic.

Table 15. Levene’s test for global UEffec

F df1 df2 Sig.

0.088 3 134 0.966

Table 16. Levene’s test for global UEffic

F df1 df2 Sig.

0.838 3 134 0.475

In both cases homogeneity of variances could be assumed, as the calculated p-values were well

over 0.05.

After checking the assumptions, a two-way ANOVA test for all the samples used was

performed. Table 17 summarizes the results for UEffec and Table 18 for UEffic:

Table 17. ANOVA results for global UEffec.

Source
Type III Sum of

squares
df Mean Square F Sig.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 30

Model 90.900
a
 4 22.725 991.645 0.000

Language 0.296 1 0.296 12.896 4.61 x 10
-4

Domain 0.047 1 0.047 2.044 0.155

Language *

Domain
0.003 1 0.003 0.151 0.699

Error 3.071 134 0.023

Total 93.971 138

a. R Squared = 0.967 (Adjusted R Squared = 0.966)

With these results HUEffce0A could be rejected, thanks to the calculated p-value of 4.61 x 10
-4

 for

language. However, HUEffee0B and HUEffee0AB could not be rejected as the obtained p-values for

system and language*system were much higher than 0.05. The calculated confidence interval

was [-0.14303, -0.04102], which proved that there was enough statistical evidence to affirm that

TRiStar is more effective than i* when specifying the requirements of TR systems.

Table 18. ANOVA results for global UEffic.

Source
Type III Sum of

squares
df Mean Square F Sig.

Model 3.350
a
 4 0.838 127.574 0.000

Language 0.175 1 0.175 26.617 8.73 x 10
-7

Domain 0.004 1 0.004 0.656 0.419

Language *

Domain
0.019 1 0.019 2.834 0.095

Error 0.880 134 0.007

Total 4.230 138

a. R Squared = 0.792 (Adjusted R Squared = 0.786)

The results for efficiency were similar to those for effectiveness: HUEffie0A could be rejected but

HUEffie0B and HUEffce0AB must be accepted. The p-value for language was 8.73 x 10
-7

 but those of

systems and language*system were well over 0.05. The confidence interval for the mean

differences between i* and TRiStar was [-0.09844, -0.04359]. Therefore, taking into account the

aggregate results for the family of experiments, we had enough statistical evidence to state that

TRiStar is more efficient than i* when specifying requirements for TR systems.

We used BioStat’s Comprehensive Meta-Analysis [34] for the meta-analysis. We first obtained

the Global Effect Size of the family of experiments and then used it to decide the specific meta-

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 31

analysis method to use. The Global Effect Sizes for UEffec and UEffic are shown in Table 19

and Table 20, respectively.

Table 19. Global Effect Size for UEffec.

 i* TRiStar

Study System Mean SD N Mean SD N Hedges' g Std. Err. Effect Size

E1 Drone 0.7653 0.10895 15 0.8075 0.14201 16 -0.3232 0.3524 Small

E1 Football 0.7575 0.13685 16 0.8767 0.13162 15 -0.8640 0.3668 Medium

R1 Drone 0.64 0.16657 12 0.8392 0.17168 13 -1.1381 0.4192 Large

R1 Football 0.7577 0.15996 13 0.7967 0.17839 12 -0.2231 0.3884 Small

R2 Drone 0.8586 0.1224 7 0.945 0.06025 6 -0.8109 0.5414 Medium

R2 Football 0.93 0.07668 6 0.98 0.05292 7 -0.7176 0.5363 Medium

Global Effect Size -0.6411 0.1697 Medium

Table 20. Global Effect Size for UEffic.

 i* TRiStar

Study System Mean SD N Mean SD N Hedges' g Std. Err. Effect Size

E1 Drone 0.13 0.08341 15 0.1413 0.07429 16 -0.1396 0.3504 Small

E1 Football 0.115 0.07607 16 0.2007 0.10491 15 -0.9157 0.3688 Medium

R1 Drone 0.0817 0.01642 12 0.1523 0.03898 13 -2.2488 0.5010 Large

R1 Football 0.0738 0.02256 13 0.1675 0.03306 12 -3.2273 0.5984 Large

R2 Drone 0.1729 0.06473 7 0.2833 0.10053 6 -1.2382 0.5716 Large

R2 Football 0.1733 0.06055 6 0.2743 0.12921 7 -0.9052 0.5471 Medium

Global Effect Size -1.1389 0.1867 Large

With these values and following Dieste’s directions [35] Weighted Mean Difference (WMD)

method was chosen, as it gets the best score in reliability and statistical power for both UEffec

and UEffic. FiguresFigure 13 and Figure 14 summarize the WMD results for both variables.

Figure 13. UEffec WMD meta-analysis

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 32

Figure 14. UEffic WMD meta-analysis

Calculated p-values (0.00016 for UEffec and < 1 x 10
-5

 for UEffic) allow us to reject the null

hypothesis and say that both effectiveness and efficiency of TRiStar and i* are different. In

addition, the cell in the “Overall” row and “Std. diff. in means” column of both tables show the

WMD values for effectiveness (-0.66455) and efficiency (-1.18097). As both values are less

than 0 we can state that TRiStar provides better effectiveness and efficiency when specifying

TR systems requirements.

5.6 Observational Findings

This section deals with the conclusions extracted from the observations made during the

experiments. Most questions asked by the participants were related to the representation of

priority in i*. They could all remember how priority was represented in TRiStar but some had

forgotten how thus was done in i*, although both techniques had been explained at the same

time. This suggests that the participants found the prioritized decomposition links in TRiStar

more intuitive and when they saw an i* diagram with no prioritized decomposition links they

could not figure out a way of representing priority without them.

The results obtained in the second replication, with a sample of experienced software

developers, were better for effectiveness and efficiency than those obtained from the students.

However, the relationship between both languages is similar: effectiveness and efficiency are

better in TRiStar. The experience of the software developers probably helped them to learn new

notations. In addition, SAES developers are used to dealing with much more complex problems

than those given in the experiment. Most of them stated that they preferred using graphical

notations instead of directly reading TR program rules.

TRiStar obtained better results in effectiveness but the efficiency results were much better than

those for i*. This suggests that although i* is still an appropriate language for representing TR

systems, TRiStar does the job better and faster.

The question in the questionnaire which obtained most incorrect answers in every experiment

was one included in the drone example. In fact, none of the subjects who specified the drone

with i* answered this question correctly. Those who specified the drone with TRiStar had better

results, but there were still a lot of wrong answers. This question was related to representing

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 33

rules whose condition is always true. These results suggest that dependent decompostion links

help to link conditions to rules, even though the representation of unconditioned rules in

TRiStar could be improved.

6 Threats to the Validity of the Family of Experiments

In order to reduce research and publication bias, as recommended in [36], the raw experimental

data can be consulted in http://xurl.es/RawData. This section deals with some issues that could

have threatened the validity of the experiment, in line with the recommendations of Wohlin et al

[37].

6.1 Validity of the conclusions

The statistical indicators obtained from both the individual experiments and the meta-analysis

are well above a 95% confidence level, which allows us to reject the initial null hypotheses.

6.2 Internal validity

 As detailed in the previous section, we showed that all the results of the individual experiments

satisfied the requirements of the selected statistical methods (ANOVA and Kruskal-Wallis

tests). The questionnaires were reviewed by several experts in the development of TR systems

and the use of i* to minimize the risk of incorrect questions.

None of the experiments lasted more than one hour, including the initial briefing by the

instructor, to avoid the subjects becoming fatigued. Besides, the students that participated in the

experiments were given an extra half point towards their final exam, while in the second

replication, the professionalism of the subjects ensured their motivation.

6.3 Construct validity

The method employed to obtain the data from the experiments was a questionnaire similar to

those used in other studies, e.g. [6] and [28], which reduced the threats to the construct validity.

Understandability efficiency and effectiveness were also measured in a similar way to the

above-cited studies: efficiency was obtained by dividing the number of correct answers by the

total number of answers, while effectiveness was calculated as efficiency divided by the time in

minutes taken by each participant to complete the questionnaire, as described in ISO/IEC

25000:2014.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 34

6.4 External validity

According to [38], the differences between final-year students and software professionals when

performing relatively small judgement tasks are minor. Since the questions in the questionnaire

for both students and software professionals were not excessively complex, the mixture of

students and professionals in the experiment did not involve a threat to it. This view is

supported by the the good results obtained for the efficiency parameter, as well as the few

questions raised by the participants on the experiments.

Regarding the nature of the proposed problems, we can affirm that the examples employed in

the experiments were realistic, since both are part of already existing systems.

7 Conclusions and Further Work

In [6] we showed that the understandability of i* notation was better than that of KAOS for

specifying the requirements of teleo-reactive systems. From these results we developed TRiStar,

an extension designed to overcome some shortcomings we identified in i*, which is briefly

introduced in [10] and fully described in the present paper. With the aim of validating the

proposal, we conducted a family of experiments to compare the efficiency and effectiveness of

the understandability of i* versus TRiStar for specifying the requirements of teleo-reactive

systems.

Subjectively, the vast majority of the participants stated that they found the TRiStar

specifications more understandable than those of i*. Regarding efficiency and effectiveness, the

statistical results are conclusive; on one hand, the results of the analysis of the original

experiment and the two replicas, and on the other, the results of the meta-analysis of the

aggregate data considered as a single experiment, provide enough statistical certainty to reach

the following conclusion: both the efficiency and effectiveness of TRiStar are higher than that

of i* diagrams for specifying the requirements of teleo-reactive systems.

In future research work we plan to extend TRiStar in order to cope with the new extensions

proposed by Prof. Keith Clark in TeleoR [3]. We would also like to complete the requirements

specification process for teleo-reactive systems by defining a method of guiding the process,

starting from natural language specifications.

In the sequel to this research, we intend to make a study of the advantages of TRiStar for the

requirements specification of TR systems as compared with a direct approach to TR programs.

Starting from a textual description of a reactive system, the results obtained with TRiStar will

be compared to those obtained by writing the TR programs directly. Among other objectives,

this study will focus on detecting coupling problems among agents, detecting cohesion

problems among goals, implementation effectiveness and early error detection.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 35

Lastly, we would also like to develop a graphical tool to help developers depict TRiStar

diagrams. This tool would include functionalities such as subgoal expand/collapse, which would

be helpful in improving the scalability of the models. This tool will also allow the generation of

the TR program which corresponds to the specified diagram.

Acknowledgements

This work was partially supported by the insPIre (ref. TIN2012-34003), cDrone (ref. TIN2013-

45920-R) and ViSelTR (ref. TIN2012-39279) projects of the Spanish Government. Diego

Alonso wishes to thank the Spanish Ministerio de Educación, Cultura y Deporte, Subprograma

Estatal de Movilidad, Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-

2016 for grant CAS14/00238. We specially acknowledge the support provided by the SAES

Company and its employees, as well as by the students of the Politechnic University of

Cartagena who participated in the study. Lastly, we wish to thank Esther Corbalán for her

support and valuable contribution in carrying out the statistical analysis.

References

[1] Nilsson, N. J. (1993). Teleo-reactive programs for agent control. Journal of Artificial

Intelligence Research, 1(1), 139–158. Retrieved from

http://dl.acm.org/citation.cfm?id=1618595.1618602

[2] Morales, J., Sánchez, P., Alonso, D. (2012). A systematic literature review of the Teleo-

Reactive paradigm. Artificial Intelligence Review, Springer Netherlands, 2012, (pp. 1-20).

[3] Clark, K. L., Robinson, P. J. (to appear 2015). Programming Robotic Agents: A TR Multi-

Tasking Approach. Springer.

[4] Rajan, K., Py, F., McGann, C. (2010). Adaptive control of AUVs using onboard planning

and execution. Sea Technology, April 2010, (pp. 51-55).

[5] Gubisch, G., Steinbauer, G., Weiglhofer, M., Wotawa, F. (2008). A Teleo-Reactive

Architecture for Fast, Reactive and Robust Control of Mobile Robots. IEA/AIE '08

Proceedings of the 21st international conference on Industrial, Engineering and Other

Applications of Applied Intelligent Systems: New Frontiers in Applied Artificial

Intelligence

[6] Morales, J. M., Navarro, E., Sánchez, P., Alonso, D. 2015. A controlled experiment to

evaluate the understandability of KAOS and i* for modeling Teleo-Reactive systems.

Journal of Systems and Software 100 (pp. 1-14).

[7] Sánchez, P., Alonso, D., Morales, J. M., Navarro, P. J. (2012). From Teleo-Reactive

Specifications to Architectural Components: A Model-Driven Approach. Journal of

Systems and Software 85 (11), (pp. 2504 – 2518).

[8] Yu, E. (1997). Towards Modelling and Reasoning Support for Early-Phase Requirements

Engineering. Proceedings of the 3rd IEEE Int. Symp. on Requirements Engineering

(RE'97) Jan. 6-8, 1997, Washington D.C., USA. (pp. 226-235).

[9] Teruel, M. A., Navarro, E., López-Jaquero, V., Montero, F., González, P. (2011). CSRML:

A Goal-Oriented Approach to Model Requirements for Collaborative Systems. Conceptual

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 36

Modeling – ER 2011, Lecture Notes in Computer Science Volume 6998, 2011, (pp. 33 –

46).

[10] Morales, J. M., Navarro, E., Sánchez, P., Alonso, D. 2015. TRiStar: An i* extension for

Teleo-Reactive systems requirements specifications. Proceedings of the ACM Symposium

on Applied Computing, April 13-17, 2015, Salamanca, Spain.

http://dx.doi.org/10.1145/2695664.2695703

[11] "underˈstandable, adj." OED Online. Oxford University Press, March 2015. Web. 20

March 2015.

[12] Genero, M. et al. 2008. Defining and validating metrics for assessing the understandability

of entity–relationship diagrams. Data & Knowledge Engineering Volume 64, Issue 3,

March 2008, (pp. 534–557)

[13] Sommerville, I., Sawyer, P., Viller, S. (1998). Viewpoints for requirements elicitation: a

practical approach, IEEE International Conference on Requirements Engineering

(ICRE'98), Colorado Springs, Colorado, 1998.

[14] Chernak, Y. (2009). Building Foundation for Structured Requirements. Aspect-oriented

Requirements Engineering Explained- Part 1, in: Requirements Networking Group

(RQNG), 2009.

[15] Lamsweerde, A. (2009). Requirements Engineering: from goals to UML models to

software specifications. John Wiley & Sons Ltd, England

[16] Yu, E., & Mylopoulos, J. (1998, June). Why goal-oriented requirements engineering. In

Proceedings of the 4th International Workshop on Requirements Engineering:

Foundations of Software Quality (Vol. 15).

[17] Tsalgatidou, A., Karakostas, V., & Loucopoulos, P. (1990, January). Rule-based

requirements specification and validation. In Advanced Information Systems Engineering

(pp. 251-263). Springer Berlin Heidelberg.

[18] Lamsweerde, A. (2001). Goal-oriented requirements engineering: a guided tour. 5th IEEE

International Symposium on Requirements Engineering (RE’01) (pp. 249–262).

Washington DC, USA: IEEE Comput. Soc. doi:10.1109/ISRE.2001.948567

[19] Ayala, C. P., Cares, C., Carvallo, J. P., Grau, G., Haya, M., Salazar, G., ... & Quer, C.

(2005). A Comparative Analysis of i*-Based Agent-Oriented Modeling Languages. In

SEKE (Vol. 5, pp. 43-50).

[20] Amyot, D., & Mussbacher, G. (2003). URN: Towards a new standard for the visual

description of requirements. In Telecommunications and beyond: The Broader

Applicability of SDL and MSC (pp. 21-37). Springer Berlin Heidelberg.

[21] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos:

An agent-oriented software development methodology. Autonomous Agents and Multi-

Agent Systems, 8(3), 203-236.

[22] Lockerbie, J., & Maiden, N. A. (2008). REDEPEND: Tool Support for i* Modelling in

Large-scale Industrial Projects. In CAiSE Forum (Vol. 344, pp. 69-72).

[23] Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., & Traverso, P. (2004).

Specifying and analyzing early requirements in Tropos. Requirements Engineering, 9(2),

132-150.

[24] A. Sutcliffe, S. Minocha. “Linking Business Modelling to SocioTechnical System

Design”. Proceedings of Advanced Information Systems Engineering, 11th International

Conference CAiSE'99, Heidelberg, Germany, June 14-18, 1999, pp. 73-87.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 37

[25] Jamison, W. and Teng, J.T.C. (1993): Effects of Graphical Versus Textual Representation

of Database Structure on Query Performance. Journal of Database Management 4 (1): (pp.

16–23).

[26] Lee, H. and Choi, B.G. (1998): A Comparative Study of Conceptual Data Modeling

Techniques. Journal of Database Management 9(2): (pp. 26-35).

[27] Bajaj, A. (2004): The effect of the number of concepts on the readability of schemas: an

empirical study with data models. Requirements Engineering 9: (pp. 261-270).

[28] Teruel, M. A., Navarro, E., López-Jaquero, V., Montero, F., Jaen, J., & González, P.

(2012). Analyzing the understandability of Requirements Engineering languages for

CSCW systems: A family of experiments. Information and Software Technology, 54(11),

1215–1228. doi:10.1016/j.infsof.2012.06.001

[29] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El Emam,

K., & Rosenberg, J. (2002). Preliminary guidelines for empirical research in software

engineering. IEEE Transactions on Software Engineering, 28(8), (pp. 721–734).

doi:10.1109/TSE.2002.1027796.

[30] Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). The Goal Question Metric

Approach. In Encyclopedia of Software Engineering (Vol. 2, pp. 528–532). Wiley.

Retrieved from http://wwwagse-old.informatik.uni-

kl.de/pubs/repository/basili94b/encyclo.gqm.pdf

[31] Winer, B. J., Brown, D. R., Michels, K. M. (1991). Statistical Principles in Experimental

Design (3rd ed.) (p. 928). McGraw-Hill Humanities/Social Sciences/Languages.

[32] Grinstead, C.M., Snell, J.L. Introduction to Probability, American Mathematical Society,

2006.

[33] Levene, Howard (1960). Ingram Olkin, Harold Hotelling, et alia, ed. Contributions to

Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University

Press. (pp. 278–292).

[34] Biostat Inc, Comprehensive Meta-Analysis, 2006. <http://www.meta-analysis.com>

(accessed June 2015).

[35] O. Dieste, E. Fernández, R. García Martínez, N. Juristo, Comparative analysis of meta-

analysis methods: when to use which? 15th International Conference on Evaluation &

Assessment in Software Engineering (EASE’11), IET, Durham, UK, 2011, (pp. 36–45).

[36] M. Jørgensen et al., Incorrect results in software engineering experiments: How to improve

research practices, The Journal of Systems and Software (2015),

http://dx.doi.org/10.1016/j.jss.2015.03.065

[37] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., Wesslén, A. (2000)

Experimentation in Software Engineering: An Introduction. first ed., Kluwer Academic

Publishers, Norwell, USA, 2000.

[38] Höst, M., Regnell, B., Wohlin, C. Using Students as Subjects—A Comparative Study of

Students and Professionals in Lead-Time Impact Assessment, Empirical Software

Engineering 5 (3) (2000) (pp. 201–214).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 38

José Miguel Morales is an Assistant Professor and a Ph.D. student in computer sci- ence at the Universidad Politécnica de Cartagena and a member of the

university’s DSIE (Division of Systems and Electronic Engineering) research group. His research interests include real time systems, and specification and

design of teleo-reactive systems. Morales has a master’s in information technology engineering from the Universidad de Murcia.

Elena Navarro is an Associate Professor of Computer Science at the University of Castilla-La Mancha (Spain). Prior to this position, she worked as a

researcher at the Informatics Laboratory of the Agricultural University of Athens (Greece) and as a staff member of the Regional Government of Murcia, at

the Instituto Murciano de Investigación y Desarrollo Agroalimentario. She got her bachelor degree and Ph.D. at the University of Castilla-La Mancha, and her

master degree at the University of Murcia (Spain). She is currently an active collaborator of the LoUISE group of the University of Castilla-La Mancha. Her

current research interests are Requirements Engineering, Software Architecture, Model-Driven Development, and Architectural Knowledge.

Pedro Sánchez received his Ph.D. degree in computer science from the Technical University of Valencia, Spain, in 2000. Since 1996, he has participated in

different projects focused on software engineering and conceptual modeling applied to the development of reactive systems. In 2000, he joined the Systems

and Electronic Engineering Division (DSIE) at the Technical University of Cartagena. He is currently an Associate Professor at the Technical University of

Cartagena in the field of computer science. His current research interests include software engineering for implementing teleo-reactive systems.

Diego Alonso is currently an Associate Professor of Computer Science at the Universidad Politécnica de Cartagena (Spain) and a member of the DSIE

(Division of Systems and Electronic Engineering) research group. He received a M. Sc. Degree in Industrial Engineering from the Universidad Politécnica de

Valencia (Spain), and a Ph.D. with “Doctor Europaeus” Mention form the Universidad Politécnica de Cartagena. His research interests focus on the

application of the model-driven engineering approach to the development of component-based reactive systems with real-time constraints, mainly in the field

of robotics.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 39

Appendix 1: Experimental Material - An Example of an Understanding Task (Test for group 2)

Gender (Male/Female)

Age

Qualification

Average score

Have you had any previous experience of working with goal-oriented requirements engineering?

Have you had any previous experience of working with any other requirements engineering technique?

Have you had any previous experience of working with teleo-reactive systems?

 [FILL IN AT THE END] In your opinion, which notation has better understandability?

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 40

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 41

STARTING TIME:

Fill in the blanks so that the obtained TR program agrees with the one that would be obtained

from the previous specification.

1.- DealShipment:

 __________  Land

 __________  DispatchShipment

 __________  MaintainHeightOK

2.- Land:

 Ground  ______

 ___________  go_down

3.- Choose the correct (a) or (b):

(a).- DispatchShipment:

 Loaded  DeliverShipment

 NOT(Loaded)  followGPSToOrigin

(b).- DispatchShipment:

 NOT(Loaded)  followGPSToOrigin

 Loaded  DeliverShipment

4.- DeliverShipment:

 _______  release

 true  followGPSToDestination

5.- MaintainHeightOK:

 height > hMax -> _______

 ________________ -> go_up

ENDING TIME:

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 42

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

-43-

STARTING TIME:

Fill in the blanks so that the obtained TR program agrees with the one that would be obtained from the

previous specification.

1.- RobotNextToBall:

 BallAhead  ___________

 True  rotate

2.- OwnGoalSafe:

 _______________________________________  RobotAtOwnGoal

 True  _________________________

3.- RobotAtOwnGoal:

 ____________________  nil

 OwnGoalAhead  __________________

 True  rotate

4.- BallPassedToFriend:

 FriendAhead  kick

 _________________  rotate

5.- Choose the correct (a) or (b):

(a).- BallUnderTeamControl:

 BallUnderControl  BallPassedToFriend

 OppControlsBall  BallRecovered

(b).- BallUnderTeamControl:

 OppControlsBall  BallRecovered

 BallUnderControl  BallPassedToFriend

ENDING TIME:

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

-44-

Graphical abstract

