
A Collaborative Learning Experience in
Modelling the Requirements of Teleoperated Systems

for Ship Hull Maintenance1

Joaquín Nicolás, Joaquín Lasheras, Ambrosio Toval
Software Engineering Research Group. Departamento de Informática y Sistemas.

Universidad de Murcia. Campus de Espinardo. 30071 Murcia (Spain)
{jnr, jolave, atoval}@um.esmailto:atoval}@um.es

Francisco J. Ortiz, Bárbara Álvarez
Systems and Electronic Engineering Division. Universidad Politécnica de Cartagena.

30202 Cartagena (Spain)
{francisco.ortiz, balvarez}@upct.es

Abstract: This paper presents a join experience in modelling the requirements of the product
line of teleoperated systems for ship hull maintenance, which are basically robotic systems used
for ship maintenance operations, such as cleaning or painting the ship hull. It is proposed to
specify the product line requirements through a feature model, a conceptual model, and a use
case model, which together allow domain understanding, derivation of reusable product line
requirements, and efficient decision-making in the specification of new systems developed in
the product line. Action Research, a qualitative research method in software engineering, has
been applied to define the collaborative research process.

Key Words: Domain Analysis, Product Lines, Requirements Reuse, Teleoperated Systems,
Feature Modelling
Categories: D.2.1, D.2.13

1 Introduction
This paper presents an experience on modelling the requirements of the product line
of the teleoperated systems for ship hull maintenance (TOS hereafter) through a
collaborative learning process carried out by two Spanish research groups of different
but complementary fields: the Systems and Electronic Engineering Division (SEED)
of the Polytechnic University of Cartagena and the Software Engineering Research
Group (SERG) of the University of Murcia.

In recent years, SEED has gained considerable experience in developing software
reference architectures in the TOS domain [Fernández et al., 2004]. To date, SEED
has paid less attention to requirements reuse in this product line than to architectural
components reuse.

1 Partially financed by the CICYT (Science and Technology Joint Committee), Spanish Ministry of Science and Technology, project

DYNAMICA (DYNamic and Aspect-OrienteD Modeling for Integrated Component-based Architectures, TIC2003-07804-C05).

Independently, SERG has defined a reuse-based requirements engineering
method and has developed catalogues of reusable, textual requirements in security
[Toval et al., 2002a] and personal data protection [Toval et al., 2002b] domains.

An increment in the abstraction level of knowledge management could improve
future reuse (see for example [Cybulsky and Reed, 2000]), so that collaboration
between SEED and SERG appears in a natural way. The goal is to obtain a TOS
domain model to accelerate domain knowledge acquisition and to facilitate the
specification of new systems in the product line and the reuse of architectural
components.

Experience of SERG with the personal data protection and security requirements
catalogues is insufficient. Both domains can be considered well structured, if the
sources of requirements considered are, respectively, Spanish and European legal
documents related to personal data protection, and a well documented method for risk
analysis and management in Spanish public administration. This is why it was
relatively straightforward (in an ad hoc manner) to structure the knowledge of these
domains into two textual requirements catalogues. However, what do we do when the
problem domain is complex and knowledge is not previously structured, as occurs in
the TOS? In these cases an ad hoc approach is not enough to obtain a quality
requirements catalogue. Hence, the need for a better representation and organisation
of the knowledge in wide, complex and slightly structured domains appears.

This work presents a modelling of the TOS product line requirements. Several
existing domain analysis techniques have been adapted in this approach, which
basically consists of: (1) a feature model, as a high level interface that favours the
reuse of the product line requirements; (2) a conceptual model, which leads to greater
domain understanding; and (3) a generic use cases model, enabling descriptions of the
scenarios related to the execution of certain functional features in the feature model.
The use of features and generic use cases makes it possible to capture variability in
the product line. A qualitative research method in software engineering, Action
Research, has been applied to define the research process formally.

This paper is structured in the following way: Section 2 shows how the
collaboration between SEED and SERG has been designed by means of Action
Research. Section 3 briefly outlines the TOS domain. Section 4 discusses the general
approach to the case study, and Sections 5, 6 and 7 show feature, conceptual and use
case models. Finally, conclusions and future works are given in Section 8.

2 Research framework
This contribution reports the results of an experiment designed to obtain a TOS
domain model. Action Research [Baskerville, 1999], one of the most well known
qualitative research methods in software engineering, was used to design the
experiment. The application of Action Research produces a cyclic process in which
all the parts involved in the research participate, examining the existing situation with
the intention of changing and improving it. Action Research is a valid approach for
studying the effects in human organizations of specific changes in systems
development and maintenance methods.

In line with the Action Research terminology, the following roles have been
considered in this experiment:

• The researcher is the SERG.
• The researched is the TOS product line, from a domain analysis point of

view.
• The critical reference group (CRG) is SEED, i.e. the researched for (in the

sense of having the problem the research is to solve). According to Action
Research, the CRG has to participate in the research process too, although it
can be involved less actively than the researcher.

• The stakeholders are all those organizations that might benefit from the
results of the research: in this case, the CRG and, in general, companies that
perform ship hull maintenance tasks.

The activities performed in each cycle of Action Research can be summarised as

follows:

• To begin, a planning is made, in which the questions to guide the research

are identified and the actions to solve those questions are specified. In this
case study, first the interest of performing an analysis of the TOS domain
was justified and then the state of the art in the domain analysis field was
studied in order to propose an approach to tackle the problem.

• An action task follows, in which the researcher takes part in the real situation
through a careful, deliberate, and controlled variation of the practice. In this
case study, the researcher, together with the CRG, built an initial model of
the TOS.

• Then, an observation or evaluation is made, in which information on the
effects of the action is collected.

• The cycle ends with a reflection, in which the results are shared and analysed
by all the interested parts, and new important questions can be raised which
can be tackled in a new cycle of Action Research.

3 Teleoperated Systems for Ship hull Maintenance
The global objective of the European project EFTCoR (Enviromental Friendly and
Cost-Effective Technology for Coating Removal, Fifth Framework Programme)
[Fernández et al., 2004], carried out by SEED, is the development of a new
technology for ship coating removal. The project tries to solve a critical problem in
the European naval industry: the preparation of the hull surface for painting in an
environmentally friendly way.

TOS consist of the following subsystems: the Robotic Device Control Unit
(RDCU), which controls the devices used for coating removal; the monitoring
subsystem, which carries out the tasks of management of information related to ship
maintenance; the vision subsystem, which performs the visual analysis of the hull; and
the recycling subsystem, which is in charge of removing wastes from the work area
and recycling it.

4 A Framework for Domain Analysis
In planning the collaboration, the most important decision was to base modelling on
features (cf. FODA [Kang et al., 1990], FORM [Kang et al., 1998] or PLA [Kang et
al., 2001]), which intuitively specify the vision of the product line that the
stakeholders have. With features the domain can be explored quickly in order to know
the main issues and the common and variable points. In addition to the feature model,
the following have also been used in the modelling of the TOS:

• A conceptual model, showing the concepts of the domain and their

relationships.
• A use case model, describing in detail the interactions between the external

actors and the system that can occur during the execution of some functional
features of the feature model.

In contrast to previous experiences [Toval et al., 2002a, Toval et al., 2002b], the

structure of the TOS catalogue of requirements does not consist of a list of (mainly
textual) requirements which are structured in a document hierarchy. Now the
requirements are directly structured in the catalogue starting from the feature model:
features are related to use cases and non-functional requirements through traceability
links. By using features instead of natural language requirements, a more agile
reasoning –without considering the location of the requirements in the requirements
documents– is sought. Thus, during the specification of a product belonging to the
product line, customers can “navigate” in the “problem space” through the “decision
space” that features make up, selecting one feature or another, in an easier way than
scanning a requirements list in order to select one requirement or another. Moreover,
during the initial requirements specification, it is more convenient to perform a
feature analysis than to write quality textual requirements, which have to be
unambiguous, complete, consistent, and verifiable, as the IEEE 830 standard
establishes.

5 Feature Model
The functional and non-functional capacities and the technology constraints that can
appear in the products of the product line are modelled in the feature model. This
feature model plays an essential role in the domain analysis of the TOS: clients
usually specify their necessities intuitively in terms of the “features that the new
system has to have or provide”, understanding these as abstractions of the capacities
of the system that must be implemented, proven, given and maintained [Kang et al.,
1998]. Both clients and developers can intuitively understand the feature model.

In this case study, the feature model defined in FORM has been adopted, and
extended as follows:

• With the goal of simplifying the feature model, the four layers of features of

FORM (whose complexity is criticised in [Trigaux and Heymans, 2003])
have been reduced to only two: capability and implementation. The latter
gathers the original layers of “operating environment”, “domain

technology”, and “implementation technique”, which are very close and
sometimes seem to overlap, giving rise to confusion.

• In [van der Maβen and Lichter, 2002] the requirements are described which
any notation must satisfy to model variability in a product line.
Subsequently, [Trigaux and Heymans, 2003] add another requirement: the
graphical representation of variability, and in particular, of variants, variation
points and cardinalities of variation points. With the goal of satisfying all the
requirements, the original notation of FORM has been extended with the
graphical representation of variation points (as per [Griss et al., 1998, van
Gurp et al., 2001]) and cardinalities (following [Riebisch et al., 2004]).

A part of the feature diagram is shown in Figure 1, where the services offered by

the family product are reflected. The relationships between the layers of capability
and technology are specified through the implemented-by traces, such as the one that
shows the types of technology used to make cleaning (Sand-Blasting and Hydro-
Blasting). This implemented-by trace also represents a variation point within the
product line, identified as Coating Removal Technology. The cardinalities of the
variation points can be also observed in the diagram: in this case study, only
alternative features of which at least one must be chosen have been identified, so each
has cardinality 1.

(...)

(...)

(...)

Services

Ship Monitoring
Services

Vision

Maintenance
Information

Fresh
Water

Washing

Painting

Recycling

Scheduling

Ship Maintenance
Services

Primary Secondary

Full Spot

Sand
Blasting

Hydro-
Blasting

Special
Vehicule

Tower
Over
Rail

Cleaning

Simulation

Hull
Inspection

Navegation

CAPABILITY

Crane

IMPLEMENTATION

Devices

Tool Positioning
Devices
Control

State Devices
and Diagnosis

XYZ
Table

Eder
Turbine

Color B/W

Ship
Maintenance

General Purpose
Services

Coating
Removal

Technology

1

Cleaning
Area

Camera

Positioning
Devices

1 1
Relationships

Features

Name Name

Name Name

Variation point

Composed of

Implemented by

Mandatory Optional

Alternative

Figure 1. A part of the feature model.

Each feature is described textually by means of a template (Table 1). Then it is
presented the textual description of the Spot feature (see Figure 1), which belongs to
the capability layer and is mandatory.

FEATURE Spot (capability, mandatory)
Description: cleaning performed only in isolated points of the surface of the ship hull.
Rationale: It is often necessary when the cleaning of the complete hull (full-cleaning) is not of interest or
it can not be performed, because it is more expensive or there are parts of difficult access.
Composition rules: Does not have (i.e., does not break down into other ones)
Binding time: at definition time
Trade-offs: Requires Primary AND Secondary. It is necessary to have secondary and primary positioning
systems, since the primary positioning system is not accurate enough by itself.
Trace to requirements: Spot Cleaning use case

Table 1. “Spot” feature.

6 Conceptual Model
The complex TOS domain was alien to SERG, so a conceptual model was first used
to begin modelling. A classic vision in software engineering (described e.g. by
[Larman, 2005]) was used, according to which the conceptual model describes the
vocabulary of the domain, i.e. the concepts of the problem space and the relationships
between them. Requirements (features and use case) must have as "direct objects" the
concepts of this “information model”.

A part of the conceptual model for the RDCU within the EFTCoR system is
presented in Figure 2, including interactions between the RDCU and the other
subsystems.

External System

Primary
Cleaning Painting Fresh Water

Washing

Blasting Hydro-Blasting

Automated Teleoperated

Operational

Configuration

Positioning

{incomplete}

{incomplete}

{disjoint, complete}

Programmer Operator

Image MMI Vision
System

Monitoring System

Recycling
System

Device RDCU

Controller

Execution mode Command

Secondary

Tool

1..n

1

1

1

1

uses 1

1

1

1

uses

0..n0..n1..n

1

0..n

1

0..n

1enters

11 1

RobotRDCU

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
1

1

0..n
1

0..n
1

interact

1

1..n

1

1..n

executes

Device1 1..n1 1..n

0..1

1

0..1

1

1..n

1..n

1..n

1..n

Maintenance Safe Stop

Diagnosis Apprenticeship Calibration

{disjoint, complete}

Vehicle
1

0..1

1

0..1

Mode1

1

1

1

Figure 2. A part of the RDCU conceptual model.

7 Use Case Model
The execution of some functional features of the feature model can be naturally
specified as a use case: when a system’s actor requires the execution of a feature to
obtain an observable value, causing a set of interactions with the system that can be
captured within a use case (e.g. Cleaning and Tool calibration features of
Figure 1). An N:M relationship between features and use cases can be established: for
example, the Cleaning feature can be related to several use cases in Figure 3 (Full
Cleaning and Spot Cleaning), and the Spot Cleaning use case can be related to several
features (Cleaning, Spot, Automatic, Semi-Automatic and Teleoperated).

The use case model is structured through features, expressing with these the
variation points of the product line, and thus avoiding as much as possible an overload
of the use case model with the complexity associated to the product line variability.
However, there is variability intrinsic to use cases in a product line −that associated to
the possible variations in the steps of the different scenarios captured in the
description template of the use case−.

After reviewing different approaches to capture the variability of a product line in
the use cases [Gomaa and Shin, 2002, John and Muthig, 2002, Halmans and Pohl,
2003, van der Maβen and Lichter, 2002, Eriksson et al., 2004], that of [Eriksson et al.,
2004] has been adopted, since it is in line with the focus previously described, and
because it proposes the use of two interesting techniques:

• Change cases, which capture the possible impact in the use cases of the

adoption of future, anticipated extensions of the system that are still
unavailable. Such possible changes are grouped in special use cases
denominated change cases [Ecklund et al., 1996]. What use cases can be
affected by each change case is indicated by means of the impact link trace
relationships. For example, Figure 3 shows a change case, Hydro-Blasting,
implying a change in the cleaning technique used (Sand-Blasting until now).

• Modelling of the variability in the description of use cases, using (1) (local
and global) parameters in the description of the use case, and (2) an
extended version of the textual description of the black box flow of events of
the RUP SE (Rational Unified for Process Engineering Systems) [Cantor,
2003], in which the steps of the scenario where variation can appear are
expressed in a special notation (see Table 2). Firstly, the description of the
flows of events is made considering the system as a black box (Table 2).
Later, the description is reviewed and each black box step is replaced by a
sequence of white box steps, showing the interactions of the different
subsystems to support each black box step.

In order to make the use case diagram more legible, and following [Gomaa,

2005], optional and alternative use cases are labelled with the «optional» and
«alternative» stereotypes. The details of the variability are specified in the feature
model.

It can be observed that several steps are alternatives in the textual description of
the use case in Table 2 (they use the same number), evincing that the action can be
made in a teleoperated or automatic form: a step 2 would be traced to the

Teleoperated feature and the other step 2 to Automatic (analogously to step 3). Notice
that trace relationships can be established between complete use cases −or steps in use
cases− and features. Moreover, optional steps such as (4) are also captured. In
addition, a global variable ($MAX_TIME_BUTTON) together with two local ones
(@MAX_TIME_TOOL, @MAX_TIME_SAFE_STOP) have been used to express
the maximum response time to certain actions within the use case.

<<change case>>

<<impact link>>

<<impact link>>

Full Cleaning

Operator

Spot Cleaning

OperatorHydro-Blasting

Figure 3. A part of the use case diagram.

Step Actor Action Black box Black Box Budget
Requirement

1 This use case starts when the
operator pushes the cleaning
button.

The system is started
to carry out the
cleaning operation

Max. response time is
$MAX_TIME_BUTTON

2 The operator sees images of the
ship hull surface and executes
commands to place the tool in
the cleaning area.

The tool is placed in
the cleaning area.

2 The vision system executes
commands of the positioning
systems to place the tool in the
cleaning area.

The tool is placed in
the cleaning area.

3 The operator pushes the button
to activate the tool.

The cleaning tool is
activated.

Max. response time is
@MAX_TIME_TOOL

3 The system activates the
cleaning tool.

The cleaning tool is
activated.

Max. response time is
@MAX_TIME_TOOL

(4) The operator pushes the button
of emergency stop.

The system stops
securely.

Max. response time is
@MAX_TIME_SAFE
_STOP

5 The operator pushes the
cancellation button.

The cleaning stops at
that point.

Table 2. Complete description of the “Spot Cleaning” use case.

8 Conclusions and Further Work
An experience of cooperative research work has been presented where a reusable
requirements catalogue of the TOS product family has been obtained. The CRG
affirms that the documentation of requirements generated for the product line has an

added value through its spreading to clients and developers, given that it is not usually
developed in this type of systems.

According to the experience of the researcher in the field of personal data
protection and security, one risk in the elaboration of a reusable requirements
catalogue for a wide domain is that a catalogue can be obtained, formed by a long list
of textual requirements, which may be correct and very precise but as the same time
difficult to handle. In order to avoid this problem, a feature model has been
incorporated into the catalogue, which can be used as the starting point to structure it.
This model acts as an interface which facilitates requirements selection, permitting an
intuitive navigation through the space of the problem through the feature model. The
natural integration between features and use cases has been seen.

The graphical representation of the variation points in the feature model
−extending the FODA and FORM notations− has been useful to stress the decisions
that have to be taken in the instantiation of the family. Nevertheless, the use of a
notation for the cardinalities has not been crucial: in this respect the FODA and
FORM notations would have been enough in this case study.

The CRG considers that the approach would be more useful with a tool to
navigate easily through the feature model and to manage its graphical complexity,
which quickly makes it difficult to handle.

A possible line of further work consists of assessing the adoption of a process
model to define, develop and maintain the requirements of a product line, like for
example that proposed by PuLSE (Product Line Software Engineering) [PuLSE].

References

[Baskerville, 1999] Baskerville, R. L. Investigating Information Systems with Action Research,
Communications of the Association for Information Systems, 2. 1999

[Cantor, 2003] Cantor, M. Rational Unified Process for Systems Engineering. Part III:
Requirements analysis and design. 2003. http://www-
128.ibm.com/developerworks/rational/library/content/RationalEdge/oct03/m_rupse_mc.pdf

[Cybulsky and Reed, 2000] Cybulsky, J. and Reed, K. Requirements Classification and Reuse:
Crossing Domains Boundaries, 6th International Conference on Software Reuse (ICSR'2000),
Vienna 2000

[Ecklund et al., 1996] Ecklund, E., Delcambre, L. and Freiling, M. Change cases: use cases
that identify future requirements, ACM SIGPLAN Notices, 31, 342 - 358. 1996

[Eriksson et al., 2004] Eriksson, M., Börstler, J. and Borg, K. Marrying Features and Use
Cases for Product Line Requirements Modeling of Embeded Systems, Fourth Conference on
Software Engineering Research and Practice in Sweden (SERPS'04), 2004

[Fernández et al., 2004] Fernández, C., Pastor, J. A., Sánchez, P., Álvarez, B. and Iborra, A.
Co-operative Robots for Hull Blasting in European Shiprepair Industry, Robotics and
Automation Magazine (RAM). 2004

[Gomaa, 2005] Gomaa, H. Designing Software Product Lines with UML: from Use Cases to
Pattern-Based Software Architectures, Addison-Wesley. 2005

[Gomaa and Shin, 2002] Gomaa, H. and Shin, M. Multiple-view meta-modeling of software
product lines, Eighth International Conference on Engineering of Complex Computer Systems,
2002

[Griss et al., 1998] Griss, M., Favaro, J. and d'Alessandro, M. Integrating Feature Modeling
with the RSEB, Fifth International Conference on Software Reuse, Vancouver, Canada 1998

[Halmans and Pohl, 2003] Halmans, G. and Pohl, K. Communicating the variability of a
software-product family to customers, Software and Systems Modeling, 2003

[John and Muthig, 2002] John, I. and Muthig, D. Product Line Modeling with Generic Use
Cases, International Workshop on Requirements Engineering for Product Lines (REPL'02),
2002

[Kang et al., 1990] Kang, K., Cohen, S., Hess, J., Novak, W. and Peterson, A. A. Feature-
Oriented Domain Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021, ADA235785).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University. 1990

[Kang et al., 2001] Kang, K., Chastek, G. and Donohoe, P. Product Line Analysis:A Practical
Introduction., Software Engineering Institute. Carnegie Mellon University. 2001

[Kang et al., 1998] Kang, K. C., Kim, S., Lee, J., Kim, K., Kim, G. J. and Shin, E. FORM: A
Feature-Oriented Reuse Method with Domain-Specific Reference Architectures., Annals of
Software Engineering 5, 5, 143-168. 1998

[Larman, 2005] Larman, C. Applying UML and Patterns, Prentice-Hall. 2005

[PuLSE] PuLSE. Methodology (Product Line Software Engineering) Fraunhofer IESE (Institut
Experimentelles Software Engineering). http://www.iese.fhg.de/PuLSE/. Last access: January
2006

[Riebisch et al., 2004] Riebisch, M., Streitferdt, D. and Pashov, I. Modeling Variability for
Object-Oriented Product Lines, ECOOP2003 - Workshop on Modelling Variability for Object-
Oriented Product Lines, Germany 2004

[Toval et al., 2002a] Toval, A., Nicolás, J., Moros, B. and García, F. Requirements Reuse for
Improving Information Systems Security: A Practicioner's Approach, Requirements
Engineering Journal. Springer, 6, 205-219. 2002a

[Toval et al., 2002b] Toval, A., Olmos, A. and Piattini, M. Legal Requirements Reuse: A
Critical Success Factor for Requirements Quality and Personal Data Protection, IEEE Joint
International Conference on Requirements Engineering (ICRE'02 and RE'02), Essen, Germany
2002b

[Trigaux and Heymans, 2003] Trigaux, J.-C. and Heymans, P. Modelling variability
requirements in Software Product Lines: a comparative survey, FUNDP - Equipe LIEL Institut
d’Informatique. 2003.

[van der Maβen and Lichter, 2002] van der Maβen, T. and Lichter, H. Modeling Variability by
UML Use Case Diagrams, International Workshop on Requirements Engineering for Product
Lines (REPL'02), 2002

[van Gurp et al., 2001] van Gurp, J., Bosch, J. and Svahnberg, M. On the Notion of Variability
in Software Product Lines, IEEE/IFIP Conference on Software Architecture (WICSA'01), 2001

