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Abstract. A supervised version of dFasArt, a neuronal architecture
based method that employs dynamic activation functions determined by
fuzzy sets is used for solving support of the problem of inter-vehicles col-
lisions in roads. The dynamic character of dFasArt minimizes problems
caused by noise in the sensors and provides stability on the predicted
maneuvers. To test the proposed algorithm, several experiments with
real data have been carried out, with good results.
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1 Introduction

The issue of collision avoidance in roads has been addressed from many different
points of view in the current literature. An interesting approach is based on
the creation and interpretation of a scene of vehicles in a potentially conflictive
situation [I] — [7]. Vehicles exchange pose and geographical information, along
with its current maneuver states through ad hoc WLAN networks, in order to
determine their roles in the scene [8§].

However, the problem of defining appropriate dynamics to represent all possi-
ble maneuver states of road vehicles is not simple. To recognize maneuver states,
several authors employ multiple model filters [9], [LI0]. The use of multiple mod-
els allows more accurate positioning and noise estimation, and the possibility
of recognizing different dynamic states of the vehicle [11]]. In order to solve the
problem of often unrealistic switches between models, several authors propose
the use of interactive multiple model (IMM) filtering, in which maneuver states
are formulated as Markovian processes. In works such as [10], the use of an
IMM based method combining constant velocity (CV) and constant acceleration
(CA) models has been found adequate to this problem. Some other authors like
[9] and [12] employ similar assumptions to represent different vehicle dynamics.
Nevertheless, despite of the improvements achieved, the tuning of the CA filter
noise parameters has been found problematic. For example, in case of highways,
typical accelerations do not last long enough to accomplish a transition from CV
state to CA, while situations in urban scenarios are completely different [13].
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In our case, market considerations encourage the use of low cost sensors, at the
expense of high noise values in the measurements. Therefore, a method capable to
interpret very different vehicle dynamics anytime, avoiding noise inconveniences
is advisable.

The dFasArt neural architecture can naturally address these issues. Due to its
dynamic quality, dFasArt allows taking into account the time span of input data,
without the need of keeping buffers of past input or output values. The dynamic
characteristic of the activation functions provides a natural way of filtering noise
in inputs, while the dynamic evolution of the reset signals allows stability in the
predictions.

In this work, a supervised version of dfasArt architecture has been developed
and tested for maneuver detection. In the following Section, a brief description
of the neural architecture is given. In Section [ experimental setup is described
and obtained results commented. Finally, Section Ml summarizes our conclusions
about the work.

2 Supervised dFasArt

FasArt model links the ART architecture with Fuzzy Logic Systems, establishing
a relationship between the unit activation function and the membership function
of a fuzzy set. On the one hand, this allows interpreting each of the FasArt unit
as a fuzzy class defined by the membership-activation function associated to the
representing unit. On the other hand, the rules that relate the different classes
are determined by the connection weights between the units.
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Fig. 1. (a) Supervised dFasArt model arquitecture. (b) Membership-activation func-
tion.

Derived from FasArt, dFasArt uses dynamic activation functions, determined
by the weights of the unit. These weights can be regarded as the defining parame-
ters of a fuzzy set membership function [14]. In dFasArt, learning is unsupervised
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and incremental. In this work, a supervised version on the dFasArt algorithm
has been developed. This modification follows the ARTMAP philosophy, main-
taining the maximum generalization-minimum prediction error principle.

The Supervised dFasArt (SdFasArt) architecture is represented in Fig. [I(a).
SdFasArt uses a dynamic activation function determined by the weights of the
unit as the membership function of a fuzzy set. The signal activation is calculated
as the AND of the activations of each one of the dimensions when a multidimen-
sional signal is considered. This AND is implemented using the product as a T-
norm. Hence, the activity T; of unit j for a M-dimensional input I = (I1 ... Inr)
is given by:

dT’;
J 4 T B (T
dt —ATL; T lel TIJ’L (Il (t))

Where 7;; is the membership function associated to the ith-dimension of unit j,
determined by the weights wj;, ¢;; and vj;, as it is shown in Figure [I(b). The o
parameter determines the fuzziness of the class associated to the unit by:

o=0"2¢cj|+ ¢

The election of the winning unit J is carried out following the winner-takes-all
rule:

T; = max{T;}
J

The learning process starts when the winning unit meets a criterion. This
criterion is associated to the size of the support of the fuzzy class that would
contain the input if this was categorized in the unit. This value is calculated
dynamically for each unit according to:

M .
dR; max(vy;, I;) — min(wy;, I;)
Y AR+ B
dt Rity + R;( |2CJ1'|+6

The R; value represents a measurement of the change needed on the class
associated to the j unit to incorporate the input. To see if the J winning unit
can generalize the input, it is compared with the design parameter p, so that:

— If:
Ry=p
the matching between the input and the weight vector of the unit is good,

and the learning task starts.
— If:

Ry<p

there is not enough similarity, so the Reset mechanism is fired. This inhibits
the activation of unit J, returning to the election of a new winning unit.
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If the Reset mechanism is not fired, then the learning phase is activated and
the unit modifies its weights. The Fast-Commit Slow-Learning concept is com-
monly used.

When the winning unit represents a class that had performed some other
learning cycle (committed unit), the weights are Slow-Learning updated accord-
ing to the equations:

= —-AwW + Bw min(I(t), W)
€ = Ac(I-0C)
¥ — —AyV + By max(I(t),V)

aw
d&

For the case of the uncommitted units, the class is initialized with the first
categorized value, hence Fast-Commit:

Supervision is carried out in the supervisory level, by means of vector I’ =
(I?...I%;). In this level, for each time instant, I® actives the corresponding unit.
The Wk‘}b matrix of adaptive weights associates, in a many-to-one mapping, units
of the category level to units on the supervisory one. When a unit J is activated
for the first time in the category level, weights are adapted by means of a fast-
learning process:

W;b _ Ib

If unit J is a committed unit, a matching between the membership value to

the predicted category and the “crisp” desired value is carried out:

— If:
W3 AT > |1
So that prediction corroborates supervision.
— If:
W3O AT < |1
then matching between prediction and supervision is not strong enough. In
this case, the Reset signal is fired, and a new prediction is made.

When no supervision is present, SdFasArt will predict as output the value
associated to the weight vector of the winning unit, that is, W}b.

3 Experimental Tests

3.1 Experimental Setup

For navigation purposes GPS, an odometry captor, INS sensors and GIS maps
are installed aboard the vehicle prototype. The use of inertial sensors, accelerom-
eters and gyroscopes, supplies continuous positioning even in cases without
GPS coverage, and high frequency measurements [15]. To integrate data com-
ing from different sensors extended Kalman filters (EKF) run a set of different
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kinematical models as detailed in [I5]. Thanks to the MEM (Micro-Electro-
Mechanical) technology, low cost inertial sensors can be considered, at the
expense of higher measurement noises and low level of performance [16]. For
vehicle to vehicle (V2V) communications WLAN ad hoc networks are used [§].
The test vehicle deployment consists of wireless LAN IEEE 802.11b and antenna
by Cisco, EGNOS capable GPS and DGPS (differential GPS) sensors by Novatel
and Trimble, and MEM based IMUs (Inertial Measurement Unit) by Crossbow
and Xsens.

In the measurement collection phase, acceleration and heading turn rate com-
ing from the INS device are gathered (a,w), while velocity is obtained from the
odometry captor installed in the back wheels axis of the vehicle (v). Next, sorting
and synchronization processes are performed. In this phase, a spurious detection
method based on simplified Nyquist inequation is applied [15]. Finally, these data
are used as inputs of the supervised dFasArt algorithm. In this work, although
GPS North and East measurements are collected by our system and used for
positioning purposes, only odometry and inertial measurements are used by the
maneuver detector algorithm. Thus, system performance is not determined by
GPS signal outages, very often in built-up environments.

3.2 Vehicle Models

Maneuver states are typically defined by kinematic vehicle models. In order to
test the performance of the proposed SdFasArt algorithm, three different vehicle
models are used as reference. The outcomes of the algorithm will be then com-
pared with assumed kinematical maneuver truth. The three kinematical models
proposed are based on a simplified bicycle model, in which the orientation of
velocity and acceleration are assumed to be equal (Fig. ). Previous results
achieved by the authors proved that convenience of this assumption. Three dif-
ferent maneuver states are distinguished: AD (acceleration and deceleration),
CR (cruise) and STA (stationary) states.

E

»
»

Fig. 2. Simplified bicycle model of the kinematic behavior of the road vehicle. In this
model it is assumed that the orientation of velocity and acceleration are defined by
heading angle ¢ and rate w, and referred to East, North (E, N) coordinates.
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Fig. 3. Circuit used for training. From top to bottom: GPS trajectory; desired maneu-
ver classification: AD (*), CR (o), STA (+); output from the odometry, v (thick line),
and INS, a (dotted line), w (solid line). Real values of a and w have been scaled to fit
in figure limits.

Acceleration/Deceleration (AD). State vector of the acceleration/decel-
eration model is xop = (x,y, ¢, v,w, a), representing east, north, velocity angle,
velocity, yaw rate of turn, and the acceleration, in the center of mass of the
vehicle. The dynamics of this model are described by

(v + at) cos(¢) 0
(v + at) sin(¢) 0
XAD = 2} + 8 (1)
0 Nwap
0 Naap

where 7,,, and 74, are white noise terms representing the errors due to model
assumptions of constant acceleration and constant yaw rate.

Cruise (CR). State vector and differential equation of the cruise model are the
same as in the AD model (). As previously commented many authors proposed
constant velocity models for cruise maneuver state. However, this has been found
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Fig. 4. Circuit used for validation. From top to bottom: GPS trajectory; desired ma-
neuver classification: AD (*), CR (0), STA (+); output from the INS: V' (thick line), a
(dotted line), w (solid line). Real values of a and w have been scaled to fit in the figure
limits.

problematic in several cases. In our approach, both AD and CR maneuver states
are defined by similar CA models, defining higher noise values for AD state
(Nwap » Masp) i order to fulfill higher dynamics.

Stationary (S). In this case, state vector is simplified being v = w = a = 0,
and the differential equation

XS:[nws Tys Mps 0 0 O]Iv

where 7, nys and 74, are white noise terms representing the errors due to the
model assumptions. Noise parameters of the models are tuned starting from the
sensor specifications.

3.3 Experimental Results

After several experiments to fine-tune the parameters of SdFasArt, values shown
in Table [Il have been chosen.
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Table 1. Parameters of Supervised dFasArt

Description

Parameter|Value
Aw 0.1
Av 0.1
Ac 0.1

6 0.2
a 1e™7
RESET 0.2
Ar 1.21
At 0.98

Time constant of weight’s dynamic

Time constant of weight’s dynamic

Time constant of weight’s dynamic
Minimum fuzziness of the fuzzy categories
Activation value for new classes

Reset level

Time constant of RESET’s dynamic
Time constant of activation’s dynamic
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Fig. 5. Results on the validation circuit. Top: desired maneuver classification: AD (*),
CR (0), STA (+);Bottom: predicted maneuver classification: AD (*), CR (0), STA (+).

Two different circuits have been employed, one for training (shown in Fig. [3)
and the other for validation (see Fig. d). Results obtained for the validation data
are shown in Fig. Bl It can be seen that only a few maneuvers have been mis-
classified. As referred to the assumed truth, 86.36% of the samples are properly
classified. However, manual labeling can only be considered as another proper
estimate of the maneuver truth, since there are not unique criteria to classify
complex dynamics. Thus, some of the errors can be attributed to errors in the
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manual labeling for the estimated maneuver truth of the training data. Further-
more, we can appreciate that transitions from STA to CR or from CR to STA
maneuver states are never predicted by the algorithm, showing the algorithm
prediction consistency.

4 Conclusions

In this work, a Supervised version of dFasArt has been proposed and tested for
maneuver detection in road vehicles. The combination of the dynamic character
of dFasArt with a supervisory module results in a robust classifier, capable to
provide stable outputs in spite of noisy time-varying input data.

The neural architecture has been tested using real data gathered from inertial
and odometry sensors mounted on a vehicle, showing good performance and
consistent results.
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