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Abstract—User requirements for the performance of Global
Navigation Satellite System (GNSS)-based road applications have
been significantly increasing in recent years. Safety systems based
on vehicle localization, electronic fee-collection systems, and trav-
eler information services are just a few examples of interest-
ing applications requiring onboard equipment (OBE) capable of
offering a high available accurate position, even in unfriendly
environments with low satellite visibility such as built-up areas
or tunnels and at low cost. In addition to that, users and ser-
vice providers demand from the OBEs not only accurate con-
tinuous positioning but integrity information of the reliability
of this position as well. Specifically, in life-critical applications,
high-integrity monitored positioning is absolutely required. This
paper presents a solution based on the fusion of GNSS and in-
ertial sensors (a Global Positioning System/Satellite-Based Aug-
mentation System/Inertial Navigation System integrated system)
running an extended Kalman filter combined with an interactive
multimodel method (IMM-EKF). The solution developed in this
paper supplies continuous positioning in marketable conditions
and a meaningful trust level of the given solution. A set of tests
performed in controlled and real scenarios proves the suitability
of the proposed IMM-EKF implementation as compared with low-
cost GNSS-based solutions, dead reckoning systems, single-model
EKF, and other filtering approaches of the current literature.

Index Terms—Data fusion, inertial sensors, integrity, interactive
multimodel (IMM), navigation systems, satellite navigation.

I. INTRODUCTION

ROAD vehicle navigation systems are one of the main
fields of interest in the world of Intelligent Transport

Systems. Road applications such as traveler information, route
guidance, automatic emergency calls, freight management, ad-
vanced driver assistance, or electronic fee collection require an
onboard equipment (OBE) capable of offering high available
accurate position at a low price [1].

For this purpose, much current research focuses on the
combination of odometry, low-cost inertial units, and satel-
lite navigation [2]–[10]. The approach of fusing GPS with
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odometry information [coming from either the Anti-Blocking
System (ABS) system or odometers installed in the vehicle], as
developed in [2] and [3], presents the main disadvantage of the
lack of precision in the heading. To increase the accuracy of the
heading estimate, some authors propose a combination of gyro,
odometers, and GPS receivers [4]–[6]. More precise systems
such as those in [7] and [8] employ GPS/Inertial Navigation
System (INS) at the expense of higher costs. However, further
investigations must be performed to maintain the quality of the
performance of these systems at lower costs.

In this paper, the navigation system is integrated by Satellite-
Based Augmentation System (SBAS)-capable GPS sensors,
low-cost inertial accelerometers and gyros, and the odometry
information coming from the ABS system of the vehicle. The
use of SBAS-capable GPS sensors provides higher levels of
performance in satellite positioning and useful integrity pa-
rameters, such as the Horizontal Protection Level HPLSBAS

(a.k.a. HPLWAAS) parameter [11]. Note that in order to employ
inertial units in mass-market applications, only low-cost inertial
units based on microelectromechanical (MEM) technology are
affordable [12]. MEM-based inertial sensors are much cheaper
than other inertial sensors based on traditional technologies
such as the ring laser or fiber optic gyros, but they offer much
lower levels of performance. On the other hand, the use of
the odometry information coming from the ABS system of the
vehicle supplies low-quality velocity information without any
additional cost.

To fuse the information coming from the sensors, different
approaches can be found in the actual literature. Many of
them rely on the implementation of an extended Kalman filter
(EKF) [2], [3], [5], [6], [9], [13]. The performance of the
EKF is reliable in many practical situations, but the nonlinear
state equations may lead to instability problems. Other filtering
methods can be found in the literature, such as the unscented
Kalman filter (UKF) and the particle-based solution [2], [14],
[34]. Of special interest in the implementation of the filter is
the selection of the proper model for the road vehicle. Many
authors consider similar models to those applied to indoor
robots [15]–[17]. In most of the cases, the vector state of the
model is defined as the vehicle pose (position and orientation)
in Cartesian coordinates, and vehicle movement is considered
as consecutive constant rate curves around their instant rotation
centers. Actual interesting kinematic models can be found in
[4], [5], and [8]. These models offer good solutions under cer-
tain movement restrictions. However, the problem of a model
capable to represent vehicle movements along roads in usual
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driving situations independent of the maneuvering state, traffic
conditions, etc., is still under intensive research.

This paper presents an interactive multimodel (IMM)-based
method applied to the fusion filtering of inertial, odometry,
and satellite data. The implementation of IMM-based methods
allows the possibility of using highly dynamic models just
when required, diminishing unrealistic noise considerations in
nonmaneuvering situations, and the computational charge of
the system. The idea of defining different models according to
the situation in which the vehicle is involved is not new, and it
has been applied to the aerial navigation field in the last times
[18], [19]. Lately, some authors have considered its application
in the navigation systems of road vehicles. In [20], an IMM
method is applied to the problem of object tracking with a video
system in a car. In [21], an extended IMM implementation
is used for car tracking from a range image sequence. The
authors in [22] develop an IMM algorithm to detect lane change
maneuvers based on laser, radar, and vision data.

In our approach, the use of an IMM method allows exploiting
the benefits of high dynamic models in the problem of road
vehicle positioning while avoiding their disadvantages regard-
ing computational charge and unrealistic noise considerations.
Two models of the vehicle have been defined to reproduce
its movements along roads. The straight (or nonmaneuvering)
model reproduces properly straight and mild trajectories of the
vehicle. The curved (or maneuvering) model considers sharp
turns and brusque accelerations in the vehicle state at the
expense of higher noise considerations. The IMM-EKF filter
that was developed calculates the probability of success of
each model at every filter execution scan, supplying a realistic
combined solution for vehicle behavior. These probabilities
are calculated according to a Markov model for the transition
between maneuver states.

The integrity concept in navigation systems can be defined
as the capability of the system to detect anomalies and warn
the user when the system should not be used. Furthermore,
a high-integrity navigation system must be able to reject fake
measurements from the solution and provide an integrity para-
meter of the confidence on the system performance anytime. In
many interesting applications such as GPS-based electronic fee-
collection systems, this capacity to perform a self-evaluation
and provide an uninterrupted meaningful integrity parameter is
crucial [23].

Traditional GPS receivers provide precision parameters
based on Geometry Dilution of Precision calculations. Various
parameters are based on this concept, i.e., Position Dilution of
Precision, Time Dilution of Precision, Horizontal Dilution of
Precision (HDOP), and Vertical Dilution of Precision. The al-
gorithms used to calculate these values can be found in [24]. All
of them are exclusively based on the geometry of the satellite
constellation used in the GPS solution, and errors caused by
wrong pseudorange measurements are not considered.

Currently, two different approaches to provide integrity in
GPS-based navigation systems are Receiver Autonomous In-
tegrity Monitoring (RAIM) and the use of SBAS. The RAIM
technique, which is based on an overdetermined solution to
evaluate its consistency, requires a minimum of five satellites
to detect a satellite anomaly and six or more to be able to reject

it [24]. Unfortunately, this cannot be assumed in usual traffic
situations, especially in cities. The use of SBAS allows one to
have integrity information through the geostationary satellite.
SBASs offer to their client equipments the possibility of cal-
culating an indicative value of position integrity that considers
pseudorange errors, i.e., HPLSBAS. These messages can be
obtained in Europe via the geostationary satellite by using the
European Geostationary Navigation Overlay System (EGNOS)
or via the Internet through Signal In Space through Internet
(SISNeT). However, despite the improvements achieved, the
complete dependency on GPS coverage and the fact that this
integrity information is only based on Global Navigation Satel-
lite System (GNSS) measurements encourage the definition of a
continuous integrity parameter capable of meaningfully model-
ing the positioning quality of the whole multisensor navigation
system.

Apart from the standard HPLSBAS, the proposed navigation
system continuously provides the Horizontal Trust Level (HTL)
parameter [1], i.e., a meaningful value of confidence on the
positioning, which depends on the sensor variances and the
state and covariance of the multisensor data filter anytime.

The rest of this paper is organized as follows: First, a descrip-
tion of the proposed navigation system is presented, including
EKF, UKF, and IMM-EKF filters, and a description of the
hardware in the OBE. Next, results achieved in the tests are
analyzed and discussed. Finally, the conclusions obtained from
this paper are commented.

II. SYSTEM DESCRIPTION

The solution presented in this paper is based on a
GPS/SBAS/INS-integrated system. Next, a brief introduction
to the European SBAS systems (EGNOS and SISNeT) and the
INS units is done.

A. European SBAS Systems: EGNOS and SISNeT

The use of combined GPS/SBAS systems, as compared
to a single GPS solution, provides noticeable improvements.
EGNOS users access corrected GPS positions, along with
integrity information, allowing the calculation of HPL and
Vertical Protection Level parameters. In [11], the results of
several static trials with and without EGNOS values are shown.
According to the authors, EGNOS can decrease the horizontal
position error (HPE95) values from 3.22 to 1.38 m when no
masking was applied (the HPE value can be interpreted as the
maximum position error that can occur and go undetected). In
similar conditions but applying mask values of 30◦, HPE95
values decrease from 6.85 to 2.23 m. In the vertical axis,
the VPE95 value diminishes from 18.72 to 0.53 m when 30◦

masking was applied. SISNeT supplies the same corrections
through the Internet in order to avoid the visibility problems
of the geostationary satellite.

Despite these improvements, GPS/SBAS systems cannot ful-
fill the requirements of high-integrity demanding applications,
especially in city environments, mainly due to the poor GPS
coverage in built-up areas.
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B. INSs

Inertial Measurement Units (IMUs) supply accelerations and
rates of turn relative to the three Cartesian axes of the sensor
body frame. Although these measurements complement the
GPS/SBAS lacks and provide positioning during the outages
of the satellite signal, the double integration process required
to obtain position from the acceleration measurements is the
main source of error for the INS units. In order to avoid
excessive drifts, often updates must be performed by a global
system. In addition, only low-cost inertial units based on MEM
technology are affordable considering a real mass-market OBE.
Unfortunately, these sensors present bad noise features and
drifts, and the implementation of error models is advisable. In
order to diminish the drifts during the GPS outages, odometry
measurements coming from the ABS encoders of the vehicle
are also considered in our system. The ABS system provides
nonprecise velocity information with a very low increase of the
final cost, since no further installations or sensors are needed.
Apart from the precision problem due to the low level of
performance of the ABS encoders, typical odometry problems
such as glides, unequal wheel diameters, or effective wheel
diameter uncertainty are also presented.

To obtain the proper inputs to the data fusion filter from
the raw measurements coming from the sensors, observation
models are implemented, and considerations about sensor per-
formances are done.

C. Multisensor Data Fusion Filter

The data fusion filter that was developed to combine infor-
mation coming from GPS/SBAS, INS, and odometry sensors is
based on a loosely coupled EKF architecture implementing an
IMM method to employ the vehicle model definition that better
describes the current vehicle behavior.
1) Kalman Filter: The Kalman filter is a recursive least-

squares estimator [26], [27]. It produces at time k a minimum
mean-squared error estimate x̂(k|k) of a state vector x(k).
This estimate is obtained by fusing a state estimate prediction
x̂(k|k − 1) with an observation z(k) of the state vector x(k).
The estimate x̂(k|k) is the conditional mean of x(k) given all
observations Zk = [z(1), . . . , z(k)] up until time k, i.e.,

x̂(k|k) = E[x|Zk]

where Zk is the sequence of all observations up until time k.
2) Vehicle Models: In order to represent the movements

of the vehicle along roads, two models have been developed.
Both are based on the rigid solid definition of a four-wheel
vehicle, the back wheels of which can rotate only about a
transversal axis of the vehicle, and the forward wheels turn
describing curves centered in their instant rotation center. Fig. 1
graphically shows the kinematical model and its nomenclature,
which is based on [28]. In the proposed model, xc(k), yc(k)
are the coordinates of the geometrical center of the vehicle
(g.c.), θ(k) is the vehicle orientation, vc(k) is the velocity
in g.c., φc(k) is the angle of the velocity vc(k), and sc(k)
is the slide correction angle. The sc(k) term represents the
slip bias angular component in g.c. that effectively causes the

Fig. 1. Kinematical model.

vehicle to deviate from its ideal course, which is typically a
consequence of unbalanced weight distribution and inaccurate
wheel alignment. To represent this, sideslip angle variations
could also be taken into account, and they are being considered
for future investigations.

Thus, the final velocity angle referred to the North is given
by the addition of θ(k), φc(k), and sc(k). vfl, δfl and vfr, δfr are
the velocities and angles of the forward left and right wheels,
respectively. I represents the instant center of rotation, and b, l,
and ∆ define the vehicle geometry.

The straight model or nonmaneuvering model represents a
basic nonmaneuvering behavior of the vehicle with its transition
equation defined as

xc(k + 1) =xc(k) + Tvc(k) cos (θ(k) + φc(k) + sc(k))

+ 0.5T 2v̇c(k) cos (θ(k) + φc(k) + sc(k))

− 0.5T 2vc(k)θ̇(k) sin (θ(k) + φc(k) + sc(k))

yc(k + 1) = yc(k) + Tvc(k) sin (θ(k) + φc(k) + sc(k))

+ 0.5T 2v̇c(k) sin (θ(k) + φc(k) + sc(k))

+ 0.5T 2vc(k)θ̇(k) cos (θ(k) + φc(k) + sc(k))

θ(k + 1) = θ(k) + T θ̇(k) + 0.5T 2θ̈(k)

θ̇(k + 1) = θ̇(k) + T θ̈(k)

vc(k + 1) = vc(k) + T v̇c(k)

φc(k + 1) =φc(k) + T φ̇c(k)

sc(k + 1) = sc(k) + T ṡc(k) (1)

as noted by

x(k + 1) = f (x(k)) +G (x(k)) υ(k) (2)
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where f is the state transition matrix, G is the noise matrix, and
the state and noise vectors are

x(k) =
[
xc(k)yc(k)θ(k)θ̇(k)vc(k)φc(k)sc(k)

]T

υ(k) =
[
θ̈(k)v̇c(k)φ̇c(k)ṡc(k)

]T

.

In the straight model, φc(k) is modeled by a first-order
function. Hence, both straight and mild trajectories fulfill the
kinematical definition of the model. However, when sharp
curves are performed, it is advisable to represent φc(k) by a
second-order equation. Thus, the state and noise vectors of the
curved model (or maneuvering model) are

x(k) =
[
xc(k)yc(k)θ(k)θ̇(k)vc(k)φc(k)φ̇c(k)sc(k)

]T

υ(k) =
[
θ̈(k)v̇c(k)φ̈c(k)ṡc(k)

]T

and the transition equation for this model can be easily obtained
analogous to (1).
3) Sensor Models: In order to obtain the filter observations

z(k) at scan k, different transformations must be done. The
observation vector of our system is defined as

z(k) =
[
xG

c (k)y
G
c (k)x

I
c(k)y

I
c (k)

θI(k)θ̇O(k)vO
c (k)φ

O
c (k)v

I
c (k)

]T

where xG
c (k), y

G
c (k) and xI

c(k), y
I
c (k) are the Cartesian coor-

dinates of the g.c. according to the GPS/SBAS and INS mea-
surements, respectively, θI(k) and vI

c (k), which are obtained
from inertial measurements, define severally the orientation
and velocity of the g.c. of the vehicle, and finally, θ̇O(k),
vO

c (k), and φO
c (k) are, respectively, the angular velocity, linear

velocity, and its angle in the g.c. observed by the odometry
system. In this section, we present the transformations required
to obtain the observations θ̇O(k), vO

c (k), φ
O
c (k), x

I
c(k), y

I
c (k),

and vI
c (k). The rest of the observation variables can be easily

obtained from the sensor measurements.
4) Odometry Observations: Considering the vehicle as a

rigid solid and the assumptions done in [28], the velocity in
the g.c. vc(k) can be calculated as

vc(k)O = vfl(k)
cos (∆− δfl(k))

cos (∆− φc(k)− sc(k))

where vfl(k) and δfl(k) are, respectively, the velocity and angle
of the forward left wheel. The use of the front left wheel data
(or the front right wheel), as compared to the measurements
coming from the rear wheels, has the benefit of allowing the
calculation of the angular velocity, which can be calculated by
applying (3) if it was assumed that the velocity projection in the
g.c. equals the wheel velocity projection over the diagonal

θ̇O(k) = vfl(k)
sin (δfl(k))

l
. (3)

Finally, to calculate the angle of the velocity in the g.c. (Fig. 1),
the geometrical transformations from the angles of the forward
wheels to the g.c. are given by

d =
l

tan(δfl)
+
b

2

tan (φc(k) + sc(k)) =
l/2
d
.

Thus, the angle of the velocity is

φO
c (k) = arctan

(
l · tan (δfl(k))

2l + b · tan (δfl(k))

)
− sc(k).

5) Inertial Observations: To obtain the inertial observa-
tions, four different phases must be performed.

First, whereas low-cost inertial sensors are used, error mod-
els must be considered. Hence, the first step must be the
implementation of error models for the inertial measurements.
The models implemented in this paper are based on the work
by Barshan and Durrant-Whyte [29] and can be described by

ε = C1

(
1− e

−t
τ

)
+ C2

where ε represents the error model for the acceleration in the
body frame of the sensor, and C1, C2 (in meters per second
square), and τ (in seconds) are model parameters. Fig. 2 shows
the values of the forward acceleration measurement during the
compensation test and the outcome model. During this test,
no forces were applied to the sensors (except for the Earth’s
gravity), and no external updates were performed. In order to
avoid gravity component interferences, the IMU was stabilized
by using calibrated gyros and tilts [30].

The adjustment of the model parameters was performed by
using a Nelder–Mead nonrestricted nonlinear multidimensional
method, where the minimizing function was the mean squared
error [31]. In the test shown in Fig. 2, the parameter values ob-
tained wereC1 = −0.0043,C2 = −0.007, and τ = 500, which
result in a mean value of −3.2172× 10−4 and a standard devi-
ation of 0.0033. With these values, the position drifted 70 cm
after 60 s. In the same test but without applying any error model,
the position drifted up to 55 m.

Second, in order to obtain the acceleration vector referred
to the global frame (North–East–Down) (G) from the local
reference (S), we can use the rotation matrix shown at the
bottom of the next page, where ψ is the yaw, θ is the pitch,
and φ is the roll in the body frame S.

Then, a gravitational model must be applied to compensate
the Earth gravity effects. Typically, in terrestrial applications
with mobile units, the gravity is assumed to be −9.81 m/s2 in
the z-axis and being zero in the two other components in the
global reference frame (local tangent plane).

As a final step, the inertial observations xI
c and yI

c can be
calculated by applying

xI
c(k + 1) =xc(k) + vcx

(k)T + 0.5 · axT
2 (4)

yI
c (k + 1) = yc(k) + vcy

(k)T + 0.5 · ayT
2 (5)
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Fig. 2. Forward acceleration measurements and the model obtained in the error model test.

where xc(k) and yc(k) are the state variables just after the last
update, T is the difference between the time stamp of the iner-
tial measurements and the time stamp of the last measurement
that updated the state vector, ax and ay are the acceleration
values in the global reference system, as obtained from the
previous step, and the values of velocities vcx

and vcy
are

given by

vcx
(k) = vc(k) cos (θ(k) + φc(k) + sc(k))

vcy
(k) = vc(k) sin (θ(k) + φc(k) + sc(k)) .

The observation vI
c can be calculated by using

vI
c (k + 1) = vc(k) + aI

tT (6)

where vc(k) is the state variable just after the last update, and
aI

t represents the module of the acceleration tangential to the
vehicle trajectory, which is calculated according to the inertial
measurements. To calculate aI

t , we will assume that the geo-
metrical and gravity centers of the vehicle coincide in (xc, yc).
Naming α as the angle between the absolute acceleration vector
of the vehicle a and the x-axis, we can affirm that

α = arccos
(ax

a

)
, a =

√
a2

x + a2
y

where ax and ay are the horizontal components of the vector a
and a its projection on the xy plane. Besides, the module of the

tangential acceleration can be calculated as

aI
t = a cos (α− (θ + φc + sc)) .

Thus, the next expression for the aI
t value can be obtained as

aI
t =

√
a2

x + a2
y · cos

(
arccos

(ax

a

)

− (θ(k) + φc(k) + sc(k))
)
.

6) Error Considerations: In the observation models pro-
posed for the odometry and inertial sensors, the observation
model is a function of the state of the vehicle. This could
lead to some undesirable filter inconsistencies, although it can
also bring some benefits to filter implementation. In order to
accommodate the complexity of adding nonwhite noise to the
observations, which violates the noncorrelation hypothesis of
the Kalman filter, we considered the augmentation of the state
vector to estimate this correlated noise during the estimation
process. However, in the correlation tests performed to analyze
this, the autocorrelation function was not found significant, and
the low biases and appropriate performance in the results dis-
couraged this approach. This problem has already been consid-
ered in the current literature. Several authors such as Tham et al.
[28] or Guivant et al. [37] define the observation models as a
function of the vehicle state in order to transform the odometry
measurements of the wheels into their g.c. projections by taking

GSR =


 cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ
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this into account in the consideration of sensor error estimation.
Similar considerations as those presented in these papers have
been done in the estimation of odometry observation errors.

For accelerometer measurements, the proposed error esti-
mation is based on the work by Sukkarieh et al. [38]. Two
different observation faults are distinguished: 1) low-frequency
faults due to sensor biases and the IMU misalignment and
2) high-frequency faults due to multipath errors in the GPS ob-
servations. High-frequency faults are detected by means of the
Normalized Innovation Squared (NIS) inequation, as explained
in Section II-D2. For the low-frequency faults, noise terms have
to be considered in the filter. The expression

ai = aiT + bai
+ ν (7)

describes the error consideration in the acceleration observa-
tions, after the correction process explained in Section II-C5,
which was used for the error considerations in the observation
covariance matrix, where ai is the acceleration observation, aiT

is the real observation, bai
is defined as the acceleration bias,

and ν represents the white noise.
An estimation of the errors committed due to the application

of (4) and (6) to the obtained velocity and position can be
defined by the following expressions, which are analogous
to (5):

vi = viT + bai
t+

∫
νdt+ ηv

xi =xiT +
bai
t2

2
+

∫ ∫
νdt+ ηx

where
∫
ν represents a random walk due to unconsidered errors,

and ηv and ηx describe the velocity and position error terms due
to the variances of the corresponding vc(k) and xc(k) variables
of the previous state given by the state covariance matrix P (k).

The proposed approach has the benefits of deflecting non-
linearities and state dependency in the H matrix of the filter,
which avoids the undesirable consequences of the Jacobian
approximation and its calculation referred to the predicted state,
at the expense of new error considerations in the observation
variables.

D. EKF Implementation

The execution of the EKF can be divided into the following
three phases.
1) Prediction and Observation: We have already seen the

kinematical models of the vehicle. These models are now
used to perform state prediction. Taking into account (2), the
equation for state prediction is

x̂(k + 1|k) = f (x̂(k|k))

where f represents the transition matrix. The covariance of the
state prediction P (k + 1|k) is calculated as

P (k + 1|k) = Fx(k)P (k|k)FT
x (k) +G(k)Q(k)G(k)T

where G(k) is the gain matrix multiplying the noise vector
υ(k). Finally, Fx(k) is the Jacobian of the transition matrix
regarding the state

Fx(k) =
∂f (x(k))
∂x(k)

∣∣∣∣
x=x̂(k|k)

and Q(k) is the covariance noise matrix of the noise vector
υ(k). The observation model is described by

z(k) = H · x(k) + ω(k), ω(K) ∼ N (0, R(k)) .

The relation between vector state and vector observation is
linear and constant (matrix H), and the equation can be
expressed as

ẑ(k + 1) = H · x̂(k + 1|k).

2) Validation: After obtaining the observation vector
z(k + 1), the innovation vector can be calculated as

ν(k + 1) = z(k + 1)− ẑ(k + 1).

The validation region is calculated following a χ2 distri-
bution like

νT (k + 1)S−1(k + 1)ν(k + 1) ≤ g2. (8)

This expression represents an ellipsoid of probability called
NIS, where the threshold g is the number of sigmas in the region
[29]. Since the innovation vector is dynamically created accord-
ing the measurements available at every scan, fault detection is
realized for every sensor vector, which facilitates the spurious
detection. The innovation covariance is

S(k + 1) = HP (k + 1|k)HT +R(k + 1).

3) Update: Once the innovation covariance S is known, the
Kalman gain can be calculated as

W (k + 1) = P (k + 1|k)HTS−1(k + 1).

The estimate position of the vehicle supplied by the filter is

x̂(k + 1|k + 1) = x̂(k + 1|k) +W (k + 1)ν(k + 1)

and the updated covariance is

P (k+1|k+1)=P (k+1|k)−W (k+1)S(k+1)WT (k+1).

Detailed development of the EKF equations for both maneuver-
ing and nonmaneuvering models can be found in [30].

E. UKF

As mentioned in Section I, some other methods apart from
EKF have been implemented to deal with the Kalman filter
linearity assumptions. In the current literature, several examples
of the improvements of the UKF approach as compared to
EKF can be found for problem solving in nonlinear systems
[14], [32], [33]. Of special interest, the work done in [34]
compares the results of EKF, UKF, and Gauss–Hermite filter
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applied to ground target tracking with particle filters. The
potential benefits of UKF implementation in our system have
been analyzed. This section briefly presents the basics of this
filtering technique, and Section III-C will show the results of
the comparison of both methods in tests performed in real
scenarios.

In the UKF, it is not necessary to compute the Jacobians of
the nonlinear system, although values for the sigma points must
be calculated [32], [33]. Given the state vector (L-dimensional)
at time k − 1, a collection of sigma points stored in the
Lx(2L+ 1) matrix is computed as

(xk−1)0 = x̂(k − 1)

(xk−1)i = x̂(k − 1) +
(√

(L+ λ)P (k − 1)
)

i

i =1, . . . , L

(xk−1)i = x̂(k − 1)−
(√

(L+ λ)P (k − 1)
)

i−L

i =L+ 1, . . . , 2L

where

λ = α2(L+ κ)− L

and α and κ are scaling parameters of the filter about the
scattering of the sigma points. The next step is the evolution
of the sigma points through time by applying the f function as

(xk)i = f [(xk−1)i] , i = 0, . . . , 2L.

Finally, the computation of the state vector and its covariance
matrix in the prediction step can be calculated as

x(k|k − 1) =
2L∑
i=0

Wm
i (xk)i

with

Wm
o =

λ

L+ λ

Wm
i =

1
2(L+ λ)

, i = 1, . . . , 2L

and

P (k − 1|k) =
2L∑
i=0

W c
i [(xk)i − x̂(k)] [(xk)i − x̂(k)]T +Q(k)

with

W c
o =

λ

L+ λ
+ (1− α2 + β)

W c
i =

1
2(L+ λ)

, i = 1, . . . , 2L

respectively, where β is a parameter used to incorporate any
prior knowledge about the distribution of x. The tuning values
used in our experiments were α = 1, κ = 0, and β = 2.

In the case of a nonlinear measurement function h, the
transformation of the sigma points through the measurement
function before the correction step must be applied by

(zk)i =h ((xk)i) , i = 0, . . . , 2L

ẑ(k) =
2L∑
i=0

Wm
i (zk)i.

In our particular case, the measurement model is linear;
hence, a standard Kalman estimation step will be computed.

Finally, it can be useful to augment the state vector by
considering the process and measurement noises [35], although
this method requires the use of additional sigma points. In our
case, the process noise will be included as

xa(k) =
[
x(k)
v(k)

]

with its covariance defined by

P a(k|k) =
[
P (k|k) Pxv(k|k)
Pxv(k|k) Q(k)

]
.

F. Integrity Monitoring

As mentioned in Section I, the navigation system proposed
in this paper provides two different integrity parameters. The
HPLSBAS parameter can serve as an integrity parameter to
evaluate the quality of a GNSS-based solution. Its value is
calculated as

HPLSBAS = KH,NPA · dmajor

where KH,NPA is a constant that defines the kind of approach
done for EGNOS (nonprecision approach in our case due to
the dynamic trials performed), and dmajor is calculated by a
set of operations the inputs of which are satellite geometry
parameters and a variance error value of the pseudorange mea-
surements. Further details can be found in [25]. Regardless of
its utility, the HPLSBAS parameter subject to GPS coverage and
considering only GNSS measurements cannot fully represent
without interruptions the quality of the positioning provided
by the whole navigation system. The provision of a parameter
that completely describes the positioning quality achieved by
all the sensors and without availability interruptions is highly
advisable.

As previously seen, one of the main Kalman filter features is
the provision of vehicle state and state covariance (matrix P ).
Since the first two variables of the vector state, i.e., x and y, are,
respectively, East and North coordinates of g.c., the submatrix
Pxy represents the 2-D quadratic form of the squared position
error with 1-sigma scaling as

Pxy =
[
σ2

x σ2
xy

σ2
xy σ2

y

]
.

Since σx, σy , and σxy are real valued and positive, and
σxy < σx, σy , thus, Pxy is symmetric and positive definite, and
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describes an ellipse. The higher of the two eigenvalues of Pxy ,
i.e., λmax, which is the maximum value for the horizontal
position variance, is given by

λmax =
σ2

x + σ2
y

2
+

√(
σ2

x + σ2
y

2

)2

+ σ4
xy − σ2

xσ
2
y.

Defining the parameter HTL as 6-sigma radius of the horizontal
circle around the true position (99.99999% of the computed fix
under the assumption of scalar normal distributed errors), then
its value can be calculated as

HTL = 6
√
λmax.

As presented, the HTL value represents the position integrity
according to the filter noise estimates. Therefore, realistic vehi-
cle models and tuning values are crucial.

G. IMM-EKF Filter

As the dynamic state of vehicles is highly variable over time,
the selected model has to meet the conditions of very different
situations. However, a solution based on the implementation
of a unique model that fulfills the consistency requirements
of scenarios with high dynamic changes provokes unrealis-
tic noise considerations when mild maneuvers are performed,
diminishing the filter efficiency and impoverishing the final
solution. Therefore, an IMM filter has been developed and
implemented. The IMM-EKF filter calculates the probability
of success of each model at every filter execution scan, which
supplies a realistic combined solution for the vehicle behavior.
These probabilities are calculated according to a Markov model
for the transition between maneuver states, as detailed in [30].
To implement the Markov model, it is assumed that at each
scan time, there is a probability Pij that the vehicle will make
a transition from model state i to state j. These probabilities
are assumed to be known a priori and can be expressed in a
probability transition matrix such as

PT =
[
P11 P12

P21 P22

]
=

[
0.7 0.3
0.4 0.6

]
(9)

for our case with two models (r = 2). Note that the sum of
transition probabilities for any given state must be unity. These
values are determined from the statistics of real traffic situations
following [18] and are related to the mean sojourn times and
sampling interval.

The likelihood calculation and the model probability up-
date are performed according to the statistical distance value
given by

d2 = νTS−1ν.

Given an IMM approach, there will be a different residual
covariance matrix Sj(k) and distance d2

j (k) associated with
each of the j models for the update at the scan k. As-
suming measurement dimensionality M and Gaussian statis-

tics, the likelihood function for the observation model given
model j is

Λj(k) =
exp

[
−d2

j (k)/2
]

√
(2Π)M |Sj(k)|

.

Using Bayes’ rule, the updated model probabilities become

µj(k) = Λj(k)Cj(k − 1)/C

where Cj(k − 1), i.e., the probability after interaction that the
vehicle is in state j, can be calculated as

Cj(k − 1) =
r∑

i=1

Pijµi(k − 1)

and the normalization constant C is

C =
r∑

j=1

Λj(k)Cj(k − 1).

Due to the reduced number of models used, the process of
data association, which is extensively discussed in the actual
literature, is simplified in our case, and the state and covariance
estimates can be described by [18]

x̂(k|k − 1) =
r∑

j=1

Cj(k − 1)x̂j(k|k − 1)

P (k|k − 1) =
r∑

j=1

Cj(k − 1)

×
[
Pj(k|k − 1) + (x̂(k|k − 1)− x̂j(k|k − 1))

· (x̂(k|k − 1)− x̂j(k|k − 1))T
]
.

H. Hardware Architecture

The hardware architecture of the OBE is based on a standard
single-board computer with a 32-bit Pentium processor. The
vehicle PC interacts with the user via the human–machine
interface by a monitor, keyboard, and mouse. Serial buses com-
municate the sensors with the PC via RS232 and the Controller
Area Network bus. Some other additional communication net-
works are also available. A BlueTooth wireless link can be
used to connect the vehicle PC with a laptop or other mobile
devices such as personal digital assistants, PocketPCs, etc. A
wireless local area network connection is available through
the Personal Computer Memory Card International Association
slot of the vehicle central processing unit, which facilitates
communication with nearby vehicles. Finally, a General Packet
Radio Service/Universal Mobile Telecommunications System
(GPRS/UMTS) link supplies Internet connection to the system.
The GPRS/UMTS link is used for receiving the EGNOS mes-
sages via SISNeT [11] and can also be used to communicate
the vehicle with remote stations (or other vehicles) for location-
based services. The test vehicle prototype is shown in Fig. 3.
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Fig. 3. Test vehicle prototype.

I. Conclusions of the System Description

Compared to traditional approaches of the current literature
in Section III, the main contributions of this paper are summa-
rized as follows:

1) the capability of the proposed system to solve the typi-
cal problems of traditional low-cost navigation systems
based on dead reckoning (DR), such as those derived
from spurious observations and GPS outages;

2) the potential benefits of UKF as compared with the EKF
in our case of study;

3) the IMM-EKF performance compared with single-model
(SM) implementations, especially in changing maneuver-
ing environments;

4) the possible improvements of using double-constellation
GPS/GLObalnaya NAvigatsionnaya Sputnikovaya Sis-
tema (GLONASS) receivers and the European SBAS
(EGNOS/SISNeT) for both localization and integrity in-
formation provision;

5) the suitability of the HTL parameter to represent the in-
tegrity of a GPS/INS integrated system, avoiding the dis-
advantages of exclusively GNSS-based solutions, along
with the appropriate noise estimation supplied by the
IMM-EKF.

III. TRIALS AND RESULTS

Concerning road applications of the GNSS sensors, two
different scenarios must be distinguished. Despite the fact that
objectives and technologies are the same, the different problems
a GNSS sensor has to deal with in urban and wide open
environments encourage their study from different points of
view [36]. Whereas satellite constellation visibility in wide
open environments is not a problem, and our main efforts are
focused on diminishing the pseudorange errors and increasing
the positioning accuracy, in urban environments, the signal
availability and the multipath propagation that provokes spuri-
ous GPS positions due to the signal reflection near the antenna
are the main problems.

To evaluate the performance of our system in dynamic tests,
depending on the circuit features, different references can be
used. In the trials performed in closed circuit, a custom-made

TABLE I
MAIN FEATURES OF THE TEST SCENARIOS

TABLE II
THALES GG24 PERFORMANCE PARAMETERS (THALES SPECIFICATIONS)

map developed by using the Trimble Pathfinder Office version
3.0. package provides 30-cm accuracy of the map reference
[differential global positioning system (DGPS)]. In those cases
where DGPS measurements were not available, EGNOS has
been selected as the best possible reference. For Geostationary
Earth Orbit (GEO)/GPS dark areas where EGNOS is not avail-
able (not even via SISNeT), Navteq maps can be used for visual
inspection of the positioning.

Trials are organized according the features of interest in
different scenarios, summarized in Table I, and explained in
following sections.

A. GPS/SBAS Trials

1) Double Constellation Trials: For the tests performed in
scenarios 1 and 2, the GPS/GLONASS Thales GG24 sensor
was used. The performance parameters of this sensor are shown
in Table II.

Fig. 4 shows a comparison of the cumulative distribution
functions (cdfs) of the HDOP value in different tests performed
in a wide open environment (scenario 1) and an urban area
(scenario 2). Assuming that HDOP = 3, the signal availability
in the urban area is not much higher than 80% (in the best case).
However, values of 95% are usual in the highway scenario.
These values are similar to those obtained by using a single
GPS sensor. According to our tests, despite the fact that there
is a slight increase of the position availability by using the
double constellation sensor, the main problems, such as lack
of coverage in city environments and multipath errors remain.
2) SBAS Improvements: In order to determine the accuracy

improvements obtained by using EGNOS/SISNeT, the sensor
selected was Novatel OEM-3. Its performance parameters are
shown in Table III.

In this case, the GPS/EGNOS antenna was placed in a
wide open area with very good geostationary and GPS signal
visibility (scenario 3). As can be seen in Fig. 5, when using a
low-cost GPS receiver, the HPE95 value increases to 8.1 m.,
while the Circle Error Probable (CEP) value = 3.2 m for 3694
fixes (a CEP of 3.2 m is interpreted to mean that 50% of the
position estimates will be within 3.2 m of the actual position).
Despite the fact that most of the HPE95 values surround the
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Fig. 4. Comparison of the cdf of the HDOP values logged by the Thales GG24 sensor in (scenario 1: solid green), a wide open area, and (scenario 2: solid blue)
an urban environment.

TABLE III
NOVATEL OEM-3 PERFORMANCE PARAMETERS

(NOVATEL SPECIFICATIONS)

3 m, many of them appear close to 8 m. In the same test,
applying EGNOS corrections to the GPS positions, the HPE95
value decreases to 5.2 m, and CEP = 1.9 m (Fig. 6). Similar
results were achieved in several tests. Therefore, EGNOS can
increase the accuracy of the GPS positions.

Table IV summarizes the results obtained in dynamic tests
regarding the availability of the EGNOS/SISNeT corrections
in test scenario 4. According to these results, EGNOS can
increase the accuracy of single GPS positions during 64.78%
of the traveled time in the combined circuit tested. By using
SISNeT and EGNOS corrections via the Internet, this value
can be increased from 64.78% up to 89.15% (which is 24.37%
more). However, despite of the important improvements, high
demanding applications require more than 96% of position-
ing availability, and some assistance positioning systems are
recommended, especially in city environments, where this rate
decreases to 60%.

B. GPS/SBAS/INS Performance

The lack of GPS coverage in some environments is a consid-
erable problem that cannot be solved by a GPS. As observed in
the previous section, the use of SISNeT and EGNOS in Europe
improves the single GPS solution quality but cannot guarantee
system success during the outages of the GPS signal. The per-
formance of the GPS/SBAS/INS integrated system developed
is commented next. Main issues analyzed in this section are

fault detection capacity, continuous positioning availability, and
the ability to reproduce the vehicle behavior in different usual
driving situations.

The INS was based on an MT9-B Xsens IMU, the perfor-
mance parameters of which are shown in Table V.
1) Fault Detection: In order to achieve a reliable solution,

system failures must be detected, and proper actions must be
performed. The term fault includes not only hardware and
software failures but also false measurements coming from the
sensors. First, acceptation must be considered in the system
designing phase. In this section, we will focus our attention on
the problem of false measurements.

Spurious positions are one of the main problems for a high-
integrity navigation system, especially in city environments.
Spurious (or false) measurements can be defined as those
outside of the 6σ scaling certainty region centered in the real
value of the measurement (assuming Gaussian distributions).
Unfortunately, real values are unknown, and some other para-
meters must be used to categorized a measurement as false.

For spurious detection in GNSS sensors, as previously com-
mented, the RAIM technique requires six tracked satellites to
detect and reject an anomaly. The use of SBAS can improve this
situation but only when geostationary satellite is in view. Never-
theless, the use of information redundancy from all the sensors
can effectively help remove spurious measurements from the
solution and not exclusively from satellite anomalies. In our
filter, a validation algorithm based on the Nyquist inequation
(8) has been included to achieve this.

Fig. 7 shows the trajectories logged by our navigation system
during the tests performed in scenario 5, i.e., the Campus of
Espinardo, University of Murcia. The black line represents
the custom-made DGPS reference, the blue dots represent
the GPS/EGNOS positions, the green line represents the DR
solution, and the red line represents the filter outcome (noted
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Fig. 5. HPE, CEP, and number of fixes by using GPS in test scenario 3.

Fig. 6. HPE, CEP, and number of fixes by using EGNOS in test scenario 3.

TABLE IV
EGNOS/SISNeT AVAILABILITY IN TEST SCENARIO 4

by IMM-EKF in the legend). During this semiurban path, no
position would be available during the frequent GPS outages.
Besides, a single GNSS solution would offer false position
information where spurious GPS positions are logged.

Fig. 8 shows a GPS outage period with detail. Traditional
low-cost solutions for the outages of GPS signal are based
on DR. In DR, no data fusion is performed, and the position

TABLE V
MT9-B Xsens PERFORMANCE PARAMETERS (Xsens SPECIFICATIONS)

is supplied by odometry measurements and the orientation
value coming from the electronic compass during the GPS
gaps. Due to sensor errors and model constraints, the position



502 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 8, NO. 3, SEPTEMBER 2007

Fig. 7. Estimated vehicle trajectories in test scenario 5 without applying validation phase.

Fig. 8. Detail of the estimated vehicle trajectory in test scenario 5 without applying validation phase.

error increases, and undesirable drifts as a consequence of
slides, bad velocity, and heading estimation, and inaccurate
wheel diameter are not corrected. In the lower part of Fig. 8,
a typical situation with GPS coverage gap just after spurious
measurements is visible. This situation, which is very usual in
built-up environments where the signal quality decreases before
disappearing completely, provokes undesirable results by using
the DR solution. As visible, the IMM-EKF solution softens the
multipath propagation errors, but undesirable trimmings still
appear due to multipath spurious measurements. In this first
approach, no validation algorithm was implemented.

Fig. 9 presents the results obtained in test scenario 6.
During the test, the conditions were similar to those in test

scenario 5, but in this trial, the validation algorithm described in
Section II-D2 was applied. As visible, the implemented algo-
rithm rejects the spurious GPS positions from the solutions,
avoiding unpleasant drifts in the positioning consequence of
spurious GPS measurements.
2) Continuous Accurate Positioning: What most users de-

sire, even more than high accuracy in the positioning system,
is continuous accurate positioning. The developed IMM-EKF
system must provide continuous accurate position also during
gaps of GPS coverage.

Figs. 7–10 illustrate typical situations in urban environments,
where problems with GPS/GEO coverage and multipath effects
are usual. The capability of the system to provide continuous
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Fig. 9. Detail of the estimated vehicle trajectory in test scenario 6 applying validation phase.

Fig. 10. Estimated vehicle trajectories in test scenario 7.

positioning is visible. Figs. 11–14 show the position estimate
errors during trials performed in scenarios 5–7. In Fig. 11,
the difference between the DR position estimate error and the
IMM-EKF achieved is clearly visible. As can be seen in Fig. 12,
although the position error estimate of the DR approach is
smaller during periods with GPS/GEO visibility, the value of
the Euclidean distance (ED) when the GPS signal is lost can
increase up to 50 m (as compared to estimated path truth). In
the same test, and using the IMM-EKF solution, the value of the
ED remained below 10 m in the worst case. In test scenario 6,
values of the ED lower than 5 m are usual with peaks of
15 m after 42 s of GPS unavailability. Fig. 14 presents the

position estimate errors for scenario 7 (Fig. 10). In this test,
which was done to evaluate the behavior of the system during
long GPS gaps, the values of the ED reached 35 m after
5 min and 2.5 km with null satellite visibility, which is
good enough to fulfill our requirements. Table VI shows a
comparison of the root mean square (rms) value in the differ-
ent scenarios presented, as referred to the GPS unavailability.
RMS values for position estimate errors below 5 m can
be considered as suitable for most of the actual navigation
applications. On the other hand, a value of 17.5 m after
5 min and 2.5 km of GPS unavailability can be consid-
ered good.
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Fig. 11. Comparison of the position error estimate obtained by DR method and the IMM-EKF in the test performed in scenario 5.

Fig. 12. Detail of the comparison of the position error estimate obtained by DR method and the IMM-EKF in the test performed in scenario 5.

In the tests performed in scenarios 5–7, no sharp turns and
abrupt maneuvers were performed; hence, the study of the IMM
method has no special interest. This issue will be explored in
Section III-D.

C. Comparison of UKF and EKF Performances

In this section, a comparison of the EKF (scenario 8) and
UKF (scenario 9) performances will be done. To accomplish
this, tests were realized in a controlled combined circuit with
precise custom-made map information available. Both filters
were run with the same data sets, obtaining each time similar
results as those presented in this paper. During the 3-km test, an

average velocity of 40 km/h was recorded, and GPS outages of
50 s were simulated.

Table VII summarizes the estimated maximum and rms
errors for the tests performed in this circuit with both EKF
and UKF. The errors and noise estimations obtained by both
methods during the test can be seen in Figs. 15 and 16
(in detail). The achieved results do not present any significant
improvement by using the UKF implementation in the test
performed, and no special benefit is obtained of UKF.
1) Conclusions of the UKF-EKF Implementation: The UKF

approach has been presented in the recent literature as an
improvement of the deficiencies of the EKF due to the non-
linearities of the system. However, both KF and UKF rely
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Fig. 13. Position error estimate obtained by IMM-EKF in the test performed in scenario 6.

Fig. 14. Position error estimate obtained by IMM-EKF in the test performed in scenario 7.

TABLE VI
GPS OUTAGES AND RMS VALUES FOR POSITION

ESTIMATE ERRORS IN SCENARIOS 5–7

on an appropriate definition of the vehicle model to properly
perform, and the use of simple models does not provide good
results in challenging scenarios, while high dynamic models
lead to the impoverishment or the complete divergence of
the solution when wrongly applied. The results obtained in

TABLE VII
GPS OUTAGES, MAXIMUM, AND RMS VALUES FOR POSITION

ESTIMATE ERRORS IN SCENARIOS 8 AND 9

the test performed present no significant differences between
both implementations. Due to that, the most widely used EKF
has been selected for the IMM method. Nevertheless, due to
its potential benefits in diminishing nonlinearity errors, future
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Fig. 15. Comparison of position error estimate and 2-sigma envelope obtained by (scenario 8) EKF and (scenario 9) UKF.

Fig. 16. Detail of the comparison of position error estimate and 2-sigma envelope obtained by (scenario 8) EKF and (scenario 9) UKF.

investigations in vehicle models and filtering techniques will
also consider the UKF option.

D. Trials With Abrupt Maneuvers

In scenarios with low dynamic changes such as highways,
a model representing a straight trajectory as presented in this
paper works correctly. However, when sharp turns and abrupt
maneuvers are performed, the SM approach cannot properly
represent the behavior of the vehicle, and the use of a curved
trajectory model is advisable. Unfortunately, the assumption of
every movement as a curve provokes an increase in the noise

considerations, having repercussions on the position quality.
The IMM-EKF filter implemented runs both filters (straight
and curved) in parallel, estimating the probabilities of defining
the vehicle behavior for both models and offering a unique
common solution by mixing both filtering processes according
to the movement features at every scan.

In the test performed in scenarios 5–7, and 11, no sharp turns
were done. Hence, no special benefit has been obtained in using
the IMM-based method. The probability of the straight model
during the whole trajectory remains close to unity. Therefore,
no further IMM considerations will be done with regard to
these scenarios. Since sharp turns and abrupt maneuvers are
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Fig. 17. Comparison of SM-EKF and IMM-EKF trajectories obtained in the test performed in scenario 10.

Fig. 18. Model probabilities in test performed in scenario 10.

usually performed in short-distance situations such as urban
environments or indoor maneuvering, it is assumed that no
GNSS information is supplied to the filter during the trials
performed in test scenario 10.

In Fig. 17, a comparison between the trajectory offered by
the IMM-EKF filter and the SM solution in this scenario is
shown. The nature of the Markov transition process gener-
ates the switching aspect of the IMM-EKF solution, where
the periods of dominance of one model correspond to high
probability values for this model. Fig. 18 presents the values
of the model probabilities during the trajectory. The relation
between the model probability values and the IMM solution
can be appreciated. According to this figure, key points for
the probability values correspond to time values of 220, 450,
and 633 s. The vehicle positions at those instants are marked
in the trajectory shown in Fig. 17. As observed, those values
correspond to changes in the maneuver state, which changes
from a curved trajectory to a straight one and vice versa.

Since real trials were performed, no certain values for vehicle
positions were available. The nature of the trials for the tests
performed in scenario 10 differs from the proper maneuvering
required to develop accurate DGPS references. In this situation,
we consider EGNOS as the best estimator of the truth path.

The results of the position estimate errors for the trajectory
performed in test scenario 10 (Fig. 17) by using an SM filter
(SM-EKF) and the implemented IMM-EKF can be seen in
Fig. 19. A CEP value of 3 m for the EGNOS reference must
be considered. As can be seen, when using the IMM-EKF
approach, the value of the ED is smaller than in the SM-EKF
case, which remains below 3 m during the whole trajectory.
Table VIII shows a comparison of the rms values for both SM
and IMM solutions. In a test of only 390 m, a reduction of
0.484 m is achieved by using the IMM-EKF implementation.

E. System Integrity Monitoring

Fig. 20 shows the trajectory of test scenario 11, which was
selected to test the suitability of the HTL parameter. In this
typical semiurban scenario, no integrity information would be
available during the frequent periods of GPS outage. Addition-
ally, the geostationary satellite is often missed, still with enough
GPS satellites in view. Therefore, SISNeT would be required to
guarantee the provision of HPLSBAS when GPS is available.

In this test performed in controlled scenario 11, GPS and
EGNOS outages were simulated. This allows testing the po-
sition results and the provision of the ED of the filter solution
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Fig. 19. Comparison of the position error estimate obtained by SM-EKF and IMM-EKF in scenario 10.

TABLE VIII
GPS OUTAGES AND RMS VALUES FOR POSITION

ESTIMATE ERRORS IN SCENARIO 10

referred to the DGPS reference. On the other hand, it is not
possible to calculate real values for the HPLSBAS parameter.
Future trials will be done in order to compare the HTL and
HPLSBAS solutions in real environments. Thus, in this paper,
we will focus our attention on the goodness of the HTL pa-
rameter as an integrity parameter for a multisensor navigation
system.

Fig. 21 shows the position quality (Q), the ED of the solution
(referred to the DGPS reference), and the HTL parameter
during this test. In the upper graph, Q = 2 indicates EGNOS
quality, Q = 1 indicates single GPS, and Q = 0 indicates no
GPS position. The HTL parameter, as described in Section II-F,
will be our integrity indicator, which supplies continuous fully
meaningful integrity information to the user.

In the lower image of Fig. 21, the HTL value (dash–dot
line) presents significant dependence on the GPS coverage
and the filter rejections for avoiding multipath errors. It also
manifests how the reliability on the position decreases due
to the integration process performed by the filter. When the
geostationary satellite is visible, the HTL values are close to
6 m, but higher values are logged when there is no GEO
visibility (and SISNeT is not used).

The HTL value has been compared with the ED of the
estimated position errors during trajectory (solid line). As can
be seen, the estimated position errors also depend on satellite
visibility while keeping good error values during gaps. The rms
value for position estimate error in this trajectory was 3.55 m
with 29 s of GPS outage.

Similarities between HTL and ED behaviors are also visible
in this figure, while the HTL appears to be a safe estimator
(6-sigma) of system position integrity.

According to the trust levels on the positioning logged during
the whole trajectory in test scenario 11, the system performance
may be considered as correct, with the HTL value remaining
below 7 m most of the time, despite the frequent GPS and
EGNOS outages.

IV. CONCLUSION

A high-integrity navigation system suitable for mass-market
location-based road applications has been presented.

In order to design a low-cost navigation onboard system
that fulfills the requirements regarding continuity, accuracy, and
provision of integrity information to the user, the possibilities
offered by satellite navigation have been studied. Different
tests performed by using single GPS, GPS/GLONASS, and
GPS/EGNOS sensors have been analyzed in this paper. Ac-
cording to our investigations, the use of double constellation
sensors has limited improvements as compared with the single
GPS solution. However, further investigations must be done
before rejecting a double constellation solution. In fact, ac-
cording to our tests, the use of the European SBAS system
EGNOS enriches the single GPS solution with more accuracy
and useful integrity information. On the other hand, SISNeT,
which provides EGNOS with messages through the Internet,
offers broad availability of these messages, even in situations
with low visibility of the geostationary satellite.

Despite the aforementioned improvements achieved by
SBAS systems, the GPS/GLONASS/SBAS solution cannot ful-
fill current road application requirements, especially regarding
the continuity of the solution in unfriendly environments such
as built-up areas or tunnels, and some assistance position-
ing system is highly recommended. In this paper, low-cost
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Fig. 20. Estimated vehicle trajectories in test scenario 11 for testing the HTL parameter.

Fig. 21. Coverage and HTL values during the trajectory of test scenario 11.

inertial sensors based on MEM technology have proven to be
useful in guaranteeing fault detection and continuous highly
accurate positioning. Due to the bad noise features of these
sensors and the accumulation of position error as a consequence
of the double integration process required to obtain position
from the acceleration measurements, error models were ap-
plied in order to diminish drifts in the absence of satellite
coverage.

Regarding the filter, the implementation of a loosely cou-
pled EKF architecture running an IMM method to combine
two models of the vehicle allows the use of highly dy-
namic models, thus avoiding the increase of unrealistic noise
considerations during nonmaneuvering situations. A classi-

cal validation algorithm based on the Nyquist inequation
has been implemented, and tests performed in real scenar-
ios show the filter capability to detect and reject false mea-
surements coming from the sensors. The proposed EKF has
been compared to the UKF, where we obtained very simi-
lar results. The EKF option was finally chosen for the fi-
nal IMM-based method for being most widely used in the
literature.

With regard to the provision of integrity information
to the user, the HTL parameter computed in our filter supplies
real-time meaningful integrity information without the
absence of the GNSS-based parameters, such as signal outages
and uncomplete definition of the multisensor system accuracy.
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Future investigations will focus on the benefits of the IMM-
EKF method in localization and maneuvering recognition,
considering a higher set of models and situations, and its
influence on the HTL value.
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