
A Case Study in Performance Evaluation of Real-Time 
Teleoperation Software Architecture using UML-MAST 

Francisco Ortiz, Bárbara Álvarez, Juan Á. Pastor, Pedro Sánchez 

francisco.ortiz@upct.es 
Universidad Politécnica de Cartagena (Spain) 

Abstract. Reference architectures for specific domains can provide significant 
benefits in productivity and quality for real-time systems development. These 
systems require an exact characterization based on quantitative evaluation of 
architectural features refered to timing properties, such as performance, reliabil-
ity, etc. In this work, an UML-based tool has been used to obtain a measure of 
performance between two alternative architectures. These architectures share 
the same functional components with different interaction patterns. The used 
technique is illustrated with an industrial and real case study in a well-known 
real-time domain: teleoperation systems. The obtained results show clear dif-
ferences in performance between two architectures, giving a clear indication of 
which one is better from this point of view1. 

1. Introduction 

Software engineering has demonstrated that much can be gained from developing 
generic software architectures for application domains during the last decade [5]. 
Such generic architectures comprise common properties for a family of related appli-
cations and can be instantiated for each specific system. Our accumulated experience 
in several research projects has allowed us to prove the interest of reusing a reference 
software architecture for teleoperation systems [2]. The use of such architecture has 
allowed reusing common software components in different applications, making 
easier their development and decreasing significantly their costs and development 
times. 

In the mentioned architecture, the application domain was limited to applications 
in which service robots work in structured environments, whose geometrical charac-
teristics are perfectly known before the operation is performed, and in which reactive 
behaviour is usually limited to sensor-driven safety actions. The ROSA  (Remotely 
Operated System Arm) and TRON (Teleoperated and Robotized System for Mainte-
nance Operation in Nuclear Power Plants Vessels) systems are an example of this 
type of applications for maintenance tasks in nuclear power plants [4]. In these sys-
tems, the operator is in charge of monitoring and operating the robot according to the 
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information provided by the teleoperation system. This system receives commands 
from the operator and performs the corresponding actions for executing them.  

The development of a blasting robot for ship hulls [7][8], whose characteristics 
differ from the mentioned above, led us to evaluate if the original architecture could 
be re-used for the new system. The system should work in unstructured environments 
and reactive behaviour is predominant during some operation phases. Given these 
requirements it is necessary to include new services (i.e. a computer vision system) or 
use the existing ones in different ways. As these services were not kept in mind when 
the original requirements were defined, the ATAM method (Analysis Trade-Off Ar-
chitecture Method) [9] was applied to evaluate if the original architecture could be 
used for developing applications capable of guaranteeing the new requirements. 
ATAM was chosen as evaluation method because it is specifically defined to evaluate 
software architectures and considers a characterization of the quality attribute re-
quirements at a level of abstraction very suitable for our evaluation purposes. 

The original architecture considers the existence of a cinematic server capable of 
both testing a given trajectory and generating collision free trajectories according to 
the models of the robot and working environment and to the commanded destination 
point. The cinematic server was not used for on-line collision detection, because the 
systems were not allowed performing a motion not previously tested by mean of a 
previous simulation. However, this approach is not feasible for unstructured envi-
ronments, simply because if the environment is not perfectly defined simulations are 
not useful except for training purposes.  

But the issue here is not if such cinematic server is useful on line, but if any system 
(likely a vision system) can be used on line for collision detection and avoidance or, 
in other words, if the architecture is capable of supporting information and control 
flows not previously  considered. For this reason, the preliminary evaluation simply 
tested if the cinematic server could be used on line while keeping in mind that such 
server should be sustituted by other. The result of evaluation was that performance 
requirements could not be met and it was necessary to propose modifications on the 
original architecture that combine the original components (trying to minimise the 
impact of the changes) with different interactions patterns. 

The model used for representing the temporal and logical elements and real-time 
requirements of applications has been MAST (Modeling and Analysis Suite for Real-
Time Applications), developed by the University of Cantabria (Spain) [6]. MAST 
allows a very rich description of the system, including the effects of event or mes-
sage-based communication multiprocessor and distributed architectures as well as 
shared resource synchronization.  The model is directly obtainable from a description 
of the system design using an UML-based CASE tool [11]. Previous works have 
proved the successfull of the tool over easier applications than the proposed case 
study here. We present our experience in using UML-MAST in the development of 
industrial and real applications.  
   The paper is organized as follows. In section 2 two alternative interaction patterns 
are presented in order to compare the performance of both schemes. In section 3 some 
relevant aspects of MAST are reviewed. Section 4 contains different models that 
represent different scenarios. In section 5 we describe the results of the analysis. 
Finally, section 6 gives some conclusions and discusses further work. 



2. Architectures for teleoperation systems 

Figure 1 shows the components taking into account for performance evaluation and 
their interaction patterns as they were described in the original architecture. Though 
the scheme showed in the figure is somewhat oversimplified is enough to ilustrated 
all the important issues. The components considered are: 

 
• CinServer. This server provides the system with operations for checking if a 

given movement implies a collision between the robot and the operating envi-
ronment, or with itself. This service was provided before the execution of a 
movement command in the original architecture. However, as said before, if the 
robot operates in unstructured environments, CinServer needs to receive the ac-
tual robot position in execution time from HighLevelController. An asynchro-
nous client-server pattern is used in the collaboration diagram of the figure 1. In 
this scheme, HighLevelController sends the current robot position to CinServer 
and retrieves asynchronously the answer telling it if the current motion can cause 
a collision. 

• UserInterface. This subsystem is in charge of interacting with the user. It allows 
him to issue the desired command to the robot and to show the status of its exe-
cution. 

 LowLevelController. This module physically actuates the robot to move it and to 
sense information from the robot in order to evaluate its global state and position. 
This state information is sent to HighLevelController by means of updateStatus. 
In general this subsystem can be ported to any platform, nevertheless its execu-
tion has been considered in the same node of the others subsystems to simplify 
the analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 : UserInterface

 : LowLevelController

 : HighLevelController

 : CinServer

4: updateUI( )
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Fig. 1: Asynchronous client-server pattern 
between CinServer and HighLevelControl-
ler

Fig. 2: Observer pattern between CinServer 
and HighLevelController 

 



The interactions between CinServer and HighLevelController are a system bottleneck 
when CinServer is used on-line. For this reason the interaction pattern between them 
was modified according to the scheme showed in figure 2. In this scheme CinServer 
directly receives the robot position from LowLevelController and HighLevelControl-
ler is subscribed to the events produced by CinServer following an observer pattern. 
The functional components of both schemes are the same, as well as their interfaces, 
but not their interaction patterns. It is also possible than  LowLevelController can be 
subscribed to events or messages from CinServer, but this lead us to further modifica-
tions in the architecture and was not considered. 

The model used for evaluating the timing requirements was based on the charac-
terization of architecture timing behaviour described in [3]. Such description, based 
on Rate Monotonic Analysis method [10], is very exhaustive and allows the designers 
to reason with confidence about timing correctness at the tasking abstraction level, 
and it analyses whether the deadlines of the tasks can be guaranteed. In this way, the 
designer of a new application can reuse the architecture, and can easily check to 
whether the architecture can meet the timing requirements, but it assumes the interac-
tions originally defined and not the new ones and is hard to use when new interac-
tions have to be added. So, instead of using this model to compare the performance of  
the schemes showed in figures 1 and 2, a simpler model, that also uses RMA, was 
defined using UML-MAST. The proposed scenarios do not seek to carry out an ex-
haustive study of the performance, but allow us to compare behaviors with different 
interaction patterns. 

3. Analysis of the architectures using UML-MAST 

The MAST suite defines a model capable of describing the timing behaviour of a 
large set of real-time systems, including distributed systems and event-driven systems 
with complex synchronization schemes. In UML-MAST three views are represented:  

• Platform model. This view allows to model the processing capacity of hardware 
and software resources which execute the activities of the system. There are two 
basic components:  

1. Scheduling servers to represent schedulable entities in a processing re-
source. If the resource is a processor, the scheduling server is a process, 
a task or a thread of control.  

2. Processing resources to represent hardware components and software 
infrastructure. 

The platform model is shown in the figure 3. To simplify the model one node has 
been considered and all the Ada tasks were scheduled according to fixed priority 
policy. 

• Logical components model. This view allows to model processing requirements 
of operations (methods, functions and procedures). In this model, shared re-



sources are defined. These resources are shared among different tasks and must 
be used in a mutually exclusive way2. For example, the data between the differ-
ent subsystems and HighLevelController is  exchanged through a shared buffer. 

• Scenario  model. This view allows to model  the system as a set of transactions. 
Each transaction is activated from one or more external events, and represents a 
set of activities that will be executed in the system. Activities generate events that 
are internal to the transaction, and that may activate other activities. Special 
event-handling structures exist in the model to handle events in special ways. In-
ternal events can have timing requirements associated with them. The previous 
models are common for both collaboration diagrams (figures 1 and 2). However, 
one scenario model was defined for each collaboration diagram respectively. 
These scenario models are described in the next section. 

                                                           
2 The operations and resources for this case are not presented in this work for space 
reasons. The operations invoked by the tasks of platform model are presented in the 
scenarios model. 
 

 

HLC_SP 
<<Fixed_Priority_Policy>> 

UI_SP 
<<Fixed_Priority_Policy>> 

CinServer_Sp 
<<Fixed_Priority_Policy>> 

LLC_SP 
<<Fixed_Priority_Policy>> 

StationTimer
Worst_Overhead = 7.0E-6
Period = 1.0E-3

<<Ticker>>

HLC_Task
<<FP_Sched_Server>>

UI_Task
<<FP_Sched_Server>>

CinServer_Task
<<FP_Sched_Server>>

LLC_Task
<<FP_Sched_Server>>

TeleopPlatform 
Speed_Factor = 4.0 
Max_Priority = 31 
Min_Priority = 1 
Max_Interrupt_Priority = 32 
Min_Interrupt_Priority = 32 
Worst_Context_Switch = 5.0E-6 
Avg_Context_Switch = 5.0E-6 
Best_Context_Switch = 5.0E-6 
Worst_ISR_Switch = 2.5E-6 
Avg_ISR_Switch = 2.5E-6 
Best_ISR_Switch = 2.5E-6 

<<Fixed_Priority_Processor>> 

The model only considers a  
processor. 
Values of attributes  
corresponds with one of the   
tests performed.

Scheduling Servers. 
Implemented as Ada tasks. 
There is a one to one correspondence with  
the entities described in figures 1 and 2. 
LLC: Low Level Controller 
HLC: High Level Controller 
UI: User Interface 

Scheduling policies  
assigned to tasks- 

<<executes>>

<<has assigned>>

Fig. 3. Platform Model. 



4. Scenario models 

Two scenario models (figures 4 and 5) have been elaborated in order to characterize 
the interactions described in the figures 1 and 2. Following the UML-MAST notation, 
several transactions have been considered and the corresponding timing parameters 
are attached as UML association relationships. For example, transaction ServosCon-
trol in figure 4 has attached a periodic arrival pattern, PidTick; stereotyped as Peri-
odic_Event_Source (T= 5ms) and a deadline, ServosDeadline, stereotyped as Ser-
vosDeadline (D = 5 ms). Because architecture used to be developed before an exact 
definition of timing requirements is available, periods and deadlines have been as-
signed taking into account the usual values in the application domain. Moreover, 
timing requirements will be different along the different applications that will be 
developed using the architecture. For this reason, at the architectural level of abstrac-
tion and for the purposes of the analysis the important issue is not such values them-
selves, but (1) that they were the same in both schemes to allow the comparisons and 
(2) that architecture can be adapted to different timing requirements. 
   Figure 4 shows the scenario model related to the collaboration diagram of figure 1. 
In this scheme, the services from CinServer are explicitely invoked by HighLevel-
Controller when a new position data is received from LowLevelController. Three 
regular transactions are considered: ServosControl, CollisionControl and UpdateDis-
Status.  
 

 
 

Fig. 4: Scenario Model 1.

ServosDeadline
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In UML-MAST, each transaction is described by an activity diagram. Figures 6 and 7 
describe the transactions ServosControl and UpdateDisStatus. The transaction Servo-
sControl represents the servo control of the teleoperated mechanisms. The transaction 
UpdateDisStatus gives the updating of data in the graphical user interface of those 
mechanisms. Figure 8 shows the UML activity diagram associated to the transaction 
CollisionControl. This transaction represents how the collision detection is managed 
in the collaboration diagram of the figure 1. Each element of the activity diagram has 
a stereotype that define it in the UML-MAST model. It is beyond the scope of this 
paper to describe such model and the reader can see [6] for a detailed information. 
But very roughly: 

 Each swingline is labeled with the name of the task that perform the activities of 
such swingline. So, it is easy to identify the tasks involve in each transaction an 
their interactions. 

 Each transaction starts with the arrival of a timed clock driven event. So, initially 
the first task involves in a transaction is in a Wait_State. A Wait_State in the 
UML-MAST model represents that the task is waiting for an external event for 
its activation, that in all the cases considered such external event is a clock event. 
Note the correspondence between the names of the Periodic_Event_Sourse in 
figures 4 and 5 and the names of the Wait_States of figures 6 to 10. 

 All the activities are stereotyped as Timed_Activity. A Timed_Activity encloses an 
operation or a set of operations whose timing behaviour is well described in the 
model. Such operations can include the access to shared resources. In this case it 
is possible to follow the original ceiling priority protocol or immediate ceiling 
priority protocol. It is important to remark that all the transactions can be per-
formed simultaneously, despite they are describe in separate diagrams. 

 Finally, transaction ends when reaching a Timed_Stated that describes then dead-
line of the transaction. Note the correspondence between the names of 
Hard_Global_Deadline of figures 4 and the names of the Timed_Stated in fig-
ures 6 to 10. 

The collaboration diagram from figure 2 has associated the scenario model given in 
figure 5. This model considers the previous transactions ServosControl and Update-
DisStatus. However, the collisions detection is represented by the transaction Colli-
sionControl2. In this case, the robot position information is sent from LowLevelCon-
troller to CinServer without passing HighLevelController. Figure 9 gives the activity 
diagram associated to the transaction CollisionControl2. Finally, the activity diagram 
of figure 10 is exclusively associated to the scenario model 2 and represents the 
transaction MonitorState.  This transaction includes the activities which are periodi-
cally performed by HighLevelController to receive new state data from LowLevel-
Controller. In the previous scheme (figure 1), this task was not necessary because it 
was included in the transaction CollisionControl since robot position and state are 
managed by HighLevelController. The previous models have been intencionally 
simplified. However, those simplifications make easier the interaction process given 
by the original scheme (figure 1). Even so, the response times are worse than the 
given by the another scheme (figure 2). 



ServosControl 
<<Regular_Transaction>> 

ServosDeadline

Deadline : Time_Interval = 5.0E-3
Response_Time = 0.004888

<<Hard_Global_Deadline>>

PIDTick

Period : Time_Interval = 5.0E-3

<<Periodic_Event_Source>>
UpdateDisStatus

<<Regular_Transaction>>
UpdateTick 

Period : Time_Interval = 100.0E-3 

<<Periodic_Event_Source>> 

UpdateDisplayDeadline 
Deadline : Time_Interval = 10.0E-3 
Response_Time = 0.006197 

<<Hard_Global_Deadline>> 

CollisionControl2 
<<Regular_Transaction>> 

CollisionDeadline

Deadline : Time_Interval = 25.0E-3
Response_Time = 0.010992

<<Hard_Global_Deadline>>

CollisionTick2

Period : Time_Interval = 25.0E-3

<<Periodic_Event_Source>>

MonitorState
<<Regular_Transaction>>

MonitorDeadline 
Deadline : Time_Interval = 25.0E-3 
Response_Time = 0.012554 

<<Hard_Global_Deadline>> 

MonitorTick 
Period : Time_Interval = 25.0E-3 

<<Periodic_Event_Source>> 

Fig. 5: Scenarios model 2  

5. Results of the analysis 

Table 1 shows the results of the analysis of the previously described scenario models. 
The MAST tool automatically sets task priorities following the Rate Monotonic 
Scheduling algorithm. The well known Rate Monotonic Analysis method has been 
considered. As the table shows, the response times for collision detection (Collision-
Control) and user interface update (UpdateDisStatus) are bigger in the scenario 1 
than in the scenario 2. However, the response time of the transaction ServosControl is 
a little bigger in the scenario 2 than scenario 1. This last transaction is independent 
both of the interaction patterns used by HighLevelController. It must be high-
lighted that all the considered simplifications benefit the original scheme of interac-
tions. A more complex model that takes into account explicitly the internal tasks of 
HighLevelController (not included in this paper for space reasons) produced the re-
sults showed in Table 2 (as more tasks were considered, CPU capacity was increased 
respect to the used in Table 1 for avoiding deadlines expiration). It is remarkable that 
the response times corresponding to scheme 1 worsen rather fast when new tasks are 
added,while the corresponding to scheme 2 remain more stable. The unique adavan-
tage of scheme 1 according to the tables is that the response time of ServosControl 
task is slightly shorter. 

 
Transaction Events arrival  

pattern 
Deadline Scenario 1 

Response time 
Scenario 2 
Response time 

ServosControl Periodic,   T = 5 ms 5 ms 3,8 ms 4,8 ms 
UpdateDisStatus Periodic,   T = 100 ms 100 ms 17 ms 6,1 ms 
CollisionControl Periodic,   T = 25 ms 25 ms 14 ms  
CollisionControl2 Periodic,   T = 25 ms 25 ms  11 ms 
MonitorStatus Periodic,   T = 25 ms 25 ms  13 ms 

Table 1. Results of simulation. 



 
Transaction Events arrival  

pattern 
Deadline Scenario 1 

Response time 
Scenario 2 
Response time 

ServosControl Periodic,   T = 5 ms 5 ms 3,1 ms 3.4 ms 
UpdateDisStatus Periodic,   T = 100 ms 100 ms 23 ms 8,1 ms 
CollisionControl Periodic,   T = 25 ms 25 ms 23 ms  
CollisionControl2 Periodic,   T = 25 ms 25 ms  10 ms 

MonitorStatus Periodic,   T = 25 ms 25 ms  16 ms 

 
Table 2 Results of simulation. 
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UI_TaskHLC_ColTaskLLC_Task (from ServosControl)

Timed_Activity: Clock Tick driven activity

PIDTick
<<Wait_State>>

Activity_1

<<Timed_Activity>>

do/ LLCServosControl

ServosDeadline

<<Timed_State>>

LLC_Task

Fig. 6: Scenarios Model 
1 and 2. ServosControl 
transaction 

Fig. 7: Scenarios Model 1 and 2. UpdateDisStatus Transaction 



 

 

 

 

 

 

CollisionTick
<<Wait_State>

Activity_1

<<Timed_Activity>

do/ LLCUpdateStatus

Activity_5
<<Timed_Activity>>

do/ LLCStopDevices

CollisionDeadline
<<Timed_State>

Activity_2
<<Timed_Activity>>

do/ HLCProcessInputs

Activity_4
<<Timed_Activity>>

do/ HLCProcessInputs

Activity_3
<<Timed_Activity>>

do/ CSProcessColDetection

CinServer_TaskHLC_Task (from
UpdateDisStatus)LLC_Task (from ServosControl)

Fig. 8: Scenarios Model 1. CollisionControl transaction 

 

CollisionTick2

<<Wait_State>>

Activity_1

<<Timed_Activity>>

do/ LLCUpdateStatus

Activity_5

<<Timed_Activity>>

do/ LLCStopDevices

CollisionDeadline

<<Timed_State>>

Activity_3

<<Timed_Activity>>

do/ CSNotifyColDetection

Activity_6
<<Timed_Activity>>

do/ HLCStopDevices

CinServer_TaskHLC_ColTask (from
UpdateDisStatus)

LLC_Task (from ServosControl)

Fig. 9: Scenarios Model 2. CollisionControl2 transaction 



 

MonitorTick
<<Wait_State>>

Activity_1
<<Timed_Activity>>

do/ LLCUpdateStatus

Activity_3
<<Timed_Activity>>

do/ LLCStopDevices

Activity_2
<<Timed_Activity>>

do/ HLCProcessInputs

MonitorDeadline

<<Timed_State>>

HLC TaskLLC Task (from ServosControl)

Fig. 10: Scenarios Model  3 
MonitorState Transaction 

6. Conclusions 

Teleoperation systems can be very diverse, but this diversity affects more to the inter-
action patterns among the components than to the functional decomposition. The two 
interaction schemes introduced in this work share the same functional decomposition, 
however their timing behaviour  is very different. Although from the functional point 
of view both designs could be suitable, the first (asynchronous client-server) is not 
acceptable with regard to the performance when CinServer has to be used on line. 
However, the first scheme is very adequated for working in simulation mode as the 
applications considered for the design of the architecture do. It is even not unrealistic 
to consider applications that should change from one scheme to another in different 
modes of operation. The result of the evaluation against performance requirements 
was that the original architecture was not appropiate (without major modifications) 
for the new system. However this is not the main conclusion of the evaluation, nor the 
most useful one at long term, but: 

• Most of the relevant trade-offs are referred to the interaction patterns among 
components and not to their enclosed functionality. 

• It would be possible to re-use a significant number of existing components if it 
would be possible to modify their interaction patterns maintaining their func-
tionality and interfaces. 



To summarise, it is much more interesting to define an architectural framework that 
defines a set of rules that allow sharing the same components among systems with 
different architectures than try to define a software architecture for large domains in 
which it is nearly impossible to reach the requirements of all of the potential applica-
tions. And the first rule of such architectural framework should be to consider the 
interaction patterns as design and parametrizable features at the same level that the 
components. In this way, some original components can be reused to work in non-
structured environments when other interaction patterns are selected. In the same 
way, other components can be replaced by other new ones (i.e. collisions detection 
subsystem can be replaced by a computer vision subsystem). 

The study of the performance during the first design phases is useful to compare 
different design solutions. At an architectural level such analysis can be of coarse 
grain and  can be completed in later development phases. But even so, it is necessary 
an automated support of evaluation process and a standard notation as UML, despite 
all its drawbacks for describing architectures. So, the profile UML-MAST has been 
an excellent help where two research areas converge: software engineering and real-
time systems. 
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