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a b s t r a c t

Several traditional methods are available to address the problem of instability in concrete shells, usually
by means of curves representing the influence of the initial geometric imperfections in the buckling load
for simple geometries (spheres and cylinders). Although some revisions of these methods have been
made, new curves for other geometries have not been stated. In this study, the imperfection sensitivity
factor in shell structures with different geometries (spherical dome, barrel vault, and double-curvature
ruled surface) is determined graphically. This graphical method is useful to the designer in the early
stages of the design of shell structures when dimensioning.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The buckling load of shells constructed in homogeneous elastic
material sharply decreases with increasing initial imperfection
amplitude w0. This decrease is due to the magnitude of the
imperfection itself and the eccentricity e0 of the compressive
force caused by this imperfection. In the case of homogeneous
material shells, the stiffness of the shell cross section is practi-
cally independent of the eccentricity, so it is sufficient to investi-
gate only the decrease of the buckling load with increasing
imperfection alone. However, the plastic deformation; the load
bearing capacity provided by the shell wall; and the stiffness of
the cracked reinforced concrete cross section are heavily depen-
dent on the eccentricity of the normal force applied. The influence
of the imperfection w0 and that of the eccentricity e0 of the nor-
mal force may be dealt with separately. However, a relationship
between both may be stated [1].

In the late 1970s, the International Association for Shell and
Spatial Structures (IASS) Working Group No. 5 [2] devised a docu-
ment of recommendations for reinforced concrete shells. The sec-
tion on stability analysis includes a procedure based on the
results of some previous research, particularly on the work of
Kollár and Dulácska [3]. The procedure involves several factors that
affect the linear buckling load to take into account concrete as an
inhomogeneous nonlinear material. The design buckling load pd

is obtained by applying these factors to the bifurcational load

cpd ¼ qhoma1a2a3pcr ð1Þ
ll rights reserved.

.

where c is the factor of safety, pcr the bifurcational or linear buck-
ling load, qhom the imperfection sensitivity factor, a1 the creep fac-
tor, a2 the cracking and reinforcement factor, and a3 the inelasticity
of concrete factor.

Scordelis [4] and Medwadowski [5] observed that the method
provides conservative results in the case of spherical domes.
However, Kollár [6] compared the theoretical predictions with
experimental results and found great similarity. The first review
of the Recommendations was prepared by Kollár [7]. Years later,
Medwadowski [5] went back to revise the initial and the Kollár
proposals, presenting some modifications and suggestions.

The geometric imperfection sensitivity factor is the relationship
of the upper critical load (the buckling load calculated by a geo-
metric nonlinear analysis) with respect to the buckling critical load
for linear homogeneous material (calculated by a linear or eigen-
value analysis, and proves to be greater than the upper critical load
in most cases). The calculation of this factor is often difficult. Some
cases appear in the technical literature, such as spheres and cylin-
ders [2]. These analytical solutions have the advantage of using
abacuses and simple formulas to obtain the buckling load, but have
the disadvantage of predicting this type of behaviour only for cer-
tain theoretical cases (sphere and cylinder), not being able to deal
with structures with other geometries. Some differences between
analytical and numerical solutions for an actual shell can be con-
sulted in [8,9].

In the absence of further information about the geometry, the
IASS recommends using the safest case (sphere under radial pres-
sure and axially compressed cylinder). However, in most cases this
approach is too conservative. Thus, it may be useful to study new
geometries to obtain a better approach to their structural behav-
iour against imperfection.

http://dx.doi.org/10.1016/j.compstruc.2012.01.007
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http://dx.doi.org/10.1016/j.compstruc.2012.01.007
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This paper is an updated and revised version of the conference
paper [10]. In said paper, a method based on that used in [1,3,11] is
implemented to graphically determine the imperfection sensitivity
factor in the case of shells of different geometries (such as spheri-
cal dome, barrel vault, and double-curvature ruled: hyperbolic
paraboloid and hyperbolic rotational surface) to those studied in
the IASS Recommendations.

Although admitting that the graphical methods in structural
mechanics are at present being replaced by numerical methods,
the former are useful to the designer in the early stages of the de-
sign of shell structures at the level of dimensioning. Moreover,
from the academic point of view, the graphical methods are partic-
ularly useful in the teaching of structural engineering.

In the present study, the contents of Tomás et al. [10] have been
revised and expanded, namely: details are included of several pro-
posals to quantify the initial geometric imperfection; the number
of references has been increased; and application to different cases
has been achieved by providing three detailed examples of out-
standing shell structures in Spain. These examples are the dome
of Algeciras market; the cooling tower of the Ascó nuclear power
plant; and the access building to L’Oceanogràfic (the Oceano-
graphic Park at Valencia).
2. Imperfection sensitivity factor for homogeneous elastic
material

The value of this factor is one if the shell is not sensitive to
imperfection, and is otherwise less than one. The initial geometric
imperfection sensitivity factor qhom is the relationship of the upper
critical load pupper

cr with respect to the buckling critical load for lin-
ear homogeneous material plin

cr .
The calculation of qhom is often difficult. Some cases may be

found in technical literature. Fig. 1 shows the variation of qhom

with respect to w0/e, where w0 is a measure of the imperfection
and e is the thickness of the shell. The curves A, B and C belong
to laterally compressed long (L2/Re = 10000), medium (L2/
Re = 1000), and short (L2/Re = 100) cylinders, respectively, with L
length and R radius. The curve D is for spheres and axially com-
pressed cylinders.

The initial imperfection consists of accidental imperfection w000,
due to erection inaccuracies, and calculable imperfection w00,
quantified by the bending theory of shells (a value of maximum
Fig. 1. Initial geometric imperfection sensitivity factor ðqhom ¼ pupper
cr =plin

cr Þ in
concrete shells, using concrete as homogeneous material [2].
deflection obtained for a certain service load combination using a
linear elastic analysis).

The maximum values of both imperfections are unlikely to coin-
cide. According to the probability theory, Kollár and Dulácska [1]
suggested taking the higher of the following values to choose the
initial geometric imperfections w0

w0 P
w00 þ 0;8w000

w000

� �
ð2Þ

Small deviations that may occur when estimating this value are
considered by using a safety factor. In the case of preferring a more
conservative way of designing, both types of imperfections may be
taken into account at the same time.

To obtain w000, Kollár and Dulácska [1,3] proposed the following
expression

w000 �
R

3500
ð3Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffi
R1R2
p

if the shell is double curvature, with R1 and R2

being the mean principal radii of curvature of the shell. In the case
of a sphere, both radii have the same value.

Eq. (3) is an approximate expression to quantify the accidental
imperfection of a shell. This equation was used to construct the
curves of Fig. 1. Using this approach and modelling the shell by fi-
nite elements, the influence of the accidental imperfection may be
stated by means of a geometric nonlinear analysis, which takes
into account the effect of large displacements. However, it must
be borne in mind that this equation is only valid for carefully
erected shells (by using rigid formwork) and for a thickness be-
tween 0.05 and 0.07 m.

By the method of the IASS Recommendations, the linear buck-
ling load of the perfect homogeneous shell plin

cr is used as a starting
point. This load must be calculated accurately, preferably by a FEM
linear elastic analysis. The effect of large deformations is consid-
ered by the maximum bending deflection of the shell w00, which
may be estimated numerically or experimentally. Then, with the
ratio deflection/thickness ðw00=eÞ and Fig. 1, the upper critical load
pupper

cr for homogeneous elastic material is obtained. If the geometry
of the shell does not match any of the curves shown in Fig. 1, and in
the absence of further information, the curve D for spheres and axi-
ally compressed cylinders must be used.

Since the geometry of the actual shell differs from the theoret-
ical design, if the post-buckling effect is important (phenomenon
present at shells used in building construction), the IASS Recom-
mendations propose to reduce the linear critical load in a similar
way, i.e., estimating the deviation w000 on the surface and using
the ratio w000=e and Fig. 1.

If both effects are present simultaneously, the IASS Recommen-
dations propose that the reduction procedure must be performed
at the same time using the geometric imperfection as
w0 ¼ w00 þw000.

In 1993, Kollár [7] proposed the following equation to quantify
the initial geometric imperfections in shells

w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw00Þ

2 þ 1:4w00w000 þ ðw000Þ
2

q
ð4Þ

The form of this equation reflects the low probability that the larg-
est values of w00 and w000 occur at the same location on the shell. In
the same proposal [7], the value of w000 is to be calculated from the
empirical equation

w000 ¼ 0:05eþ ea

2ð1þ b�2Þ
ð5Þ

where b = 0.001(R/e) and the coefficient a is intended to account for
the type of formwork, with a = 1 for rigid forms, and a = 6 for
slipforms.
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Thus, the value of w000 varies between the practical limits of
w000 ¼ 0:05e (thick shells) to w000 ¼ 0:3ea (thin shells).

Medwadowski [5] considers that the empirical formula pro-
posed by Kollár yields small values of imperfections for very thin
shells. However, the equation contains no provision for the value
of R for shells of double curvature, other than spheres. For those
reasons, the following modification is suggested

w000 ¼ 0:1e 1þ 5a

ð1þ b�2Þ

" #
ð6Þ

where

b ¼ 0:001
ffiffiffiffiffiffiffiffiffiffi
R1R2

p
=e

where R1, R2 principal radii of curvature of the shell, a as before,
a = 1 for a shell cast on a rigid formwork, and a = 6 for a shell built
using slipforms.

It can be extrapolated, observing Eq. (6), that the equations pro-
posed by Kollár are also valid for the calculation of accidental
imperfections in the case of double curvature shells, just by taking
R ¼

ffiffiffiffiffiffiffiffiffiffi
R1R2
p

.

3. Imperfection sensitivity factor for several geometries of
shells

3.1.Introduction

The curves of the influence of geometric imperfection in the
critical buckling load of shells have only been defined for certain
geometrical models (spheres and cylinders). For this reason, in
the absence of further information, the IASS recommends to use
the safest curve (curve D for a sphere under radial pressure and
axially compressed cylinder). However, this approach in most
cases is too conservative. Thus, it may be useful to obtain new
curves for other geometries in order to have a better approxima-
tion of their structural behaviour against imperfection.

In this section, the curves for several geometrical models of sin-
gle and double curvature are presented [12]. Previously, validation
of the method is performed by obtaining the curves corresponding
to spheres and cylinders and by comparing them with the curves of
the IASS Recommendations.

3.2. Sphere and cylinder. Validation of analysis method

To study the behaviour of the models against accidental geo-
metric imperfection ðw000Þ, the critical buckling load for each design
is calculated by a linear or eigenvalue analysis ðplin

cr Þ and a geomet-
ric nonlinear analysis ðpupper

cr Þ. Relating both results, the imperfec-
tion sensitivity factor (qhom) is obtained for a given value of
w0ð¼ w000Þ.

Eq. (3) is used, as Kollár and Dulácska did [1,3], to quantify the
accidental imperfection in the shell up to values of w0/e = 1 and
higher, although this level has not been exceeded in this work in
order to state a methodology similar to that in the IASS Recom-
mendations. Each design was analysed for a thickness e of 0.05,
0.06 and 0.07 m. These values are within the range of validity of
Eq. (3).

That is, for a pair of values ðR; eÞ; pupper
cr is obtained from a geo-

metric nonlinear analysis and plin
cr is obtained from an eigenvalue

analysis. qhom is achieved dividing pupper
cr by plin

cr . Therefore, a point
of the curve is obtained, whose coordinates are (w0/e, qhom). Logi-
cally, R and e have been chosen so that w0/e be set to the sequence
0.1,0.2, . . . ,1.0.

A tolerance of forces and displacements of 0.0001% has been
used in the nonlinear analysis in order to obtain results with suffi-
cient accuracy.
A mesh size that leads to a relative error less than or equal to 1%
in the critical buckling load has been chosen. It does not lead to an
excessively large computational cost and the obtained results have
an acceptable error.

Different boundary conditions have been used (hinged edges,
clamped edges, free edges but with a clamped support at the cen-
tre) in order to obtain a cloud of points with which to interpolate a
curve. The influence of the boundary conditions in the model is not
very crucial if the edges are not weaker than the shell itself, since
most shells experience local buckling rather than global buckling
[1]. As a priori buckling behaviour of each shell is unknown, all de-
signs have been analysed with different restrictions (degrees of
freedom) at their edges. Fig. 2 shows a graphical summary of qhom

for several thicknesses and boundary conditions.
Using the validated method and following the same criteria sta-

ted in this section for the mesh size and the tolerance of forces and
displacements, other usual geometrical configurations in the erec-
tion of shells are analysed.

3.3. Barrel vault and cylindrical shell

The influence of the imperfection is analysed for several bound-
ary conditions to simulate different behaviour: barrel vault (sup-
ported on right edges) or cylindrical shell (supported on curve
edges). The results are shown in Fig. 3.

3.4. Spherical domes

In this section, the imperfection sensitivity is analysed consid-
ering several types of configurations for a spherical dome. The con-
figuration depends on the angle from the vertical plane with any
line passing through the base of the dome and being perpendicular
to the surface of it. Reduced domes are particularly interesting be-
cause their arches do not exceed the so-called neutral line, defined
by the parallel between compressed parallels (upper cap) and ten-
sioned parallels (lower cap). It is not usual to erect domes reduced
more than an angle of 36�. Domes with an angle of 90�, 60�, 36� and
20� and a dome on a polygonal base with an angle of 36� have been
used in this study (Fig. 4).

Simple boundary conditions such as those which have been
used (hinges and clamps) have little influence on results. However,
there are sometimes cases where the critical load of spherical do-
mes is reduced, not only because of imperfections, but also because
of the boundary conditions on which they are supported [13].

3.5. Hyperbolic rotational surface

The study of the imperfection in these shells is complex because
of being double-curved surfaces defined by two different radii. To
estimate the imperfection sensitivity factor and the nonlinear
buckling load in equidistant points w0/e, it is necessary to state
an average radius (RhR1=2

/ that is obtained from two principal radii
of curvature [5], which also depend on other geometrical parame-
ters such as radius and the length of the top and the base. These
principal radii of curvature vary along the rotation axis, so it is nec-
essary to state a reference point to define them and be able to per-
form calculations. This kind of structures are usually characterized
by the shape of their throat, which is considered as zero level, so it
may be possible to refer the principal radii of curvature to this
point. The calculation of these radii is developed in [12,14].

To state a common methodology to the cases considered in pre-
vious sections and to compare the results, it is necessary to study
designs which meet the geometrical relationships of the short (l2/
Re = 100), medium (l2/Re = 1000) and long (l2/Re = 10000) model.
However, if the dimensions are forced to satisfy the short model,
the form of the shell is distorted excessively. For this reason, only
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medium and long shells are considered, with several sizes, leading
to equidistant values of the ratio w0/e.

The most common structures with this type of geometry are
cooling towers. The thickness of these towers is variable depending
on their height. The expression ((R2H)1/3)/400 may be used to
determine the minimum thickness at different heights, where R
is the transverse radius of the tower and H the height [15].

Initially, the medium and long hyperboloid designs are loaded
to lateral compression, supported on two stiffness rings, which
are hinged at both ends. The second case is the study of a hyperbo-
loid between medium and long designs, subjected to axial load and
supported on the same boundary conditions as above (Fig. 5a). This
latter design keeps the same proportions as the actual cooling tow-
ers. This last geometry has been adopted since, as was the case
with the cylinders, the differences shown in the results for axial
load between the medium and long hyperboloid are very small.

The following case that has been studied is the revolution
hyperboloid with clamped ends (Fig. 5b). It is not possible to study
the shell subjected to axial load with these supports. The same
models have also been analysed but with their ends free, supported
on a stiffness ring in the mean cross section (Fig. 5c).
This type of geometrical configurations is used in the cooling
towers of nuclear power plants. However, it is rare to find a cooling
tower subjected to the loads and boundary conditions described
previously. The case of axially compressed hyperboloid is perhaps
closer to reality, but in no event with supports at the top. For this
reason, it is advisable to perform an analysis to evaluate the imper-
fection sensitivity of a hyperboloid clamped on the base and sub-
jected to gravitational load (Fig. 5d).

3.6. Hyperbolic paraboloid (hypar)

Two models have been defined by means of the translation of a
reduced parabola and of a narrow parabola, both laterally and axi-
ally compressed.

As with rotational hyperboloid, the principal radii of curvature
that define the geometries are referred to the throat of the models.
These radii of curvature are different when moving from the throat
transversally or longitudinally.

For this reason, the two above-mentioned designs need to be
adopted, since two principal radii defined for any point of the shell
do not take into account the shape of the parabola that defines the
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model. However, one of these radii considers the length and then it
is not necessary to adopt several sizes of shells as was done in pre-
vious cases.

Several boundary conditions have been applied. Some of them
have been used in previous geometries, and others are more appro-
priate for this particular case.

Fig. 6a contains the results of hypar hinged at both end edges,
and Fig. 6b and c of hypar clamped at both edges, lateral and end
ones respectively. In the latter two cases, it is not possible to
analyse the axial compression model because of the clamped ends.
The hypar under lateral compression and axial load supported on
the four clamped corners is shown in Fig. 6d. This support config-
uration is present in many real shells today.
4. Examples

4.1. Introduction

In this section, three examples of practical implementation are
used: the access building to L’Oceanogràfic (The Oceanographic
Park at Valencia), the dome of Algeciras Market, and the cooling
tower of the Ascó nuclear power plant, all in Spain.

In these examples, the accidental imperfection sensitivity factor
ðq�homÞ was obtained graphically and analytically, and was
compared with that obtained by the graph for spheres, as recom-
mended by the IASS. Subsequently, the initial geometric imperfec-
tion sensitivity factor (qhom) is obtained in each example.

The case of q�hom is simply the application of a particular case
(with a given R, e and certain boundary conditions) in order to ob-
tain a point on the curve, both graphically and analytically, and to
see that the difference is small, because the graph is an interpo-
lated curve, while the numerical method is an exact value.
The case of qhom is to lead the application of the graphical meth-
od further, into a real case, considering both imperfections (the
accidental one and the calculable one). These two imperfections
are not added, as proposed by the IASS Recommendations, since
the maximum values of both are very unlikely to coincide, but they
should be used in combination in one of the equations proposed by
several authors; Eq. (4) is one such example.
4.2. L’Oceanogràfic entrance building, Valencia

4.2.1. The hyperbolic paraboloid (hypar)
The calculation of the imperfection sensitivity factor of the con-

crete shell structure that is the access building to L’Oceanogràfic –
the posthumous work of Félix Candela – is presented below
(Fig. 7). A complete description of the parameters and design vari-
ables used in the definition of the geometry may be consulted in
[8,16].

The analysis under predominant gravitational loads has been
carried out, so it is only necessary to consider the specific weight
of material 25 kN/m3 (a value commonly used for reinforced con-
crete). The loads are expressed as a multiplier of the weight. The
thickness of the shell is 0.06 m.

The shell has been stiffened by two types of ribs with similar
dimensions as those used by Domingo et al. [17]. One type spreads
from the support to the centre of the structure (main ribs). The
other surrounds a small central hole made in the shell gauging a
band of 0.20 m wide (hole rib). It was necessary to create that
small circular hole of 0.10 m diameter at the intersection of the
lobes, in order to avoid meshing problems arising from the distor-
tion of the elements generated in the area surrounding the centre,
which have very acute angles.
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Because of the symmetry of geometry and loads, the analyses
were carried out on one sixth of the shell, applying symmetry
boundary conditions to the nodes in the symmetry planes, and
restricting the translations in the x, y, and z directions of the nodes
in the foundation plane. A convergence study using several mesh
sizes was carried out to determine the mesh to use for this struc-
ture [8]. The most appropriate mesh, combining solution time
and accuracy, was therefore employed in this study (Fig. 8).
4.2.2. Accidental imperfection sensitivity factor q�hom. Graphical
method

Firstly, it is necessary to choose the type of graph that is more
like the shell studied. Observing the supports in the lobe analyzed,
it can be concluded that its behaviour may be compared with an
intermediate case between the narrow hypar with clamped lateral
edges (Fig. 6b) and one with clamped supports at corners (Fig. 6d),
although somewhat closer to the latter. Nevertheless, it should be
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Fig. 5. Imperfection sensitivity factor (qhom). Hyperbolic rotational surface: (a) hinged edges, (b) clamped edges, (c) free edges, (d) clamped base and vertical loads.
w0 = geometrical imperfection; e = thickness; H.R.S. = hyperbolic rotational surface; Axial = axially compressed shell (the rest of the shells are laterally compressed);
IASS = curves from IASS [2].
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noted that these curves are for laterally compressed shells, which
are more conservative than in reality (shells are subjected under
mainly gravitational load).

Among the calculation methods outlined in Section 2 (IASS, Kollár
and Medwadowski) it is more appropriate to use Medwadowski’s
method, as particularized for double curvature shells.

To quantify the value of accidental imperfection it is necessary
to know the value of the geometric parameters that define the
structure: height at its centre c = 6.50 m, height of the free edge
of the lobe Hb = 24.39 m, radius or distance in plan from the centre
of the shell to the support D = 13.63 m. From the geometric defini-
tion it is possible to obtain the approximate principal radii of
curvature [12] (R/ = 2.19 m and Rh = 6.50 m) giving rise to the
average radius R = 3.77 m and the parameter b = 0.063. Considering
rigid formwork ða ¼ 1Þ;w000 results 0.00612 m and the ratio w000=e is
0.102.

Using the graphs mentioned above, the accidental imperfection
sensitivity factor q�hom is obtained. The results for clamped lateral
edges and clamped supports at corners are 0.78 and 1.00 respec-
tively, with the average value of 0.89 (these values of q�hom are
expressed as multiplier of the weight).

In the event of not having these graphs for hypar shells, the
curve for the sphere and the axially compressed cylinder would
have been used, following the IASS Recommendations, so a value
of 0.59 would have been obtained, which is considerably more con-
servative (33.71% lower).

4.2.3. Accidental imperfection sensitivity factor q�hom. Analytical
method

To calculate the influence of accidental geometric imperfections
analytically, it is necessary to carry out a buckling analysis of the
structure. The ANSYS program of finite elements was used to mod-
el the shell [18].

Firstly, an eigenvalue (linear) analysis was carried out to calcu-
late the linear buckling load ðplin

cr ¼ 8:649Þ. Then, a nonlinear anal-
ysis considering geometric and material nonlinearity was carried
out. Since the behaviour of this type of shells is due to the form,
only the concrete is modelled as material of the shell. The result
was pupper

cr ¼ 7:870, lower than plin
cr because of the sensitivity of

the shell to imperfections. Each value of the buckling load is shown
as a factor of weight of the shell.

Dividing the two results, the accidental imperfection sensitivity
factor is obtained q�hom ¼ pupper

cr =plin
cr ¼ 0:91.

Using the graphical method, the factor is 2.2% more conserva-
tive than the analytical result. This error is negligible given that
q�homis corrected by a safety factor, which considers small devia-
tions in the calculation. However, using the IASS Recommenda-
tions for spheres, the factor is 35.16% lower, resulting in an
excessive over-sizing of the structure.

4.2.4. Initial geometric imperfection sensitivity factor qhom

The calculable imperfection w00 is quantified by the bending the-
ory of shells (a value of maximum deflection obtained for a certain
service load combination using a linear elastic analysis).

In this research, it is necessary to analyse the structure to obtain
the deflection just before the start of buckling. In a real case, if the
aim is to obtain a value of qhom for a shell with a certain geometry,
without comparing it with that of the sphere, the designer must
use the deflection of the shell starting with the worst service load
combination. However, no load combination has been used in this
research, but the highest possible deflection in the shell has been
chosen, i.e., the deflection just before the start of buckling. It does
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Fig. 6. Imperfection sensitivity factor (qhom). Hyperbolic paraboloid. (a) Hinged extreme edges, (b) clamped lateral edges, (c) clamped extreme edges, (d) clamped supports at
corners. w0 = geometrical imperfection; e = thickness; Hypar = Hyperbolic paraboloid; Axial = axially compressed shell (the rest of the shells are laterally compressed);
IASS = curves from IASS [2]

Fig. 7. Shell structure at the entrance of the L’Oceanogràfic at Valencia, Spain. (a) The shell under construction. (b) The shell today. [Photos by A. Tomás (2001, 2005)].
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not matter which deflection is chosen if the aim is to graphically
compare the qhom of a certain geometry with the qhom of the
sphere, since the result is a ratio that relates both qhom, a ratio that
is independent on the chosen deflection.

Fig. 9 shows the displacements in the hypar and the deformed
shell. The maximum displacement w00 is 0.0546 m.

Using Eq. (4), the initial global geometric imperfection of the
shell w0 is 0.0591 m and the ratio w0/e is 0.99. Using graphs in
Fig. 6b and d, the average value of the initial geometric imperfec-
tion sensitivity factor qhom is 0.79.

Again, there is a noticeable difference between this factor and
that obtained using the curve for spheres. In the latter case, the fac-
tor is 0.20, 74.68% lower than the result obtained with the curves of
Fig. 6b and d.

It is appropriate to clarify why the deflection just before the
start of buckling has been used to obtain qhom: because it is easy
to achieve, and the resulting qhom is only used for comparison with
the qhom of the sphere from the IASS Recommendations. That is to
say that any value of the deflection is valid in order to draw a com-
parison. In a real case, if qhom is required to be used in the design
(without being compared with the sphere value), the designer
must use the deflection of the shell from the worst combination
of service loads.

4.3. Algeciras market

4.3.1. The dome
The roof, designed by Eduardo Torroja, consists of a spherical

cap of reinforced concrete with a radius of 44.20 m (Fig. 10a).
The dome has a diameter of 47.60 m and a thickness of 0.09 m.
In the centre of the dome, a large octagonal skylight, with the main
diagonal of 10 m, provides the interior lighting.



Fig. 8. FE mesh of one sixth of the structure.

Fig. 9. Hyperbolic paraboloid: (a) displacements, (b) deformed shell.

Fig. 10. Dome of Algeciras market: (a) view of the dome [source: www.wikipe-
dia.org], (b) lines and areas of the CAD model.
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The outer edge of the spherical cap is cut by cylindrical vaults,
which are supported on eight perimeter columns (located at the
points of intersection of two cylindrical vaults). To absorb the hor-
izontal forces at the supports, there is an octagonal ring formed by
16 tensioned cables of 0.03 m diameter. The design of this struc-
ture means that meridian forces from the dome, having a direction
tangent to the sphere, are transmitted to the columns. The system
that is compound by the columns and the perimeter tensioned ring
is able to absorb the vertical and horizontal components of the
forces in each of the eight supports. The boundary conditions in
those eight points consist of restricting the displacements and
allowing the rotations.

In the CAD model, a set of keypoints are defined, and are linked
by curved lines (splines), leading to a set of arcs to make the areas
that form the dome. Specifically, there are 72 keypoints, which
generate 75 splines and 28 areas (Fig. 10b).
As in the previous example, the structure is under the gravita-
tional load, so it is sufficient to consider the specific weight of con-
crete (25 kN/m3).

4.3.2. Accidental imperfection sensitivity factor q�hom. Graphical
method

This method should identify the geometries analysed in Section
3.4 that are closer to the dome of the Algeciras Market. The angle of
the dome, measured from the top, is 33�. The geometry that is
more similar to the one studied is that of a 36� angle. In particular,
two types of this shell have been analyzed: the one with circular
base (Fig. 4c) and that with square base (Fig. 4e), both subject to
different support distributions.

As the dome of Algeciras Market weighs on eight columns uni-
formly distributed at the outer contour, it is consistent to adopt an
average value of the accidental imperfection sensitivity factor be-
tween the design with hinged supports and that with four supports
located at the vertices.

Moreover, as the dome has an octagonal base, it is advisable to
compare the results of Fig. 4c and e. For small values of w0/e (about
0.1) the results for q�homare almost identical. However, upon mov-
ing to the right of the graph, the curves are increasingly distant
from each other up to a maximum difference of around 30%, and
the results for the dome on a square base are more conservative.
Specifically, for w0/e = 0.2 (approximate value for the dome of
Algeciras Market), there is a difference of 10%. Given this fact, it
is advisable to lessen the average result calculated using Fig. 4e
by around 5%, to consider an intermediate case between the dome
on a square base and that on a circular base.

Similarly to Section 4.2, the method proposed by Medwadowski
(Eq. (6)) has been used. The accidental geometric imperfection w000
is 0.01774 m and the ratio w000=e is 0.20 (considering rigid form-
work, a = 1). The results obtained for q�homin the cases of hinged
supports and supports located at the vertices are 0.54 and 1.00
respectively, with the average value being 0.77, and the reduced
value 0.73.

In the event of not having these graphs for domes, the curve for
the sphere and the axially compressed cylinder would have been

http://www.wikipedia.org
http://www.wikipedia.org


Fig. 11. Dome of Algeciras market: (a) displacements, (b) deformed shell.

Fig. 12. Cooling tower of the Ascó power plant. (a) View of the tower. [Source:
www.wikipedia.org]. (b) Lines and areas of the CAD model.

Table 1
Geometric parameters of the cooling tower of the Ascó power plant (units in m).
a = throat radius; rb = radius at shell lower edge; rt = radius at the top of the shell;
Zt = vertical ordinate from throat to top of shell; Zb = vertical ordinate from throat to
lower shell edge; H = total height of tower; th = shell thickness (variable depending on
the height).

A rb rt Zt Zb H th

36.75 58.45 38.50 32.25 127.75 160.00 0.20–0.28
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used, following the IASS Recommendations, so a value of 0.44
would have been obtained, which is considerably more conserva-
tive (39.73% lower).

4.3.3. Accidental imperfection sensitivity factor q�hom. Analytical
method

Calculating similarly to Section 4.2, the following values are ob-
tained: plin

cr ¼ 16:61, pupper
cr ¼ 11:53 and q�hom ¼ pupper

cr =plin
cr ¼ 0:69.

Using the graphical method, the factor is 5.48% more conserva-
tive than the analytical result. This error is not significant given
that q�homis corrected by a safety factor, which considers small devi-
ations in the calculation. However, using the IASS Recommenda-
tions for spheres, the factor is 36.23% lower.

4.3.4. Initial geometric imperfection sensitivity factor qhom

The calculable imperfection w00 is quantified by the bending the-
ory of shells. It is necessary to analyse the structure to obtain the
deflection just before the start of buckling. Fig. 11 shows the dis-
placements in the dome and the deformed shell. The maximum
displacement w00 is 0.1497 m.

Using Eq. (4), the global initial geometric imperfection of the
shell w0 is 0.1674 m and the ratio w0/e is 1.86. The ratio w0/e is
greater than one, so it runs off the graph. As the trend of the curves
is practically constant for higher values of w0/e, the value of qhom

corresponding to the point w0/e = 1 in the w0/e-axis is considered.
Using the graphs in Fig. 4c and e, the average value of the initial
geometric imperfection sensitivity factor qhom, reduced by 5% to
consider that the base of the dome is octagonal, is 0.72.

Again, an important difference between this factor and that ob-
tained using the curve for spheres is noticed. In the latter case, the
factor is 0.20, 72.22% lower than the result obtained with the
curves of Fig. 4c and e.

4.4. Cooling tower of the Ascó nuclear power plant

4.4.1. The hyperbolic rotational surface
The geometry of the cooling towers corresponds to a hyperbolic

rotational surface. The equations that define this type of geometry
can be found in [12,14], among others.

The thickness of the cooling towers is variable depending on
the height. The IASS Working Group No. 3 [15] proposed to use
the equation (R2H)1/3/400 to determine the minimum thickness
at different levels, where R is the transverse radius of the tower
and H its height.

The values of the geometric parameters that define the cooling
tower studied (Fig. 12) are listed in Table 1.

http://www.wikipedia.org
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In the CAD model, there are four keypoints linked by four cylin-
drical curves at different Z-levels, generating a circumference
whose radius depends on the height. These circumferences deter-
mine a spline with the shape of the hyperbola that describes the
outer surface of the model. Specifically, 28 keypoints are used to
generate 32 curves (of which four are splines) and eight areas.
The lines and areas that generate the hyperboloid are shown in
Fig. 12b.

The cooling tower is supported on columns equidistantly dis-
tributed around the base ring. The boundary conditions in these
points are zero displacements and free rotations.

As in the previous examples, the structure is under the gravita-
tional load, so it is sufficient to consider the specific weight of the
concrete (25 kN/m3).
Fig. 13. Cooling tower of the Ascó power plant: (a) displacements, (b) deformed
shell.
4.4.2. Accidental imperfection sensitivity factor q�hom. Graphical
method

The principal radii of curvature of this shell are Rh = 36.75 m and
R/ = 290.25 m [12], and the average radius R is 103.28 m. With this
radius and the geometric data shown in Table 1, a ratio l2/
Re = 1377.1 is calculated. This value is very close to 1000, which
is used to define the medium hyperbolic rotational surfaces stud-
ied in Section 3.5. Therefore, the Fig. 5d has been used in the calcu-
lation of the imperfection sensitivity factor.

It should be noted that the graph used has been obtained for
shells with the base ring clamped completely, when in fact the
clamped supports are located in some isolated points of the base
ring of the tower. A reduction in the stiffness of the support ring
implies a reduction in the imperfection sensitivity factor [13].

To account for this situation, a conservative method to quantify
the accidental imperfection may be used. The IASS method pro-
poses to consider the same value for the accidental imperfection
and for the calculable imperfection, equal to the bending deflection
in the shell just before the start of buckling. Fig. 13 shows the dis-
placements in the structure and the deformed shell. The maximum
displacement w00 is 0.1318 m.

Using the IASS method and Fig. 5d, the accidental geometric
imperfection w000 is 0.1318 m, and the ratio w000=e is 0.549. The factor
q�homis 0.58.

In the event of not having these graphs for rotational hyperbo-
loids, the curve for the sphere and the cylinder axially compressed
would have been used, so a value of 0.26 would have been ob-
tained, which is considerably more conservative (55.17% lower).
4.4.3. Accidental imperfection sensitivity factor q�hom. Analytical
method

Calculating similarly to Sections 4.2 and 4.3, and adopting an
average thickness of the shell of 0.24 m, the following values are
obtained: plin

cr ¼ 10:49, pupper
cr ¼ 5:77 and q�hom ¼ pupper

cr =plin
cr ¼ 0:55.

The result is quite similar to the graphical method, with an error
of only 5.17%. As commented before, this error is insignificant be-
cause q�homshould be corrected by a safety factor, which considers
small deviations in the calculation. However, using the IASS Rec-
ommendations for spheres, the factor is 52.73% lower.
4.4.4. Initial geometric imperfection sensitivity factor qhom

According the IASS method, the initial geometric imperfection
of the hyperbolic tower can be estimated by the addition of the
two types of imperfections, resulting w0 = 0.2636 m and the ratio
w0/e = 1.10. This ratio barely exceeds one, so a value of qhom

slightly lower than that for w0/e = 1 is adopted (qhom = 0.52).
Again, an important difference between this factor and that ob-

tained using the curve for spheres is noticed. In the latter case, the
factor is 0.20, 61.54% lower.
5. Conclusions

In this paper, the influence of imperfection on the buckling
load is studied for the case of shells of different geometries (such
as spherical dome, barrel vault and double-curvature ruled
surface: hyperbolic paraboloid and hyperbolic rotational surface)
to those studied in the IASS Recommendations (sphere and
cylinder).

The main conclusions of this study can be summarised in the
following points:

1. Axially compressed models present the most unfavourable
imperfection sensitivity factor, with a trend of the curves simi-
lar, or even below those in the IASS Recommendations for
spheres and cylinders subjected to axial compression. Most
models when laterally compressed, usually adopt intermediate
values between the short and the long cylinder, except for the
cases of spherical domes.

2. The behaviour of the spherical dome is mainly conditioned by
the angle (taken from the ridge). The worst case is the hemi-
sphere (with values slightly higher than the sphere).

3. Shells subjected to gravity show an imperfection sensitivity fac-
tor higher than shells subjected to lateral compression
(between 5% and 10%).

4. There are no significant differences in the behaviour against
imperfection between hinged and clamped supported shells.
However, a reduction of the stiffness at the supports such as
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allowing horizontal displacement, presents a significant impor-
tance, since it causes a significant reduction in the imperfection
sensitivity factor.

5. In general, the less statically indeterminate the configuration of
supports is, the closer to one the imperfection sensitivity factor
is. However, for a certain geometry of a shell, significant
changes in distribution and the number of supports may cause
significant changes in imperfection sensitivity.

6. The IASS Recommendation to quantify the influence of geomet-
ric imperfection in shells whose behaviour is not known with
certainty, by means of the curves for spheres and axially com-
pressed cylinders, is too conservative.
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