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a b s t r a c t

Optimisation techniques may be effective in finding alternative geometries of shell structures to improve
their mechanical behaviour, particularly avoiding or reducing the bending moments. This paper shows
how the field of use of computers may be widened using these techniques in the design of concrete
shells, allowing the user to obtain optimumdesigns complyingwith the design conditions. Someoptimum
geometric designs of an actual concrete shell were found, presenting an aesthetic appearance similar to
that initially planned by the designer. The results confirm that significant improvements in the structural
behaviour may be achieved with only slight geometric changes.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Triangular distribution of stresses through a cross section is
uneconomic since the maximum stress occurs on the outer fibres.
This is especially true for materials such as concrete, whose
resistance to tension is small compared to compression, and the
strength capacity of the cross section is drained as soon as the
minimum value is reached.
The structural behaviour of shells, compared to that of other

types of structures, is characterized by a higher mechanical effi-
ciency. Concrete shells depend on their configuration, not on their
mass, for stability. If appropriate designs are carried out, shells can
support high loads and allow one to cover important spaces using
littlematerial and/or thickness. Moreover, shells present an attrac-
tive lightness and elegance from an aesthetic point of view, leading
some authors to refer to them as the ‘‘structural elegance’’ [1], the
‘‘prima donna’’ of structures [2] or that structure in which one dis-
covers what is resisting only contemplating its shape [3].
The structural behaviour of shells is developed essentially

due to their form. It would be interesting to find, if possible,
small modifications in their geometry without modifying their
initial aesthetic configuration too much and still complying with
the design conditions. These modifications would improve that
mechanical behaviour still further. It could be attempted, for
example, to reach a distribution of stresses in the thickness which
is as uniform as possible, and this would imply to have shells free
of bending or, at least, with some acceptable bending values [4].
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Among different techniques used in form-finding of concrete
shells [5,6], optimisation techniques represent an effective means
to achieve this purpose in the field of computational mechanics
(see [7,8] among others). The development of optimisation
techniques was strongly boosted by the tremendous increase in
computational and graphical capacities. These techniques permit
to obtain alternative geometric forms of shells and improve
their mechanical behaviour, complying with the design conditions
(stress constraints, construction conditions, etc.) in an optimum
way (minimumweight, maximum stiffness, minimum stress level,
etc.).
In this paper, optimisation techniques are applied to find

optimum geometric designs of concrete shells complying with the
design conditions. Some optimum geometric designs of an actual
concrete shell have also been found, being close to a preconceived
design, i.e. the resulting geometries should have an aesthetic shape
similar to the form of the initially designed structure, which is a
hyperbolic paraboloid (hypar). Slight changes in the form of these
types of structures can introduce important improvements in their
mechanical behaviour (see [9–11] among others). To achieve this
task, different objective functions can be used, such as the strain
energy, the weight of the structure, or the tensile stress in both
faces of the shell. The parameters that govern the geometry and
the thickness of the shell were used as variables. The constraints
were the minimum thickness, the tensile stresses in concrete, and
several parameters of geometric control.

2. Shape optimisation of concrete shells

The design process of the membrane state stresses in a shell
structure can be hindered by a series of factors such as the
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application of concentrated loads, the existence of free edge
boundary conditions or the possible incompatibility that could
appear between a given form and the thickness of the shell. Since
these factors are strongly dependent on the form of the structure,
it becomes essential to incorporate, in the design process, shape
optimisation techniques that account for them. Therefore, themain
objective in shell design would be to find a form that, considering
the specific properties of the material, satisfies the following
design conditions [1]:

(1) stresses and displacements enclosed within an interval;
(2) membrane stress state (or a close approximation of it);
(3) boundary conditions met for all load configurations;
(4) buckling instability phenomena avoided;
(5) sensitivity of the structural response to possible variations in
the geometry minimised; and

(6) a final shape that meets some aesthetic criteria.

The aim of the optimal structural design is to obtain a design, a
set of values for the design variables, which minimises an objective
function and complies with the constraints that depend on the
variables.
The design variables of a structure can be properties of the

cross-section of the elements (surface areas, thicknesses, inertia
moments, etc.); structural geometry parameters; structural topol-
ogy parameters (element densities in the range from 0 to 1) [12];
and properties of the material of the structure. Traditionally, the
weight of the structure is themost common objective function used.
Nevertheless, the weight is not the determining factor in other ap-
plications, and other objective functions such as cost, reliability,
stiffness, etc. are used. The constraints are the conditions that the
design must comply with in order to be regarded as valid.
The optimum design problem was formulated as follows:
To find the variable vector of design xwhich

minimises f (x)
subject to hj(x) = 0 j = 1, 2, . . . ,mi

gk(x) ≥ 0 k = 1, 2, . . . ,md
xLi ≤ xi ≤ x

U
i i = 1, 2, . . . , n

(1)

where x is the n-dimensional vector of the design variables; f (x) is
the objective function; hj(x) is the jth equality design constraint;
gk(x) is the kth inequality design constraint; mi is the number of
equality constraints; md is the number of inequality constraints;
n is the number of variables; and xLi (x

U
i ) is the lower limit (upper

limit) of the variable i (e.g. [13] among others).
This problem was solved by mathematical programming using

the optimisation module in ANSYS [14], which has a conventional
first-order method using the first derivatives of the objective
function and constraints with respect to the design variables. The
module converts the optimisation problem with constraints into
an unconstrained problem by adding penalty functions to the
objective function. For each iteration, gradient calculations, which
employ a steepest descent or conjugate direction method, are
performed to determine a search direction. A line search strategy
is adopted to minimise the unconstrained optimisation problem.
Depending on the type of design variables to consider, one of

three optimisation methodologies are usually used in the form-
finding process: (i) using the coordinates of the nodes of the FE
mesh; (ii) defining a parametric model using some variables of
geometry; (iii) and stating a set of predefined geometries with
the optimum shape being a lineal combination of them with the
design variables as combination factors [15]. The second of these
methodologies is used in this paper.
Several authors have proposed suitable objective functions to

optimise the shape of shells [1,16–18]. For example, in order to
find a state of membrane stresses, the highest principal tensile
stress can be used as objective function. An alternative way is to
substitute this condition for a constraint to avoid tensions in all
points of the shell.
To improve the behaviour of the structure in case of instability

phenomena, the buckling load can be used as objective function.
As the response of shell structures is very sensitive to geometric
imperfections, it is recommended to include the latter function in
the maximisation process of the buckling load. A first approach of
the buckling load can be obtained by analysing the initial stability
through an eigenvalue analysis. However, in order to obtain amore
realistic value, nonlinear analysis is needed.
To minimise displacements in the whole structure, a function

called ‘‘Volumetric Displacement’’ (VD) may be defined according
to the following expression [19]

VD =
n∑
i=1

di × Si × Thicki (2)

where di is the displacement vector modulus at each point i; Si
is the area of influence at this point; and Thicki is the average
thickness of the structure at the mentioned area. With respect
to the maximum displacement technique, the advantage of the
VD function is that it provides a wider view of displacements
throughout the structure.
To reduce the bending in the shell, it is appropriate to minimise

the strain energy SE , or equivalently, to maximise the stiffness of
the structure

SE =
1
2

∫
σεdV (3)

where σ are the stresses and ε the strains, both calculated in all
points of the shell. Minimising the strain energy leads to lower
stresses and deformations in the shell, but in an implicit way, it
allows one to meet the mentioned objectives simultaneously. In
other words, the behaviour of the structure is improved together
with (i) a higher buckling load and (ii) a ‘‘relaxed’’ state of stresses
close to the membrane state.
Considering that all the design conditions stated above can

easily be satisfied by increasing the weight of the shell, it could
be convenient in some cases to limit the weight to a maximum
value, or even to introduce it in the optimisationprocess as equality
constraint.
Since a distortion may appear in the geometry of the structure

in such away that its shape differs toomuch from the preconceived
form, and from the desired aesthetic criteria, the inequality
constraints gk(x), which are commonly used to limit the tensile
stresses and the displacements, can also be necessary to limit some
parameters of shape control.
The inequality constraints gk(x) are commonly used to limit

the tensile stresses and the displacements. However, a distortion
may appear in the geometry of the structure leading to a shape
that differs too much from the preconceived form and the desired
aesthetic criteria. In this case, constraining some parameters of
shape control can also be necessary. For example, in the actual shell
used in Section 4 two shape parameters of the shell are restricted:
the height of the highest point of the free edge, and the radius or
distance from the Z-axis to the support.

3. Example: Shape optimisation of a shell with different
boundary conditions

The case of shape optimisation of a concrete shell used by
Bletzinger and Ramm [17] is studied. It is subjected to its own
weight and a vertical uniform load, for different design criteria.
The study has been enlarged in this case for different boundary
conditions. The shell thickness is 50 mm and the structure covers
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b = 6 m
l = 12 m

Fig. 1. Optimisation model.

a surface of 6 × 12 m. Young’s module of the material is 30 GPa
and Poisson’s module is 0.2. The structure is subjected to a vertical
uniform load of 5 kN/m2. The design variables are S1 and S2 (Fig. 1),
with both adopting a value of 3m in the initial model. The shell can
be supported on the right edges, on the curved ones or on them all
at the same time (Fig. 2).
The optimisation of just a quarter of a shell has been carried

out applying symmetry conditions, under three different objective
functions: weight, strain energy or stress levelling. For the weight,
the tensile stresses have been constrained to 2 MPa and the
compressive ones to −20 MPa. The second objective function is
the sum of the strain energy in the elements of the model, defined
by Eq. (3). In this case, it is irrelevant to adopt any constraint for
the tensile stresses, because they remain under the strength of the
material along the runs. The stress levelling SL is a function used
by Bletzinger and Ramm [17] and can be redefined, expressed in a
discrete way for the elements of the mesh, as

SL =
∑
i,j

(σij − σa)
2 i = 1, 2, 3, j = 1, 2, . . . , n (4)
where σij is the average principal stress i at the nodes of the
element j; n is the number of elements in the mesh of the model;
and σa = ft is the tensile strength of the material.
In this case, it is also irrelevant to adopt any constraint for the

tensile stresses. The results of the optimisation runs are shown in
Fig. 2.

W = weight; SE = strain energy;
SL = stress levelling; units of S1, S2 are (m).

In case the shell is supported on the right edges, whenminimis-
ing the weight, the shape shows a trend toward the plane form.
The weight has decreased 32.01%. Using the strain energy or the
stress levelling as objective function, the geometry adopts the form
of a hyperbolic paraboloid, changing from simple to negative dou-
ble curvature, and obtaining an important decrease in the objective
function of 88.67% and 96.69%, respectively.
In case the shell is supported on the curved edges, when

minimising the strain energy or the stress levelling, the geometry
adopts the shape of a hyperbolic paraboloid again, but this time in
a more marked way because of the increasing of the variable S1
and of S2 adopting a value close to zero, which causes the shell
to ‘‘hang’’ from the curved edges. The fall in the strain energy
is again important, 97.00%, while it remains very similar in the
stress levelling, 96.61%. Using the weight as objective function
the geometry also tends toward the hyperbolic–parabolic form,
although the decrease in the weight is smaller than before, being
just 6.55%.
Lastly, in case the shell is supported on all the edges, when

minimising the strain energy or the stress levelling, the geometry
changes again from simple to double curvature, but this time it is
positive, which causes a ‘‘bulging’’ of the central area. The fall in
the strain energy is 54.98%, and 64.01% in the stress levelling, the
smallest values in the three cases. Using the weight as objective
function, the geometry changes from a parabolic cylinder to an
Fig. 2. Shell with different boundary conditions. Results of the optimisation runs.
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almost plane form, decreasing its value 31.92%, very similar to the
first case, as indeed it had to be since the final geometries are
almost identical.
After these results, it can be summarised that using the

strain energy or the stress levelling as objective functions, the
geometry of the shell tends to forms of double curvature, with
a marked decrease in the tensile stresses. In the case of the
weight, the geometry tends to plane forms, slab type, with the
surface minimising, since the thickness remains constant. This
latter objective function is usually used in the field of structural
optimisation, although it is interesting to keep others inmind such
as the strain energy, because of the rational way of improving the
mechanical behaviour of a shell, since the tensile stresses and the
deformations of the structure decrease simultaneously.
Although shells can adopt any form, double-curvature shells

present important advantages in their mechanical behaviour
compared to other forms [20–24], since it is possible to avoid
the appearance of bending moments in them. Their particular
behaviour is due to the arch-effect in two planes and, in contrast
to the arch contained in only one plane, it allows supporting
different load configurations, mainly by means of membrane
internal forces, with a very low risk of bending. Moreover, these
surfaces have a practically unalterable form, and are in equilibrium
whatever the type of distribution of the loads,within certain limits.
This geometry involves enough mechanical features to be a very
efficient structure, even without stiffening elements such as edge
beams. This implies that shell structures designed to behave as
membranes are, by themselves, optimum structures.
Unfortunately, as usually occurs in optimum systems, this

high mechanical efficiency induces a structural behaviour that
is extremely sensitive to imperfections (see how the buckling
load of a shell decreases when slight geometric imperfections
appear [9–11]). Considering the normal construction procedures,
the probability that local defects exist in the geometry or thickness,
or that other constructive problems arise (too young concrete,
scaffolding removed defectively, etc.), is relatively high. Some real
examples associated to these problems may stand out, such as the
frequent appearance of cracks when removing scaffolding under
the shell. Amore serious case was the partial collapse of the chapel
of Lomas de Cuernavaca [25]. Other cases may be consulted in the
literature [26–28].
Since the structural behaviour of shells is basically due to their

form, it is logical to think of the possibility of finding small changes
in the geometry that, without distorting the initial aesthetic
configuration too much, improve that mechanical behaviour even
further, whilst complyingwith the design conditions. For example,
it could be attempted to achieve a stress distribution along the
thickness being the most uniform possible, which would imply to
have free-bending shells or, at least, with some acceptable bending
(tensile stresses) values. The improvement of this mechanical
behaviour through shape optimisation is suggested by Ramm [6].
By using shape optimisation, more quality in the design process
is achieved, since it helps to obtain structures of quasi-perfect
behaviour.

4. Example: Shape and size optimisation of an actual hypar

The shape and size optimisation of an actual concrete shell
structure is presented below. It was designed for the entrance
of the Universal Oceanographic Park in Valencia, Spain (Fig. 3).
The roof shell is based on hand-drawn sketches by Felix Candela,
which inspired the subsequentmaking of the building project. This
structure is the posthumous work of Candela. The geometry of the
structure consists of the intersection of three lobes whose mid-
surfaces describe the shape of a hypar. The basic parameters and
design variables used in the definition of the geometry are shown
a

b

Fig. 3. Shell structure at the entrance of the Universal Oceanographic Park
(Valencia, Spain). (a) The shell under construction. (b) The shell today.

in Sections 4.3.2 and 4.3.3. A complete description of that definition
may be consulted in [29]. After analysing the results of the
initial design, several optimisation processes under predominantly
gravitational loads were carried out.

4.1. CAD model

To generate the CAD model, a global system of cylindrical
coordinates with origin at the point of intersection of the three
paraboloids was defined. The patches defining the mid-surface of
the structurewere derived from the coordinate system. The ANSYS
program of finite elements was used to model the shell.
The following sequence of operations was programmed:

• obtain a set of points (keypoints) contained in the mid-surface,
• link the points by curved lines (splines), and
• obtain ruled surfaces (Coons patches) by the splines to generate
the geometry of the structure.

Overall, there are 1945 keypoints, which, linked in sets of six,
create 432 splines,which generated 216Coons patches forming the
model (Fig. 4).
In addition, the shell has been stiffened by two types of ribswith

similar dimensions as used by Domingo, Lázaro y Serna [23]. One
type spreads from the support to the centre of the structure (main
ribs). The other one surrounds a small central holemade in the shell
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a

b

Fig. 4. CAD model of the structure. (a) Splines. (b) Coons patches.

to avoid problems whenmeshing, gauging a band of 200mmwide
(hole rib).
The implementation of the CAD model in ANSYS was done by

enabling the form of the structure to be modified by varying the
values of somedesign parameters (thicknesses of the elements that
form the structure and those to control the geometry).

4.2. Analysis model

Due to the symmetry of the structure, the different analyses
were carried out on one sixth of the shell. Prior to meshing the
surface of the CAD model, the thickness, material, element type
and geometric features of the elementswere defined. Themeshhas
4375 elements. It was necessary to create a small circular hole of
100 mm diameter at the intersection of the lobes, in order to avoid
meshing problems arising from the distortion of the elements
generated in the area surrounding the centre, which have very
acute angles (Fig. 5).
The material of the structure is concrete. The mid-surface of

the shell was provided with reinforcement netting, which was
used to account for time-dependent effects of the concrete, since
these effects can have a considerable influence when the thickness
of the shell is small with respect to other dimensions. Therefore,
the contribution of the reinforcement was not considered in the
analysis, except in the effects of its density. The specific weight
of the material is 25.00 kN/m3 (a value commonly used for
Main rib

shell

a

b

Main rib

Hole  rib

Shell

Fig. 5. FE mesh. (a) One sixth of the structure. (b) Enlarged detail of the lobes
intersection area.

reinforced concrete). The mechanical properties are 30.00 MPa for
the characteristic compressive strength of concrete (fck), 20.00MPa
for the design compressive strength (fcd), 1.35 MPa for the design
tensile strength (fct,d), 0.20 for Poisson’s ratio, and 28576 MPa for
the secant Young’smodulus referred to the concrete age of 28 days.
There are essentially two different ways of formulating the

elements used in concrete shells: those based on the degenerate
solid approach and those based on a shell theory [30]. An element
belonging to the second type was used, the Shell93 in ANSYS [31].
The element has six degrees of freedom at each node: translations
in the nodal x, y, and z directions and rotations about the nodal
x, y, and z-axes. The deformation shapes are quadratic in both
in-plane directions. The element has plasticity, stress stiffening,
large deflection, and large strain capabilities. Thematerial property
matrix for the element includes a formulation to avoid shear
locking.
Because of the symmetry of geometry and loads, the analysis of

a lobe with an angle of 60° was carried out, applying symmetry
boundary conditions to the nodes in the symmetry planes, and
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restricting the translations in the x, y, and z directions of the nodes
in the foundation plane.
The applied loads are the weight of the structure and the

distributed load of 1 kN/m2. The action of the wind was not
considered because of its slight contribution to the whole load,
only 5.87%of the gravitational loads. This percentage is amaximum
value obtained by adopting a simplified and safe hypothesis for
introducing wind into the analysis model [29].

4.3. Formulation of the optimum design problem of the hypar shell

4.3.1. Objective functions
The objective functions were the following:

(1) strain energy of the structure,
(2) weight of the hypar, and
(3) highest tensile stress at the nodes of the model.

4.3.2. Design variables
The concrete shell structure under study consists of the

intersection of three hyperbolic paraboloids. Each paraboloid
contains two sets of generating lines, each of these sets parallel
to a director plane. The intersection of the two director planes
defines the Z-axis, forming together an angle ω. The expression
that defines the mid-surface of the shell in cylindrical coordinate
system is given by:

z = Kr2
[
cos

(
90+ ω
2
− α

)
−
sin
( 90+ω
2 − α

)
tan (ω)

]

×

[
cos

(
α −

90− ω
2

)
−
sin
(
α − 90−ω

2

)
tan (ω)

]
(5)

where K is the mid-surface constant, ω the angle between the
two director planes of the hypar and z, r , α are the cylindrical
coordinates.
The free edge of each hypar is defined by an inclined plane

containing the line joining the points R2 andR2’ and forms an angle
β with respect to a horizontal plane (Fig. 6).
The following design variables, whose initial values were

proposed in sketches by Candela, were used for the design of the
entrance to the Oceanographic Park:

K Mid-surface constant. In the optimisation processes, the initial
value was 0.14 m−1, with 0.13 m−1 and 0.17 m−1 being the
minimum and maximum values, respectively.

ω Angle between the two director planes. Its initial value is 90°
(equilateral hypar). The stated lower and upper limits are 84°
and 91°, respectively.

β Angle of the inclined plane. Its initial value was 75°, allowing
for a variation interval between 74° and 75°, since the design is
very sensitive to this variable. With this interval, the structure
cannot be lower than 19 m in height.

e1 Shell thickness. Aminimum initial value of 60mm for construc-
tive conditions was chosen. In the optimisation processes, the
thickness was allowed to range from 60 to 80 mm.

e2 Hole rib thickness. The initial value was 80 mm, with a mini-
mum of 60 mm.

e3 Main ribs thickness. The initial value was 350 mm, with a vari-
ation interval between 60 and 400 mm.
a

b

Fig. 6. Inclined plane sectioning the hypar to define the free edge of a lobe. (a)
Perspective. (b) Side view.

4.3.3. Constraints
The maximum extreme-fibre stresses at the outer surfaces of

the shell were restricted depending on the design strength of the
material of the shell:

σt ≤ fct,d (6)

σc ≤ 0.85fcd (7)

where σt is the tensile stress and σc the compressive stress.
Two shape parameters of the hypar (the height of the highest
point of the free edge and the radius or distance from the Z-
axis to the support) were also restricted. This was necessary
because the values of these parameters tend to decrease during
the optimisation runs, distorting the geometry of the structure
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Table 1
Optimisation processes. Final values of variables of geometry.

Process t1 (mm) t2 (mm) t3 (mm) K (m−1) ω (°) Radius (m) Height (m)

Initial model 60.0 80.0 350.0 0.140 90.00 13.63 24.39
SE (tmin = 60 mm) 61.2 60.0 362.1 0.158 85.42 11.87 19.04
SE (tmin = 80 mm) 80.0 95.4 400.0 0.165 84.98 11.54 19.00
W (tmin = 60 mm) 60.0 71.9 264.3 0.150 85.87 12.27 19.02
W (tmin = 80 mm) 80.0 81.0 333.1 0.141 86.45 12.79 19.05
σt (tmin = 60 mm) 159.4 80.9 384.6 0.139 86.53 12.91 19.01

SE = strain energy;W =weight; σt = tensile stress; tmin =minimum thickness.
and thus departing significantly from the hyperbolic paraboloid.
Furthermore, its appearance would not match the design criteria.
The statedminimumvalues are 19m for the height of the free edge
and 11.5 m for the radius.

4.4. Results

In the first stage, the analysis of the initial design allowed
to obtain outstanding information, such as the stresses and
displacements at the points of the structure and the buckling load.
The initial design was developed starting from the hand-drawn
sketches by Candela for the Oceanographic Park.
In the second stage, several optimisation runs were executed

with the purpose of improving the structural behaviour under the
worst of several load combinations. The optimisation runs of the
initial model were classified into two groups depending on:

(1) The objective function used (strain energy, weight or tensile
stress), and

(2) the minimum thickness allowed (60 or 80 mm).

For each objective function, two optimisation runswere carried
out depending on the minimum thickness allowed.
A buckling study of the structure was carried out for the initial

model with three different thicknesses and for the optimum de-
signs. Two types of analysis have been used (linear and nonlinear).
Following the recommendations of Lee and Hinton [32] for

this kind of shape optimisation processes with linear analysis, the
behaviour of the shell against instability has been studied using
nonlinear analysis.
Moreover, it was considered of interest to calculate the final

values of two geometric parameters: (i) the height of the free edge
of the hypar and (ii) the radius or distance in ground plan from
the centre of the structure to one of its supports. The comparison
of these parameters in the different processes could help in
visualizing and showing the changes that have taken place in the
geometry of the initial model. The final values of the variables
of geometry in the different optimisation processes are shown in
Table 1.
It is observed that the angle ω (angle between the director

planes) decreases in all the optimisation runs, implying that the
hypar is no longer equilateral. On the other hand, the height
of the initial model decreases in all runs tending to the stated
minimum value of 19 m. Regarding the thickness of the shell, it
can be seen that the allowed minimum value is reached when the
strain energy and the weight are optimised. However, when the
maximum tensile stress is optimised, the thickness of the shell
is nearly 160 mm, indicating the high cost of a form having the
membrane behaviour when geometric constraints are used.
The final values of the objective functions are shown in Table 2,

together with three additional parameters whose analysis and
comparison could be useful: the shell thickness e1, the maximum
compressive stress σc,max and the maximum vertical displacement
Uz,max.
From the above results, it could be seen that in all the opti-

misation processes, the maximum compressive stresses are below
5MPa and themaximum tensile stresses are lower than the design
Fig. 7. Intersection of initial model (light shaded) and a final design (dark shaded).

tensile strength of the concrete. In addition, the maximum vertical
displacement of the structure is lower than 4 mm, which concurs
with the results obtained by Ortega and Arias [21] for this type of
optimised structures, where vertical displacements are below 10%
of the shell thickness.
When tensile stress is the objective function, the weight ap-

proximately doubles the values obtained in the other optimisation
processes. However, no substantial decrease in the tensile stress is
achieved, which confirms the high cost of a formwith amembrane
behaviour using geometric constraints, as mentioned previously.
The geometries of the initial design and of one of the final

designs are compared in Fig. 7. The final designwas obtained using
strain energy as the objective function and a minimum thickness
of 60 mm as the constraint. Both geometries are intersected
to provide a better perspective and show the slight differences
between them.
Finally, Table 3 shows the results of a buckling analysis by

using: eigenvalue (linear) analysis; nonlinear analysis considering
geometric and material nonlinearity; and the latter analysis but
modified by a factor (α2) to consider concrete creep according to
IASS Recommendations [33]. The buckling loads correspond to the
final designs in each optimisation process and to the initial model
with a thickness of 60 mm.
From the stability study, the high buckling load obtained shows

the high stiffness of this type of structures. This stiffness is also
confirmed by the maximum vertical displacement obtained of
8.73 mm in the initial model, and less than 4 mm in the optimum
designs (Table 2).
The influence of the thickness is decisive, because its increase

implies a decrease of the shell slenderness and therefore an
increment in the buckling load.
Secondly, the buckling load is approximately double in the

optimum designs with respect to the initial models, with the same
thickness, thus reaffirming that designing this type of concrete
shell structures by using optimisation techniques provides an
added benefit.
Finally, it is necessary to underline the importance of including

in the study a significant phenomenon that affects the shell
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Table 2
Optimisation processes. Final values of objective functions, shell thickness (t1), maximum compressive stress (σc,max) and maximum vertical displacement (Uz,max).

Process Objective functions t1 (mm) σc,max(MPa) Uz,max(mm)
SE (N m) W (kN) σt (MPa)

Initial model 881.77 473.83 2.19 60.0 7.89 8.73
SE (tmin = 60 mm) 297.94 330.17 1.33 61.2 4.96 3.90
SE (tmin = 80 mm) 300.66 443.28 1.29 80.0 4.22 3.25
W (tmin = 60 mm) 318.29 309.54 1.26 60.0 4.89 3.94
W (tmin = 80 mm) 367.20 431.37 1.10 80.0 4.27 3.27
σt (tmin = 60 mm) 514.36 767.87 1.05 159.4 4.75 2.26

SE = strain energy;W =weight; σt = tensile stress; tmin =minimum thickness.
Table 3
Buckling load (shown as a factor of weight of the shell).

Initial model Optimum design
SE (tmin = 60) SE (tmin = 80) W (tmin = 60) W (tmin = 80) σt (tmin = 60)

t (mm) 60.0 61.2 80.0 60.0 80.0 159.4
L 8.65 17.37 25.60 15.82 22.38 53.39
NL 5.20 12.19 16.10 11.01 14.77 22.22
NL (α2) 2.55 5.97 7.89 5.39 7.24 10.89

SE = strain energy;W =weight; σt = tensile stress; t = final thickness (mm); tmin =minimum thickness (mm); L= buckling load from linear analysis; NL= buckling load
from nonlinear analysis; NL (α2)= buckling load from nonlinear analysis but modified by a concrete creep factor α2 .
stability: the structural effect of long-term deformations. The
buckling loads of the nonlinear analysis modified by a creep factor
are between 66% and 80% less than the buckling load of the linear
analysis. Nevertheless, this phenomenon has been studiedmore in
depth numerically in [34], in which a reduction of about 10% in the
factor of load-carrying capacity of a shell has been obtained.

5. Conclusions

Traditionally, computers have been used, within the process
of design of structures, to analyse the response of a user-defined
structure and to check its safety for given applied loads. The use of
optimisation techniques in the design process of structureswidens
the field of use of computers and allows the user to obtain optimum
designs for stated design conditions.
From the results obtained in the present paper, the following

interesting aspects can be highlighted:
(a) Shape optimisation conclusions.
(a1) Form-finding of concrete shells by using shape optimi-

sation techniques leads to considerable improvements in
their mechanical behaviour. Slight changes in the shape
are usually enough to achieve these improvements.

(a2) Deformations in shells decrease considerably. In the
examples studied, final values are less than half the initial
values.

(a3) Obtaining the membrane state of compressive stresses in
a shell under geometric constraints implies a high cost (a
considerable increase of the thickness).

(b) Stability study conclusions.
(b1) The shell structures studied in this work present an

excellent behaviour against instability phenomena. The
buckling load may be improved by (i) increasing the
geometric curvatures; (ii) using a higher elastic modulus
of the concrete; and (iii) increasing the shell thickness.

(b2) The behaviour of shells against instability improves
noticeably when subjecting them to optimisation. In the
examples studied, the buckling loads are approximately
double the initial values.

(b3) The buckling load obtained from the nonlinear analysis,
modified by the concrete creep factor according to IASS
Recommendations, is within a third and a fifth of that
obtained in the study of initial stability. This occurs
when including a phenomenon that affects the stability:
the structural effects of the long-term deformations in
concrete.
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