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Abstract: The future of Autonomous Vehicles (AVs) will experience a breakthrough when collective
intelligence is employed through decentralized cooperative systems. A system capable of controlling
all AVs crossing urban intersections, considering the state of all vehicles and users, will be able to
improve vehicular flow and end accidents. This type of system is known as Autonomous Intersection
Management (AIM). AIM has been discussed in different articles, but most of them have not con-
sidered the communication latency between the AV and the Intersection Manager (IM). Due to the
lack of works studying the impact that the communication network can have on the decentralized
control of AVs by AIMs, this paper presents a novel latency-aware deep reinforcement learning-based
AIM for the 5G communication network, called AIM5LA. AIM5LA is the first AIM that considers the
inherent latency of the 5G communication network to adapt the control of AVs using Multi-Agent
Deep Reinforcement Learning (MADRL), thus obtaining a robust and resilient multi-agent control
policy. Beyond considering the latency history experienced, AIM5LA predicts future latency behavior
to provide enhanced security and improve traffic flow. The results demonstrate huge safety improve-
ments compared to other AIMs, eliminating collisions (on average from 27 to 0). Further, AIM5LA
provides comparable results in other metrics, such as travel time and intersection waiting time, while
guaranteeing to be collision-free, unlike the other AIMs. Finally, compared to other traffic light-based
control systems, AIM5LA can reduce waiting time by more than 99% and time loss by more than 95%.

Keywords: 5G latency forecasting; 5G vehicular communication; autonomous intersection management;
autonomous vehicles; connected autonomous vehicles; cooperative autonomous driving; intelligent
transport systems; intersection traffic management; latency-aware driving; unsignalized intersection

1. Introduction

Autonomous Vehicles (AVs) are becoming an integral part of our society due in part to
recent advances in Artificial Intelligence (AI) and technology improvements, which enable
safer, easier, and more reliable travel, along with a large reduction in the number of injuries
and fatalities caused by human error. AVs are designed to drive themselves on highways
and freeways with great ease, but urban roads are a challenge yet to be solved. Therefore,
the next step is to develop AVs that are able to drive in challenging traffic conditions, such
as busy streets with pedestrians, cyclists, emergency vehicles, traffic lights, multi-signals,
intersections, etc., and make them capable of adapting to different traffic conditions and
user behaviors, thus providing greater safety for all traffic actors.

An approach to addressing the challenge of urban traffic is using Autonomous In-
tersection Management (AIM) [1]. An AIM is a centralized control system, located at an
intersection and usually referred to as an Intersection Manager (IM), that coordinates the
behavior, states, and actions of all AVs (speed, acceleration, steering, path, etc.) crossing
the intersection to eliminate accidents due to human error, thus improving traffic flow.
These AIMs assess a control policy based on the status of all vehicles and road users; to
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obtain their status, AIMs communicate with the vehicles to obtain multiple data such as
geographical position, current speed, acceleration, orientation, route, etc. In addition, AIMs
can integrate data from external sensors [2,3] such as cameras, noise sensors, pollution
sensors, etc. Once all the data is obtained, AIM evaluates the control policy and obtains the
action (next target speed, acceleration, route, etc.) that each AV should take to ensure safety
and maximum flow. Figure 1 shows a representation of an AIM. Note that AIM refers to the
control algorithms of the AVs and IM to the node in charge of the communication between
the AVs and the AIM.
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Figure 1. Example of Autonomous Intersection Management (AIM). The Intersection Manager (IM)
communicates with the Autonomous Vehicles (AVs) through a wireless communication network and
guides them on the action to be taken by each AV. The AIM operates within the IM.

In this context, the control of AVs using AIM requires knowledge of the state of all
AVs to be controlled to make the right decisions, as well as AVs cooperating to achieve
the same goals. A cooperative control system must be aware of the state of all AVs at the
intersection and adapt its strategy in a time-limited manner. In addition, it must have the
necessary foresight to be able to anticipate potential problems and cope with uncertainties.
To the authors’ knowledge, most research studies on cooperative control in AIM focus on
the design of control strategies, and do not consider (or mostly assume ideal conditions)
the communication latencies inherent in wireless communication systems between AVs
and the IM.

Due to the lack of works studying the impact that the communication network can have
on vehicle control and safety, this paper presents a novel latency-aware deep reinforcement
learning-based AIM used for AV control in the 5G communication network, called AIM5LA.
It was decided to use the 5G communication network given the advantages it offers for
vehicle control using Ultra Reliable Low Latency Communications (URLLC). This is the first
latency-aware AIM trained fully by Multi-Agent Deep Reinforcement Learning (MADRL).
When we say it is latency-aware, we mean that AIM5LA adapts the control of the AVs to
the inherent latency of the 5G network, thus providing safety and smooth traffic flow. If
communication latency were not considered, a small delay in control could cause a vehicle
to receive an order later than desired, leading to undesirable situations, including collisions.

Although AIM5LA is derived from an AIM system implemented in previous work [4],
AIM5LA has several improvements. These enhancements are:

(i) Taking into account the previous latencies of all AVs using a deep neural network
based on a recurrent neural network to encode the latencies of the other AVs;
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(ii) Predicting the latency that each AV is going to experience in the next timestep, using
a Transformer-based deep neural network, to adapt the control of the AVs;

(iii) Consider the number of AVs to be controlled simultaneously as an internal parameter
to adapt the control according to the number of AVs;

(iv) Propose the set of messages as well as the communication protocol for AIM5LA
implementation.

The rest of the article remains as follows: In Section 2, we present the related work on
AIM and focus especially on latency-aware AIMs. In Section 3, we present the proposed
AIM5LA mechanism as well as the necessary message protocol. The simulations performed
as well as the testbed used are described in Section 4. In Section 5, the results obtained are
analyzed and discussed. Finally, Section 6 concludes and proposes future work.

2. Related Works

AIMs represent a very suitable approach to solving traffic problems because of the
great versatility they offer. They have been extensively studied and have demonstrated an
ability to reduce accidents and increase traffic flow by decreasing congestion and delays at
urban intersections.

The first AIMs were proposed by Dresner et al. in [5–9]. These AIMs were the first
Query-Based (QB) methods applied to AVs control at intersections. The operation of the
proposals presented by Dresner et al. was based on the vehicle attempting to cross the
intersection requesting the IM if it could pass (or not), indicating its estimated time of
arrival. The IM could accept the request if there were no collisions with other vehicles based
on the Estimated Time of Arrival (ETA). Otherwise, the IM would send a Denial of Request
(DoR), and the VA would have to slow down and ask again later. This approach was based
on the First-Come-First-Served (FCFS) policy and outperformed traditional traffic light
control systems in low traffic flows (<500 veh/h).

Since FCFS presented several serious problems that could lead to risky situations [10],
Huang et al. proposed in [11] a QB alternative that allowed grouping vehicles according
to their status and allowed the IM to indicate the recommended deceleration speed when
there was a DoR. The results showed a reduction in time loss of about 85%, as well as a
reduction in fuel consumption of 50%.

Other FCFS improvements were those developed by [9,12], through which it was
possible to create platoons of vehicles traveling in the same direction, increasing the
intersection flow. The results obtained improved the flow of vehicles by ×2 and reduced
the time loss by 85% compared to traditional traffic light control techniques.

An alternative to FCFS was suggested by [13], in which the right-of-way policy was
calculated based on the fastest vehicle arriving at the intersection, called Fast First Service
(FFS). The findings were superior to traffic light-based techniques, allowing a reduction in
hard-braking.

Other control techniques, in addition to FCFS, use mathematical optimizations to
determine the passing priority policy [14–18]. Although the results obtained with these
techniques were similar to those obtained previously in work using FCFS, the high com-
plexity of large intersections makes a real-time control solution unfeasible.

A control policy different from FCFS was proposed by Carlino et al. in [19], where the
proposed policy was auction-based. The vehicles that bid the most to cross were the ones
that could pass through the intersection first, creating a market economy. Although the
results shown were superior to those of the compared algorithms, the problems derived
from this economy could generate vehicle starvation, which could suffer indefinitely long
waiting times, as well as generate inflation, discrimination, etc.

Some works use Reinforcement Learning (RL) to address this approach. For example,
the works proposed in [10,20] used RL to obtain the vehicle passing priority policy, demon-
strating excellent performance when compared to other control algorithms and reducing
waiting time by more than 80%.
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Another work using Deep Reinforcement Learning (DRL) was presented in [4], where
DRL was used to obtain an advanced vehicle control policy. In this case, the IM used DRL
to find the optimal actions to be taken by the vehicles (the speed to which the vehicles
should adapt at each time interval) when approaching (and within) the intersection. In
that proposal, it was necessary to use training acceleration techniques such as curriculum
learning [21] and Twin Delayed Deep Deterministic policy gradient (TD3, [22]) to reduce
the training time because the training scenario could be considered highly complex. The
results obtained showed excellent performance in multiple metrics, such as a reduction in
time loss of up to 95%, reductions in pollutant gas emissions of around 50%, or reductions
in fuel and energy use of 25%.

As we have seen in this short review of the state of the art, most of the work focused
on AIM is based on communication between VAs and IMs but does not consider the latency
required for communication between them. There is a small set of works that have taken
it into account [23–26]. Of note is that of Zheng et al. [24], where they presented a delay-
tolerant intersection management protocol that considered the network delay for vehicular
control. Their findings revealed that the presented method outperformed traditional traffic
signal systems when traffic was low (<360 veh/h) or asymmetric (the flow of the north-
south branches was three times greater than that of the east-west branches). However,
when traffic was medium-high, or when the traffic was symmetrical, the result shown by
their proposal did not surpass that obtained with traffic lights.

Another interesting work that accounts for Round-Trip communication Delay (RTD)
was presented by Andert et al. in [25]. In this case, RTD was estimated by message
exchange and followed a similar approach to FCFS. The results showed that they could
improve the flow of a single intersection compared to FCFS by 26%. An improvement of
the previous work was presented by Khayatian et al. in [26]. In this case, they improved
the synchronization process between IM and VAs by message exchange and enhanced the
decision-making algorithm. They used FCFS as the method for passing-priority decision-
making. The results obtained showed a reduction in the positioning error by more than 15%,
increasing the throughput by 36% compared to other AIM techniques, as well as a complete
reduction in crashes. However, both AIMs were based on fixed mathematical control rules
that do not allow for learning an advanced and adaptive control policy. Moreover, the
proposed system was only tested in scenarios where the traffic density was extremely low
(<300 veh/h).

It is clear that the works on AIM so far have focused on improving vehicular flow as
well as reducing lost time, but very few have considered the influence of latency inherent
in wireless communication systems. As a result, we believe that there is still a dearth of
work addressing the study of latency in AIMs, particularly using advanced approaches
such as multi-agent DRL, in which the system can learn autonomously without the need
for any control rules and obtain advanced control techniques. By doing so, it could offer
higher security and the possibility to learn from the environment under control to perfectly
adapt its behavior to the conditions and properties.

3. Our Proposal

AIM5LA is based on adv.RAIM [4]. adv.RAIM implements an advanced cooperative
AV control system for urban intersections using AI algorithms. Specifically, it uses DRL’s
TD3 algorithm along with other algorithms designed to accelerate training, such as PER.
adv.RAIM offers an advanced control policy in an ego way, i.e., it processes all AVs recur-
sively, calculating the speed at which each AV should travel during the next control interval
as a function of the ego-vehicle’s state and the other “collaborating” vehicles’ states. This
process is repeated periodically every timestep for all AVs (250 ms).

adv.RAIM is included within the collaborative problems and follows the mechanism
of centralized training and centralized execution, which allows for the obtaining of the
better performance of the experiences performed by the different actors (vehicles) in the
environment (intersection). The experiences are centralized in the IM, being the IM in
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charge of executing the control policy for all the controlled AVs. The experiences that
each vehicle sends to the IM are composed of the status of each vehicle (geographic
position, speed, route, lane, etc.). When the IM collects all the experiences of all the AVs
to be controlled, it has a complete and detailed view of the whole intersection. On these
experiences, the DRL algorithm is applied, in which, based on the different actions that the
vehicles can perform (speed during the next time interval), it calculates the optimal speeds
to be followed by the AVs during the next time interval to minimize the travel time without
causing collisions between the AVs.

In addition, to solve the problem of independence of the number of AVs in the control
algorithm, adv.RAIM incorporates a recurrent neural network, a Long Short-Term Memory
(LSTM). This LSTM encodes the representation of the characteristics (state) of the other AVs
with which the ego-vehicle collaborates into a fixed-size output variable (256) and captures
the long-term spatial and temporal dynamics of the traffic conditions in the network.
The output of this LSTM was concatenated with the parameters (state) of the ego-vehicle.
The main drawback is that adv.RAIM does not take into account the latency inherent to
the communication systems. Communication is necessary for the data exchange (status)
between AV and the AIM system in charge of calculating adv.RAIM. Although originally
adv.RAIM enables accident-free control, this was because it was tested in a traffic simulator
without communication latency.

Due to the lack of works exploring this problem using DRL, in this work, we proposed
to evolve adv.RAIM to take into account the latency of the 5G communication network
and thus improve control in real future scenarios where mobile wireless communication
protocols such as 5G will be used. The new proposal, called AIM5LA, includes the following
improvements and modifications compared to adv.RAIM:

- Incorporates the previous latency experienced by the ego-vehicle to be controlled in
the previous interval.

- Includes a novel latency prediction module that predicts the latency experienced by
the ego-vehicle during the next control interval, based on a Transformer deep neural
network and the history of latencies experienced, as well as the number of AVs to be
controlled simultaneously.

- Considers the latency experienced by other AVs at the intersection using an encoder
LSTM network.

- Finally, we propose the set of messages, the time intervals between each message, as
well as the communication protocol, to implement AIM5LA.

In our humble experience, this is the first latency-aware AIM trained entirely by DRL.
When we say it is latency-aware of the communications network, we mean that AIM5LA is
able to learn a control policy that can deal with changes in communications latencies and
thus internally model the behavior of AVs based on their latency, and therefore adapt the
control of these AVs to avoid collisions.

Without considering communication latency, a delay in control could cause an AV
to receive a command later than desired, leading to undesirable situations, including
collisions.

Once the above modifications have been included, a representation of the AIM5LA
architecture can be seen in Figure 2. This figure shows the observation space of AIM5LA.

The latency predictor module is composed of a Transformer-based network [27] that
predicts the latency that the ego-vehicle will experience in the next time interval based
on the history (h in Figure 2) of latencies experienced by that vehicle and the number of
AVs in the intersection (as later discussed, the number of AVs with a 5G communication
module affects latency). We believe that the enormous advances provided by Transformers-
based networks in countless areas may outperform alternative neural network forecasting
networks such as LSTM or GRU [28–30].
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To use AIM5LA, we propose a protocol message exchange for communication between
the AIM module and the AVs, as well as to calculate the latency in the communication
channel. This protocol includes the following messages:

-Probe: The probe message is sent by the IM of each intersection and contains IM-
specific information (communication characteristics, geographical position, etc.), as well as
a timestamp used to estimate the latency in the communication channel. This timestamp is
the internal time of the IM just before sending the message. This message is sent periodically
with a sending period such as to allow safe control of the AVs, but without saturating the
communication channel. A suitable period is 250 ms, based on the control intervals of
other works [20,31] and our experience with adv.RAIM [4] development. This means that
every 250 ms (four times per second), vehicles update the action to be performed (speed,
acceleration, route, etc.). As we have seen in previous work, a shorter update period (e.g.,
100 ms) increased the processing load, limiting the real-time processing of the system. On
the other hand, a longer update period (e.g., 500 ms) made the system less safe, as too much
time elapsed between two updates, leading to control crashes.

The other message timing is adjusted to meet with the 250 ms update period. Each
vehicle, after receiving the probe message from the IMs, checks whether its geographical
position and route match with the IM that should control it, responding to this message
with a control request message.

This periodicity enables sequential and temporally separated control of all AVs without
saturating the processing or communication channel, as well as safe and fast control with
sufficient anticipation.

-Request: These messages are sent by AVs to the IM to indicate that they want to be
controlled during the next control interval (250 ms). To avoid channel saturation and delays
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due to overlapping with other AVs that want to send the control request message, AVs wait
a random time t to send the control request message. The random time t is used to reduce
the probability of overlap of sending messages when multiple AVs attempt to access the
5G URLLC channel resources and thus remove this overlap from the latency calculation.
After performing a preliminary set of experiments in the Simu5G simulator [32], it has been
found that the optimal values of the waiting time t follow a continuous uniform distribution
with a minimum value of 0 ms and a maximum value of 50 ms. This interval minimizes
the probability of overlap with other AVs, considering the use case of an intersection;
furthermore, it allows a compromise so that all control requests can be processed in real-
time. The control request message includes a vehicle identifier and the timestamp resulting
from adding the random time t for sending the control request message to the timestamp
captured from the IM probe message. In addition, it includes the internal parameters
necessary for the cooperative control of the AVs, which include geographical position (x, y),
speed, acceleration, branch of the intersection (north, east, south, west), lane in which it
travels (left, center, or right), route it intends to follow (through, left turn, or right turn),
type of vehicle, physical characteristics (width, length, weight), and technical characteristics
(maximum speed, maximum acceleration, etc.). With this message, the AIM can estimate
the latency existing in the wireless communication channel. When the IM receives the
message from the AV, it only has to compare the timestamp included in the message with
the internal timestamp, so it calculates the latency existing in the complete IM-AV–IM path.
In addition, a history of the computed latencies allows for the assessment of an estimate of
the jitter, which is also an interesting parameter. Finally, thanks to the random time t, the
time that each vehicle takes to gather internal parameters (position, speed, trajectory, etc.)
is eliminated in the calculation of the communication channel latency.

-Action: This message is sent from the IM to each controlled AV and indicates the
action to be performed at that moment until the next control interval. This message may
include speed, acceleration, steering wheel position, geographical route to follow, speed
and acceleration profile, etc. The calculation of this action already takes into account the
possible latency of the wireless communication channel as well as the influence of the other
AVs at the intersection. In this case, AIM5LA predicts the speed to be followed by the
ego-vehicle during the next control interval.

The message exchange diagram can be seen in Figure 3. In that figure, we can observe
that, from the AIM’s point of view, after sending the probe message (at time T1), the AVs
are given enough time to respond, taking into account the communication latency, as well
as the random time t (t_V1, t_V2, and t_V3) that each vehicle waits to respond. The time
allotted to listen to control requests (control request messages) is 100 ms. This value takes
into account the up to 50 ms that an AV may wait to respond to the probe message and the
latency that may exist in the system in the extreme case of a saturated scenario [32,33]. In
order not to leave any request out, the maximum limit was set at 100 ms.

Consequently, the AIM can calculate the average latency LatencyVx
Ti+1

for vehicle Vx
during the following time interval Ti+1, as shown in Equation (1), where T_RequestVx is
the time instant at which the control request message is received from vehicle Vx, tVx the
random time t that vehicle Vx has waited to send the control request message, and Ti the
time instant at which the AIM sent the probe message.

LatencyVx
Ti+1

=
T_RequestVx − tVx − Ti

2
(1)

From that moment on, the AIM starts processing the requests to obtain the best actions
that AVs should perform in the next control interval. As a result, it will have the most
up-to-date information from all vehicles, as well as from other data sources such as cameras,
people counters, sensors, etc. In addition, the AIM can already estimate the latency of
the communication between each of the AVs using the timestamps included in the request
messages and the internal captured timestamps of these messages. This latency is also fed
into the vehicle control decision-making process implemented in this work using AIM5LA,
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in addition to forecasting the latency behavior. This stage was assigned a maximum time
of 75 ms. This time is based on the time required to perform the inference of the deep
learning models employed, as well as the remaining time of the self-imposed control period
(250–100 ms of the probe + request messages). The actual inference time is expected to be
much less than this time due to the use of concurrent computing techniques, pruning,
knowledge distillation, and half-precision floating-point operations.
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Figure 3. Message diagram proposed for AIM5LA. In this example, there are 3 vehicles to control.
The probe message is a broadcast message.

Finally, the actions to be performed/maintained during the next interval are sent
consecutively to each AV. For this process, we assign a maximum of 75 ms, which is the
remaining time of the control interval period (250 ms of control interval period–100 ms of
probe + request–75 ms of processing). Then, the process is started again, but this time with
the time instant T2 (=T1 + 250 ms [probe message control interval]).

4. Testbed and Experiments

In this section, the testbed is developed for AIM5LA training as well as the simulated
scenarios.

4.1. Testbed

To evaluate the performance of AIM5LA and the proposed message protocol, several
scenarios were designed. The first scenario was used to train AIM5LA to find an advanced
control policy that takes into account the wireless communication latency. The second
scenario aimed to show the performance of AIM5LA in a scenario never seen before by
the algorithm during training to demonstrate that AIM5LA can find robust control despite
confronting unknown traffic and latency situations. In addition, before carrying out the
experiments in these scenarios, the latency predictor module had to be optimized in a
scenario using the Simu5G 5G computer simulation tool [32].

AIM5LA derives its control policy from DRL [34] and makes use of other advanced
techniques and algorithms such as TD3 [22], PER [35], and curriculum learning [21] to
accelerate training and maximize learned knowledge.

To simulate the wireless communication channel and protocol, the 5G simulator
Simu5G 1.2.0 [32] was used, along with OMNeT++ 5.6.2 [36] and INET 4.2.2 [37]. Simu5G
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is an OMNeT++ library for the end-to-end performance evaluation of 5G networks. It was
decided to investigate latency in the 5G mobile communication protocol since it is a widely
developed and researched protocol with ultra-low expected latency (1 ms). It focuses on
assessing Vehicle-to-Network (V2N) use cases over the 5G New Radio (NR) and follows
the Rel-16 specification to model the 5G NR radio access network and the data plane. In
this case, the IM was simulated as a 5G gNodeB node and the vehicles, as 5G devices
(NrUe–NrCar), were configured to offer low latency and throughput similar to that offered
to the URLLC use case.

For the simulation of vehicles, their behavior, and urban roads, SUMO 1.8.0 [38] was
used together with TraCI [39] for vehicle control using AIM5LA.

For the development of AIM5LA, as well as all the deep learning algorithms, Python
3.8.10 was used together with the deep learning framework PyTorch 1.9.0 with CUDA [40].
As for the hardware, an Intel 8-core/16-thread processor (i7-11700k) and an Nvidia RTX
3080 graphics card were used. Table 1 summarizes the parameters used in the different
simulators.

Table 1. Summary of Simulator Setup.

Simulator Parameter Value

SUMO

Simulation step 0.25 segs
Flow step 100 veh/h
Min flow 200 veh/h

Train duration 5 min/simulation
Test duration 840 min/simulation

Scenario 4 branches, 3 lanes/way, and all ways.
Control distance 100 m

Simu5G

Carrier Frequency 2 GHz
Bandwidth 20 MHz

IM Tx Power 40 dBm
IM antenna gain 12 dB
IM noise figure 5 dB

AV antenna gain 3 dB
AV noise figure 7 dB
Path loss model 3GPP TP 36.783

4.2. Experiments

First, the latency prediction module was optimized. We called it Experiment #1.
We did the optimization by simulating a simple 2-lane, traffic light-controlled 60-s cycle
intersection with an increasing number of vehicles. This is because it has been shown in
previous works [32,33] that the latency experienced by 5G network devices depends on
the number of active devices. Therefore, simulations were performed in the previously
described scenario, with 1, 4, 16, 64, 128, and 256 vehicles. Simulations were run 10 times,
and the vehicles followed random routes in each simulation, and the communication
latency between the vehicle (nrCar in Simu5g) and a 5G base station (gNodeB in Simu5g)
was measured. The gNodeB was located at the edge of the intersection, at a height of
20 m. This intersection was controlled by a traditional traffic light system. For the latency
calculation, the message exchange described above was implemented in Omnet++, where
the base station gNodeB sent the probe message periodically (every 250 ms), and when
this message was received by the vehicles, the vehicles responded with a control request
message after a random time t that followed a uniform distribution with a minimum of
0 ms and a maximum of 50 ms, as shown in the previous section.

For training the latency predictor module, the gNodeB (acting as IM) was configured
to send probe messages every 250 ms. The scenario had a duration of 300 s, and the first
250 s of the simulation were used as the training dataset and the last 50 s as a testing dataset,
obtaining an 83%/17% split of the dataset. The forecaster predicts the latency experienced
based on previous latencies, i.e., it considers a previous temporal window (h in Figure 4)



Sensors 2022, 22, 2217 10 of 19

to forecast the expected future latency behavior. This temporal window was optimized
during training to find the optimal window size that obtained the best performance in
latency prediction. In addition, since the latency experienced could depend on the number
of AVs at the intersection, it was decided to include this feature in the latency forecast.
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Figure 4. The architecture of the latency forecast module is composed of a transformer network
and 3 fully connected layers. The size of the transformer network input depends on the size of the
considered window (h), which controls how many previous latencies are considered when predicting.
The output of the transformer network is concatenated with the variable of the number of simulated
vehicles (to be controlled) and fed into the fully connected layer network.

Finally, the latency forecast module included a neural network based on Transformers,
with an output of 1 hidden neuron. The output of this network was concatenated with
the number of simulated AVs variable and these variables were used as input to a deep
neural network composed of 3 Fully Connected (FC) layers, with 64, 16, and 1 neuron in
each layer, respectively, with ReLU as activation functions in the hidden layers. The neuron
in the last layer is responsible for providing the latency forecast output during the next
control interval. A representation of the architecture of the prediction module can be seen
in Figure 4.

Once the latency forecast module was optimized, the AIM5LA control algorithm could
be optimized. The results of this optimization can be seen in the following section.

To optimize the AIM5LA control algorithm, another scenario was developed, namely
Experiment #2, consisting of an intersection with an AIM in charge of controlling the
vehicles crossing that intersection. The intersection had four 200-m branches (north, east,
south, and west), 3 lanes per direction, left turns, straight ahead, and right turns were
allowed. AVs were controlled when within 100 m of the center of the intersection. A
representation of this scenario can be seen in Figure 1.

To obtain a wide variety of situations that challenge the control algorithm, the simu-
lated flow pattern was set as shown in Figure 5a. The vehicle flow pattern shown indicates
the number of simulated vehicles per lane per simulated hour on the North (N), South (S),
West (W), and East (E) branches. The flow is symmetrical on the opposite branches (NS
and WE).

The metrics, optimized by the DRL algorithm, were the number of collisions and time
loss of vehicles due to intersection congestion, with the reward function followed by the
DRL algorithm being as follows:

- −100 when there was an accident;
- +100 when a vehicle crossed the intersection without an accident;
- −control interval (−0.25) at each simulation interval to encourage optimization of time

loss and crossing as quickly as possible.

These reward signals are determined in the original paper [4]. The metrics analyzed in
the training scenario were the waiting time of the vehicles, the number of accidents, and the
global reward obtained by the DRL algorithm in each simulation. The optimization process
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was performed three times, and the results showed the moving average of the mean and
the standard deviation.
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Figure 5. Vehicle flow rate per branch used: (a) Training scenario; (b) Testing scenario.

A final scenario was composed of a Manhattan network of 100 intersections (10 × 10)
to show the performance of the AIM5LA algorithm, namely Experiment #3. At each
intersection, there was an AIM in charge of controlling the vehicles crossing it. The
intersections were separated by 250 m, with a similar configuration to the training scenario
(4 branches, 3 lanes, left, straight, and right movements allowed). In addition, to illustrate
singular situations, a different flow behavior was simulated, shown in Figure 5b. This
scenario shows the capabilities of AIM5LA against situations never seen before during
training. A representation of this scenario can be seen in Figure 6.
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Figure 6. Simulated topology for the testing scenario: Manhattan 10 × 10 network with 250 m
between each intersection.
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The metrics analyzed in the test scenario were diverse because SUMO provides a
complete set of metrics after each simulation. These metrics were time loss due to congestion
at intersections, number of collisions, average waiting time, various pollutant gas metrics
(CO2, PMx), and fuel and electric consumption. Although all the metrics showed are not
directly optimized, they are indirectly optimized through the overall optimization process.

The vehicle configuration used is shown in Table 2. As can be seen, there were several
types of vehicles, with different physical dimensions and characteristics that made them
unique, which are available in [41].

Table 2. Vehicle distribution and fuel type used.

Vehicle Distribution (%) Fuel Type/Electric

Car 30 Gasoline
Car 40 Diesel
Car 20 Electric
Van 5 Diesel
Bus 5 Diesel

To compare the performance of AIM5LA with other algorithms, we also included
the performance evaluation of adv.RAIM [4], the AIM algorithm proposed by Andert
et al. [25], and two preliminary versions of AIM5LA, using only the latency of the ego-
vehicle at the previous time instant (called AIM5LA_v0.1) and AIM5LA_v0.1 + the latency
forecaster module (called AIM5LA_v0.2). The use of the preliminary versions of AIM5LA
(AIM5LA_v0.1 and AIM5LA_v0.2) serves as an ablation study, allowing us to show the
importance of each module, as well as to isolate their contribution. The results obtained
with traffic-light based control algorithms have been incorporated as well; particularly, a
fixed time control (FX) system with different cycle lengths (30, 60, and 90) and an intelligent
advanced traffic light control technique (iREDVD) [2] that proactively adapts the traffic
lights to reduce congestion. The fixed traffic light control system assigns a fixed green time
for each branch of the intersection where the passing priority (green light) is given. This
passing priority is cyclically passed through all branches with a fixed cycle time (in our
case, 30, 60, and 90 s were analyzed).

5. Results

In this section, we show and discuss the results.

5.1. Experiment #1—Forecast Module Optimization

After performing the simulations, the average latency, as well as its standard deviation
as a function of the number of simulated vehicles, can be seen in Figure 7. These results
show that the latency value strongly depends on the number of vehicles and can increase
by up to ×10 if we increase from 1 to 256 vehicles simulated simultaneously, which
corroborates the expectations. This increase in latency can be caused by a variety of
factors, including communication channel saturation, a decrease in available bandwidth,
overlapping communication requests with other devices, and so on. In addition, a summary
of the results can be found in Table 3.

Table 3. Results of latency simulation.

Number of Vehicles Mean Latency Std Latency

1 1.51 0.48
4 2.43 0.61
16 4.85 1.05
64 6.48 1.93

128 10.24 1.95
256 15.63 2.12
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The temporal behavior of the latency for a random vehicle in each of the simulated
scenarios can be seen in Figure 8a. In this figure, the dependence of the number of AVs on
the latency experienced can be seen. Furthermore, it is clear that the greater the number
of devices simulated simultaneously, the greater the latency variance (~jitter). This is
important when predicting the latency behavior; therefore, this variable of the number of
simultaneous AVs is important to consider for the latency prediction module because it
influences both the average latency value and its variation.
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Figure 8. Latency behavior and split: (a) Latency temporary evolution for a random vehicle in
each simulation group. The legend indicates the number of vehicles simulated simultaneously;
(b) Example of dataset division. Up to latency sample (message), 1000 was used to form the training
dataset, blue line. From the latency sample (message), 1000 was used for the test dataset, red line.

Once we had simulated the behavior of the AVs in OMNeT++ using the Simu5G
library and obtained the experienced latency, we had a dataset that could be used to train
the latency prediction module. For the division of the dataset, the first 250 s of latencies
were used as the training dataset, and the remaining 50 s were left as the test and validation
dataset. This division of the dataset can be seen graphically in Figure 8b below. This figure
shows the latency behavior for one vehicle in the 4-vehicle scenario, showing the division
of the dataset into training (<Message #1000, blue line) and test (≥Message #1000, red line).

The results of the training and testing can be seen in Figure 9. In it, the Root Mean
Square Error (RMSE) [42] metric as a function of the historical latency window size (h in
Figure 4) has been represented. In addition, the results are shown both when the number
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of vehicles parameter was considered (w/nvehs) and when it was not considered (w/o
nvehs) as an input parameter to the deep neural network of the latency forecast module.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 19 
 

 

 

Figure 9. Results of the latency forecast module for both the train and test datasets. The results are 

shown with the vehicle number variable (w/nvehs) and without it (w/o nvehs) as input parameters 

in the latency forecaster module. 

  

(a) (b) 

Figure 10. Latency behavior and split: (a) Latency temporary evolution for a random vehicle in each 

simulation group. The legend indicates the number of vehicles simulated simultaneously; (b) Ex-

ample of dataset division. Up to latency sample (message), 1000 was used to form the training da-

taset, blue line. From the latency sample (message), 1000 was used for the test dataset, red line. 

5.2. Experiment #2—Training AIM5LA 

Once the latency forecast module was trained, AIM5LA was trained. The training 

results can be seen in Figure 11. This figure shows the following metrics: training evolu-

tion of the reward (Figure 11a), time loss (Figure 11b), and number of collisions (Figure 

11c). The mean value (solid line) and standard deviation (shaded area) of the three runs 

are depicted. The curves shown have been smoothed using a moving average of size 100 

samples for visual clarity. 

The training results show the great performance offered by AIM5LA, being able to 

completely reduce collisions from about simulation 106 onwards. After this, AIM5LA con-

tinued to optimize the control policy, adjusting the control of the AVs to reduce time loss. 

This is reflected in the reward metric, showing a large improvement when the number of 

collisions is reduced and, when achieved, the reward improvement is reduced but always 

increases. The optimization of AIM5LA required 21 days (approx. 500 h) of simulation 

and training for the three runs, using an Intel 8-core/16-thread processor (i7-11700k) and 

an Nvidia RTX 3080 GPU. 

  
  
 
  
  
 
  

                                          

 
  
  
  
  
 
  

          

Figure 9. Results of the latency forecast module for both the train and test datasets. The results are
shown with the vehicle number variable (w/nvehs) and without it (w/o nvehs) as input parameters
in the latency forecaster module.

From these results, the optimal size of the historical latency window (h) was about
10 samples, since it makes the least error with the smallest window size. Finally, when we
considered 10 previous samples for latency prediction at the next time instant, as well as
the number of simultaneous vehicles, the mean value and standard deviation of the RMSE
results were 0.4551 ± 0.0264 in the training set and 0.3702 ± 0.0301 in the test dataset.

This means that the latency predictor module has a high accuracy in forecasting the
latency of any vehicle during the next control interval just by considering a history window
of 10 latency samples. With this predicted latency, the other AIM5LA modules will have to
adapt the control, taking into account the time it will take for the vehicle to react due to
latency.

For a visual representation of what these results represent, in Figure 10, we illustrate
the behavior of the predictor module during the training and the testing phases. Indeed,
these results were remarkably accurate, being able to strongly predict the latency value in
both the training and test datasets. Figure 10 shows the result for the 4-vehicle scenario
(Figure 10a) and 128-vehicle scenario (Figure 10b).
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Figure 10. Latency behavior and split: (a) Latency temporary evolution for a random vehicle in
each simulation group. The legend indicates the number of vehicles simulated simultaneously;
(b) Example of dataset division. Up to latency sample (message), 1000 was used to form the training
dataset, blue line. From the latency sample (message), 1000 was used for the test dataset, red line.
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5.2. Experiment #2—Training AIM5LA

Once the latency forecast module was trained, AIM5LA was trained. The training
results can be seen in Figure 11. This figure shows the following metrics: training evolution
of the reward (Figure 11a), time loss (Figure 11b), and number of collisions (Figure 11c). The
mean value (solid line) and standard deviation (shaded area) of the three runs are depicted.
The curves shown have been smoothed using a moving average of size 100 samples for
visual clarity.
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The training results show the great performance offered by AIM5LA, being able to
completely reduce collisions from about simulation 106 onwards. After this, AIM5LA
continued to optimize the control policy, adjusting the control of the AVs to reduce time
loss. This is reflected in the reward metric, showing a large improvement when the number
of collisions is reduced and, when achieved, the reward improvement is reduced but always
increases. The optimization of AIM5LA required 21 days (approx. 500 h) of simulation and
training for the three runs, using an Intel 8-core/16-thread processor (i7-11700k) and an
Nvidia RTX 3080 GPU.

5.3. Experiment #3—Benchmarking AIM5LA

Finally, after the training process, AIM5LA was compared with other AIM and traffic-
light based protocols in the test scenario described above. The results are included in
Table 4.

Table 4. Results of testing scenario.

Algorithm Time Loss (s) Collisions Waiting Time
(s)

CO2 Emiss.
(g)

PMx Emiss.
(mg)

Fuel Cons.
(mL)

Elect. Cons.
(W)

FX30 79.61 ± 8.98 0 ± 0 61.32 ± 7.99 101.78 ± 15.11 78.41 ± 8.54 391.12 ± 64.51 103.48 ± 11.51
FX60 70.16 ± 11.41 0 ± 0 50.71 ± 6.11 89.64 ± 9.87 66.98 ± 7.21 333.74 ± 42.66 99.74 ± 9.63
FX90 72.58 ± 7.42 0 ± 0 55.65 ± 7.05 95.87 ± 8.45 72.54 ± 7.88 351.52 ± 39.98 101.88 ± 9.88

iREDVD [2] 34.97 ± 3.32 0 ± 0 32.23 ± 4.44 53.44 ± 3.22 39.74 ± 6.11 205.25 ± 13.14 66.27 ± 4.48
adv.RAIM [4] 5.11 ± 1.24 49.91 ± 9.89 0.25 ± 0.03 25.48 ± 2.69 18.99 ± 2.81 124.47 ± 12.35 33.74 ± 3.81

Andert et al. [25] 4.98 ± 1.18 27.13 ± 3.11 0.24 ± 0.03 26.93 ± 2.33 17.52 ± 1.99 118.94 ± 18.74 31.67 ± 3.39
AIM5LA_v0.1 4.12 ± 1.41 32.01 ± 4.98 0.24 ± 0.02 26.18 ± 1.29 17.82 ± 1.97 119.14 ± 15.29 30.26 ± 3.21
AIM5LA_v0.2 4.89 ± 1.93 3.22 ± 2.61 0.28 ± 0.03 26.96 ± 1.46 18.49 ± 1.89 126.46 ± 18.46 32.34 ± 2.94

AIM5LA 5.42 ± 1.29 0 ± 0 0.31 ± 0.02 27.52 ± 1.97 19.22 ± 2.14 131.87 ± 17.42 34.29 ± 3.66

AIM5LA presents an excellent performance, being the only AIM protocol able to
reduce accidents in the test scenario. Looking at other metrics such as time loss, waiting
time, pollution, or fuel consumption metrics, AIM5LA can achieve a performance similar
to other AIM techniques such as the one proposed by Andert et al. [25] or adv.RAIM [4].
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However, it should be noted that the performance offered by AIM5LA is limited by the
elimination of collisions, therefore obtaining a similar result gives a higher value to our
proposal.

On the other hand, comparing AIM5LA with the v0.1 version of AIM5LA (which only
considers the previous latency of the ego-vehicle), we see that there are some collisions
that AIM5LA_v0.1 is not able to eliminate due to the instability of the channel in the
latency behavior, as well as due to the influence of other AVs. Last, when compared
to AIM5LA_v0.2 (that is, AIM5LA_v0.1 plus the latency prediction module), the result
is significantly improved. However, there is still a small number of collisions that are
completely eliminated when using the final version of AIM5LA.

In general, AIM5LA achieves great performance in all the analyzed metrics, showing
a reduction in time loss of up to 92.25% when compared to other traditional traffic light
control (FX) algorithms, or a reduction of more than 99.52% in waiting time. When compar-
ing AIM5LA with other advanced traffic light control techniques (iREDVD [2]), the results
show a significant reduction in metrics such as time loss (84.51%), waiting time (99.25%),
fuel consumption (35.67%), or pollutant gas emissions (48.50%).

Finally, looking at the performance of AIM5LA compared to other AIM techniques
such as adv.RAIM and the proposal of Andert et al., we conclude that the performance
offered is similar to these techniques, but where our proposal stands out is in the metric of
the number of collisions.

It is worth noting that, in the work where adv.RAIM was presented, there were no
crashes due to communication latency because this was not considered in the simulation
setup. Nevertheless, when testing its performance in a real scenario such as this one, where
there is communication latency in the 5G mobile communication protocol, it is observed
that there are indeed crashes due to this lack of consideration of latency (see Table 4),
indicating the importance of this factor.

6. Conclusions

Cities are a challenging environment for Autonomous Vehicles (AVs). In particu-
lar, they are complex and chaotic environments that require advanced control to ensure
maximum safety. One of the solutions proposed by the scientific community to control
AVs at intersections is Autonomous Intersection Management (AIM). AIM is based on
communication between AVs and a control entity located at each intersection to obtain a
joint control policy that improves the intersection flow. However, the vast majority of AIMs
ignore the latency that may exist in the communication channel, which poses a great safety
vulnerability and a high risk of accidents.

The main contribution of this work is the development of a latency-aware AIM for 5G
communication networks integrally trained by Multi-Agent Deep Reinforcement Learning
(MADRL). Our proposal uses a MADRL algorithm with centralized training and centralized
execution and a network latency forecasting module to obtain an advanced control policy
to ensure control security and reduce traffic congestion. In addition, our proposal uses a
novel latency predictor module that employs a Transformer-based deep neural network.
This is the first latency-aware AIM fully trained by MADRL. When we say latency-aware,
we mean that our proposal adapts the control of the AVs to the inherent latency of the 5G
network, thus providing traffic security and fluidity. The system was named AIM5LA,
and beyond considering the latency history experienced, AIM5LA predicts future latency
behavior to provide better security and improve traffic flow through the latency predictor
module. AIM5LA was compared with other AIMs [25] as well as other advanced traffic
light-based control techniques such as iREDVD [2]. Unlike prior AIM proposals, the results
demonstrated AIM5LA’s strong robustness against collisions, fully eliminating them.

First, the latency prediction module was able to obtain surprising results, achieving an
RMSE of less than 0.4. This allowed it to predict with high accuracy the latency that an AV
would suffer during the next control interval. When comparing AIM5LA with traditional
traffic-light based control techniques, AIM5LA is able to reduce the time loss by 92%, as
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well as the waiting time by more than 99%. Furthermore, compared to advanced adaptive
traffic light control techniques such as iREDVD, AIM5LA was able to reduce time loss
by 84.51% and achieve a significant reduction in other metrics such as time loss (84.51%),
waiting time (99.25%), fuel consumption (35.67%), or pollutant gas emissions (48.50%).
Moreover, observing the results obtained with AIM5LA during the ablation study (v0.1
and v0.2), it is possible to observe the contributions of the different modules developed,
as well as the importance of considering them in different metrics such as travel time,
number of collisions, etc. More specifically, only the full version of AIM5LA can eliminate
crashes in the test scenario. The most important lessons learned during this work included
the importance of the latency prediction module to eliminate collisions, as well as the
importance of using centralized training and end-to-end multi-agent deep reinforcement
learning algorithms, with excellent action space exploration, to obtain high efficiency in
future AIM systems.

In future work, the forthcoming 6G architecture will be considered, as well as the inclu-
sion of unmanned aerial nodes to reduce communication latency and analyze performance
in a real 5G system.
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