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Abstract This paper describes the BUSCAMOS-Oil 
monitoring system, which is a robotic platform consisting 
of an autonomous surface vessel combined with an 
underwater vehicle. The system has been designed for the 
long-term monitoring of oil spills, including the search for 
the spill, and transmitting information on its location, 
extent, direction and speed. Both vehicles are controlled 
by two different types of bio-inspired neural networks: a 
Self-Organization Direction Mapping Network 
(SODMN) for trajectory generation and a Neural Network 
for Avoidance Behaviour (NNAB) for avoiding obstacles. 
The systems’ resilient capabilities are provided by bio-
inspired algorithms implemented in a modular software 
architecture and controlled by redundant devices to give 
the necessary robustness to operate in the difficult 
conditions typically found in long-term oil-spill 
operations. The efficacy of the vehicles’ adaptive 
navigation system and long-term mission capabilities are 
shown in the experimental results 
 
Keywords ASV, UUV, multi-vehicle cooperation, 
artificial neural networks, bio-inspired control, oil spills 
monitoring, component based software architecture, 
autonomous long-term navigation. 
 
1 Introduction 

 
The recent history of oil spills has clearly shown their 

catastrophic effect on coastal ecosystems. Oil spills have 
been taking place at sea since the early days of offshore oil 
extraction and oil-carrying tankers (Burger 1997). 
Prevention and preparedness against oil spills is by far the 
best strategy, thus impeding the considerable damage 
they can cause by shortcutting their arrival at the coast. 
Monitoring the spill is a previous step to the cleanup. The 
lower density of the oil makes it accumulate on the 
surface, where it is visible from the air. The wide range of 
types of oil spill means that different strategies must be 
used for each one, from chemical or physical means to 
burning them off in situ.  

Monitoring the spill is a previous step to the cleanup. 
The lower density of the oil makes it accumulate on the 
surface, where it is visible from the air. The wide range of 
types of oil spill means that different strategies must be 
used for each one, from chemical or physical means to 
burning them off in situ.  

Monitoring vast extensions of spilled oil requires aerial 
observation either by aircraft or satellites. Technology has 
always been at the forefront of this strategy by providing 
remote sensing images (Fingas and Brown 2014), 
modeling (Liu et al. 2013; Klemas 2012), and most 
recently, autonomous underwater vehicles (Camili et al. 
2010). Effective reaction to oil spills needs the maximum 
amount of information on the slick’s location, extent, 
direction and speed by continuous monitoring, a process 
which involves time and substantial operational costs. 

The largest oil spill in the history of the petroleum 
industry (Sammarco et al. 2013) took place on April 20th, 
2010 when the BP Deepwater Horizon Macondo well 
blew out in the north of the Gulf of Mexico. The spill 
lasted for 84 days and leaked 800,000 – 1m tons of crude 
oil from the sea floor, with an estimated peak of 15,520 
tons per day, (Sammarco et al. 2013; Reddy et al. 2012). 
The area affected by the slick covered 62,159 km2 and 
affected both the coastal area and the water column (Norse 
and Amos 2010). This was the first time autonomous 
marine robots played a pioneer role in fighting an oil spill, 
as did other technologies like satellite remote sensing and 
ocean modeling. 

This was in fact the first recording of the extent of a 
large oil plume, not visible from the air. Oil spills in water 
can surface a long distance from the spill, depending on 
the ocean currents in the area. Monitoring these plumes is 
critical to trusting the trajectory models that predict where 
the slick will go. Autonomous underwater vehicles are 
now bridging the gap between traditional aerial 
observation and sea-based techniques that require new 
technology to monitor oil slicks from beginning to end. 

The key to the success of these missions is, firstly, the 
oil-sensing equipment included in the vehicles, and 
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secondly, their autonomy. A wide range of this equipment 
is now available, from UV fluorometers to mass 
spectrometers, however the autonomy challenge requires 
new designs and mission planning. 

The need for a wide range of in situ data on different 
time and space scales has given rise to an interest in the 
development of different types of Unmanned Underwater 
Vehicles (UUVs) and Autonomous Surface Vehicles 
(ASVs) to collect this data. These marine platforms have 
different capabilities in communications, durability, 
mobility, capacity and autonomy (Guo 2009; Caccia et al. 
2008; Ribas et al. 2012, Gracias et al. 2013, Gutierrez et 
al. 2010). Energy autonomy, the capability to react 
autonomously to unforeseen situations and robustness to 
survive in the harsh marine environment are the main 
challenges faced by autonomous vehicles in intensive, 
long range spill monitoring. 

The limitations of Autonomous Underwater Vehicles 
(AUV) communications, energy capacity and positioning 
can be offset by combining them with ASVs. German et 
al. (2012) present a vision of the future use of systems 
based on coordinated ASV and AUVs for long-term and 
long range oceanographic exploration and monitoring, 
and highlight the advantages of these technologies. The 
combination of an ASV and an UUV is thus well suited to 
monitoring and mapping oil spills. The ASV has 
sufficient power autonomy to carry out long-term 
missions and real-time communications with the AUV or 
land/ship base and can carry out sweeps over the oil spill 
area and in the water column itself. However, long-term 
oil spill applications can be very demanding in a difficult 
working environment. It is therefore necessary that the 
tools used in these scenarios be robust and adaptable to 
unforeseen situations involving failures or partial 
deterioration of the system. This capacity gives them 
resilience, and a resilient robot can develop new settings 
through continuous self-modeling (Bongard et al. 2006; 
Sun et al. 2011). 

Many applications in the bio-inspired robotics field 
exhibit these resilient capabilities (Bandyopadhyay 2005). 
Even the simplest organisms are capable of behavioral 
feats unimaginable in the most sophisticated machines. 
When an animal has to operate in an unknown 
environment it must somehow learn to predict the 
consequences of its own actions. By finding the cause of 
environmental events, it becomes possible for an animal 
to predict future events. A related form of learning is 
known as operant conditioning (Grossberg 1971). Chang 
and Gaudiano (1998) introduced a neural network for 
obstacle avoidance that is based on a model of classical 
and operant conditioning. 

In this paper, we present the BUSCAMOS-Oil system, 
a multivehicle system based on an ASV-UUV 
combination for oil spill monitoring. One of its 
outstanding features is the incorporation of new control 
strategies based on bio-inspired neural networks (NN) to 

give adaptability and robustness to the ASV and UUV. 
The two vehicles are connected by an umbilical cable, 
which allows them to share power and computing 
resources. With its two robots, the platform has the 
capability of monitoring large tracts of sea, both on the 
surface and in the water column.  With its time-series 
measurements, the system draws up precise maps of the 
oil plume, with information on spill location, size, extent, 
direction and speed. To ensure its power supply, the ASV 
contains photovoltaic systems which recharge the 
system’s batteries. It also has a diesel generator when no 
solar energy is available. The software architecture 
includes specific modules to handle situations that may 
occur in the field of long-term autonomous operations, 
such as a fault or malfunction of the vehicle’s propeller 
systems, unexpected situations, power restrictions, etc. 
All these features provide the system with the necessary 
resilient capabilities. 

As mentioned above, the control system has two bio-
inspired neurocontrollers for each vehicle, one to control 
its movements and route, and another for obstacle 
avoidance. The former is a kinematic adaptive 
neurocontroller that uses a SODMN. This bio-inspired 
neurocontroller is a real-time unsupervised neural 
network that learns to control autonomous underwater and 
surface vehicles in a nonstationary environment. The 
latter is a NNAB that ensures the vehicles can avoid 
obstacles by means of a neural network that learns to 
control avoidance behavior in autonomous vehicles and is 
based on a form of animal learning known as operant 
conditioning. 

The software architecture of the system is of vital 
importance, since it is the primary carrier of the software 
system's quality attributes, such as performance, 
modifiability, and reliability. A modular, component-
based architecture not only guarantees the reuse of the 
best practices during the design stage, but also guarantees 
control of any incidents in runtime, ensuring for example 
the treatment of exceptions in individual software 
components and the adaptation of the system to 
unforeseen scenarios by enabling or disabling certain 
components or connections. This paper includes a 
description of the system architecture, from the design of 
the components to their final implementation with the C-
Forge model-driven and component-based toolchain, 
which incorporates the latest trends in robotics software 
engineering. 

This paper is organized as follows. We first (Section 2) 
review related works on autonomous oil-spill vehicles, the 
control algorithms applied to these vehicles and the 
software architecture applied in their control. In Section 3 
we present the combined ASV and UUV robotic marine 
platform for long-term oil spill monitoring. 
BUSCAMOS-Oil’s control architecture design is 
presented in Section 4. The autonomous navigation 
system based on biologically-inspired neural algorithms 



 

for the proposed vehicles is described in Section 5. 
Section 6 gives the experimental results of tests on the 
behavior of the proposed platform’s autonomous 
vehicles’ bio-inspired avoidance and approach control 
system, and the results of an oil sensor sampling test. 
Finally, Section 7 contains our conclusions from the 
experimental results. 
 
2 Related Works 
 
2.1 Oil spills and Autonomous Vehicles. 

 
During the Deepwater Horizon crisis a huge effort was 

made to obtain quick and accurate information on the 
spill. Two layers were monitored (Hollander et al. 2010) 
at depths of 400 and 1,100 m by traditional casts from 
surface vessels. After these cruises AUVs made their 
debut. The “Sentry” AUV (Woods Hole Oceanographic 
Institution) equipped with the “Tethys” mass 
spectrometer to track and localize in-water hydrocarbons 
was deployed in two cruises (Kinsey et al. 2011, Camili 
et al. 2010). The Sentry mapped and characterized the 
extent of the two layers at 30 km from the spill site. The 
Dorado AUV (MBARI) was also deployed and took 
samples of in-water oil in the layers (Ryan et al. 2011; 
Zhang et al. 2011). 

These pioneer cruises proved the worth of AUVs in 
monitoring oil spills at different depths and inspired 
several new projects, such as the URready4OS Project co-
financed by the Directorate-General of Humanitarian Aid 
and Civil Protection of the European Commission, to 
make available AUV fleets. Several other devices, such as 
the WaveGlider, are able to operate on the surface only. 

The robots can carry a large payload, including 
cameras, side-scan sonar, laser profilers and a wide 
assortment of oceanographic sensors (Schofield et al. 
2004).The main limitations of the robots are their 
autonomy, sensor payload and communications during 
operations. The AUV must be accompanied by manned 
research vessels and the associated expense limits 
operations. ASVs do not have this disadvantage as they 
only work on the surface.  

In (Bhattacharya et al. 2011) a cooperative system 
composed of two ASVs for oil skimming and cleanup is 
proposed. This robotic system reduces the enormous 
effort involved in manual skimming operations. German 
et al. (2012) proposed the use of ASVs to assist the AUV, 
thus reducing the cost of missions and allowing long-term 
data collecting operations over large maritime areas.  

The proposed system has several advantages over the 
oil spill equipment presently available: the ASV provides 
power to the UUV and acts as a communications gateway 
between the UUV and the land station and can thus 
execute long term autonomous missions. With oil sensors 
both in the ASV and UUV, the system can follow both on- 
and in-water oil slicks. The BUSCAMOS-Oil system can 

look for subsurface plumes in deep water while it also 
monitors the surface. 

 
2.2 Bio-inspired control algorithms for autonomous 
marine vehicles 
 
In recent years, interest in underwater exploration has 
expanded rapidly. Motion control and real-time collision-
free trajectory generation are among the most significant 
problems for emerging robotic applications related to 
autonomous navigation of AUVs and ASVs in a dynamic, 
unstructured environment. Due to the highly non-linear 
and dynamic characteristics of underwater conditions, the 
control of AUV navigation is a far from trivial problem 
(Antonelli et al. 2001, 2006; Bandyopadhyay 2005). 

In order to solve the nonlinearity and uncertainty 
problems, as well as generating real-time trajectories 
through learning of autonomous AUV and ASV 
navigation, several neural network adaptive control 
schemes have recently been used (Krieg and Mohseni 
2010; Lee and Choi 2000). Artificial Neural Networks 
(ANNs) have been applied in (Burns 1995) for the 
intelligent optimal control of surface ships with changing 
dynamic characteristics. In (Leonessa et al. 2006), an 
ANN model reference adaptive controller algorithm was 
proposed for trajectory tracking of surface marine 
vehicles in the presence of unmodeled dynamics. Tee and 
Ge (2006) employed ANNs to approximate unknown ship 
dynamics and an adaptive ANN control method was 
shown to be effective for tracking a fully operational 
ocean surface vessel. Wei and Chen (2011) proposed a 
class of sliding mode variable structure control method 
(SMVSC) based on a radial basis function neural network 
for a ship course control system. Peng et al. (2013) 
proposed a robust adaptive formation controller that 
employed a neural network and dynamic surface control 
technique for underactuated ASVs.  

Bio-inspired neural models are an alternative to solving 
optimal learning and the generation of autonomous 
trajectories. This new methodology consists of adopting 
neurobiological knowledge and models in artifacts that 
are capable of autonomous behavior in the physical world. 
These models are based on the activity of neurons in 
primary motor areas (MI), as in animals’ central nervous 
system (CNS) when performing a task and learning is 
based on the reactions to different stimuli (García‐
Córdova 2007; Kawato 1999; Grossberg 2013). A number 
of adaptive control system models of cerebellar function 
have been presented in recent years (Yu et al. 2014; 
Bullock et al. 1999). These models are applied to generate 
movement trajectories using unsupervised Hebbian 
learning (Tolu et al. 2012; Bullock et al.1993).  

The primary motor cortex (MI) plays an important role 
in the control of voluntary movement and the execution 
of planned movements. Algorithms based on biological 

http://ec.europa.eu/echo/index_en.htm
http://ec.europa.eu/echo/index_en.htm


                                                                                                                                    

sensorimotor control provide reliable adaptive learning 
models to different architectures depending on the 
assigned tasks (Ajemian et al., 2000). The term 
‘sensorimotor transformation’ refers to the process by 
which sensory stimuli are converted into motor 
commands. This process is crucial to any biological 
organism or artificial system that possesses the ability to 
react to the environment. During goal-directed movement 
in primates, a sensorimotor transformation in cortical 
motor areas generates a dynamical pattern of muscle 
activation. This means that a set of coordinate 
transformations that begins with an extrinsic coordinate 
frame representing the spatial location of a target and ends 
with an intrinsic coordinate frame describing muscle 
activation patterns (Sfakiotakis and Tsakiris 2007; 
Bullock et al. 1994, 1999). Bio-inspired neural circuits as 
central pattern generators (CPGs) are inspired in the 
locomotion control of invertebrates and vertebrates 
animals. This neural circuits is capable of producing 
coordinated patters of high-dimensional rhythmic output 
signals with applications in biped robots, snake robots, 
dolphin-like robots, Quadruped robots (Li et al. 2015; 
Ijspeert 2008; Liu et al. 2011; Sfakiotakis and Tsakiris 
2007; Yu et al. 2014).  

Several architectures have been introduced using the 
mathematical mechanism of Self-Organizing Maps 
(SOM), which enable learning of sensorimotor mapping 
involved in modeling forward and inverse models in 
robotic control (Kawato and Samejima 2007). Similarly, 
other neuronal control architectures have implemented 
hierarchical controllers acting in parallel and are based on 
sensorimotor transformation in cortical motor areas to 
solve a wide range of problems, such as inverse 
kinematics, reactive behaviors and autonomous 
navigation (García-Córdova 2007; Bullock et al. 1999; 
Ajemian et al. 2000). 

In the control of autonomous navigation, obstacle 
avoidance is one of the most basic and deceptively simple 
problems that autonomous vehicles have to solve. The 
problem, however, has turned out to be rather more 
complex when dealing with constantly changing 
environments and noisy sensors and actuators (Hamilton 
and Wolpert 2002; Bandyopadhyay 2005). The behavior-
based approach to robotics has motivated researchers to 
address the problem from a number of different 
perspectives (Bandyopadhyay 2005). Adaptive obstacle 
avoidance behaviors for mobile robots have been 
achieved using subsumption-based architecture schemas 
(Peng et al. 2013; Bandyopadhyay 2005), artificial neural 
networks (Pan et al. 2013), evolutionary computation 
(Carreras et al. 2005), and biological inspired neural 
circuits (Chang and Gaudiano 1998; Chang 2005; 
Guerrero-González et al. 2010), among other approaches. 

In (Chang and Gaudiano 1998), a bio-inspired neural 
network for obstacle avoidance based on a model of 
classical and operant conditioning is described. In the 

classical conditioning paradigm, learning occurs by 
repeated association of a Conditioned Stimulus (CS), 
which normally has no particular significance for an 
animal, with an Unconditioned Stimulus (UCS), which 
does have significance and always gives rise to an 
Unconditioned Response (UCR). The response to be 
elicited by the CS after classical conditioning is known as 
the Conditioned Response (CR) (Chang 2005; Grossberg 
1971). Hence, classical conditioning is the putative 
learning process that enables animals to recognize 
informative stimuli in the environment. In the case of 
operant conditioning, an animal learns the consequences 
of its actions. In other words, the animal learns to exhibit 
more frequently a behavior that has led to reward in the 
past, and to exhibit less frequently a behavior that led to 
punishment. In the field of neural networks research, it is 
often suggested that neural networks based on associative 
learning laws can model the mechanisms of classical 
conditioning, while neural networks based on 
reinforcement learning laws can model the mechanisms of 
operant conditioning (Guerrero-González et al. 2010). 
Reinforcement learning is used to acquire navigation 
skills for autonomous vehicles and updates both the 
vehicle model and optimal behaviour at the same time 
(Carreras et al. 2005). 

In this paper, the autonomous navigation system of 
BUSCAMOS-Oil (García-Córdova and Guerrero-
González 2013; Guerrero-González et al. 2010) consists 
of a SODMN and a NNAB, both biologically inspired and 
considered as an alternative to marine navigation. The 
SODMN is a kinematic adaptive neuro-controller and a 
real-time, unsupervised neural network that learns to 
control autonomous underwater and surface vehicles in a 
nonstationary environment. The SODMN combines 
associative learning to generate transformations between 
spatial and velocity coordinates. The transformations are 
learned in an unsupervised training phase, during which 
the vehicle moves as a result of the randomly selected 
velocities of its actuators. The controller learns the 
relationship between these velocities and the resulting 
incremental movements. The NNAB is a neural network 
based on animal behavior that learns to control avoidance 
behaviors in autonomous marine vehicles based on a form 
of animal learning known as operant conditioning. 
Learning, which requires no supervision, takes place as 
the vehicle moves around an environment cluttered with 
obstacles. The biologically-inspired neural networks 
proposed in this paper represent a simplified way of 
partially understanding the mechanisms that allow the 
brain to collect sensory input to control adaptive 
behaviors of autonomous animal navigation. In this work, 
the autonomy of the vehicle is evaluated in several 
scenarios. 

In contrast to other tracking controllers, the proposed 
navigation system does not require the dynamic model of 
the vehicles, making it robust to sudden situations of 
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underactuation. Other NN techniques based on SOMs 
were applied in manipulation robotics and autonomous 
land robotics and showed good responses to 
underactuation. The proposed navigation system is based 
on this type of NNs for application to the marine 
environment. For example, during long missions a 
propeller may fail, leading to a case of underactuation. 
The proposed autonomous navigation system to cover this 
situation (see Experimental section), and the navigation 
control techniques mentioned above do not include this 
type of situation. 

The NNAB is an alternative to controlling avoidance 
behaviors in autonomous marine vehicles and is an 
algorithm included in the proposed bio-inspired control 
architecture. In contrast with other heuristic approaches it 
learns to avoidance obstacle in a learning phase. 

 
2.3 Control software architectures 
 
Many control architectures have been proposed to 
increase the autonomy of AUVs, as reviewed in (Ridao et 
al. 2000). The majority are hybrid architectures, like many 
ground service robots. Hybrid architectures take 
advantage of reactive and deliberative paradigms while 
minimizing their limitations. Hybrid architectures usually 
include three layers: deliberative, executive, and reactive, 
including world modeling for reasoning about the 
environment.  

However, the question remains open of how this type 
of architecture is finally implemented and supported by 
the software. Although some years ago it was typical to 
develop software for robots from scratch, nowadays the 
reuse of designs, algorithms and software components 
have gained importance. Shakhimardanov et al. (2010) 
offers an exhaustive survey with an extensive 
bibliography of component models in robotic software 
frameworks, which can be roughly classified as: 
• Purely algorithmic solutions like OpenSLAM, 

Intempora, MRPT, etc. The user code directly 
invokes the algorithms, which are normally encoded 
as libraries that are linked against the code. 

• Robotics middleware and toolkits like ROS, 
MRPT, YARP, etc. These solutions complete the 
above-mentioned solution by also providing drivers 
for many robotic sensors and actuators, and a 
communication middleware for distribution and 
modularity. The middleware provides great 
flexibility and extensibility, but on the other hand, 
the publish/subscribe mechanism adds complexity to 
application debugging, since it is not possible to 
check at compile time the validity of the messages 
that will be sent through the middleware at runtime.  

• Component-based frameworks like OROCOS, 
ORCA2, ROBOCOMP, GenoM, SmartSoft, 
PROTEUS, etc. These provide the same support as 

in the previous category but aim at solving the 
problems related to software reuse and development 
by converting modules into components: software 
artifacts that clearly state which services they 
require/provide and which always send typed 
messages through their ports. Typed messages make 
it possible to check at compile time whether 
components are correctly connected.  

• Model-Driven tools like Smartsoft, BRIDE, 
RobotML, etc. These provide a set of tools, based on 
the Model-Driven Software Development (MDSD) 
MDSD (Bezivin 2005) paradigm, to support the 
development of applications from a higher level of 
abstraction than just using the primitives provided 
by programming language, like classes or functions. 
That is, the MDD allows the definition of specific 
concepts, like component, port, message, etc., and 
the definition of applications by combining them. 
Model transformations are then used to process these 
definitions to finally obtain source code, or to target 
one or more of the abovementioned solutions, like a 
component framework (in the case of SmartSoft) or 
a robotic toolkit (ROS in the case of BRIDE). 

The C-Forge (Ortiz et al. 2014a) toolchain employed in 
this article to design the software for the BUSCAMOS-
Oil system  can be classified into the two above groups, 
as it includes a component framework (FraCC) supported 
by a MDSD tool for designing component-based 
applications (WCOMM). Of all these tools, SmartSoft 
(Schlegel et al. 2012) is the approach closest to C-Forge, 
since it models components as architectural units that are 
later translated to the target platform, which is also 
implemented as a framework that provides the required 
run-time support. 

Given its wide success, we end this section by briefly 
highlighting why a model-driven approach goes beyond 
the solutions provided by ROS (Gerkey et al. 2009). At 
the lowest level of C-Forge, FraCC provides the runtime 
support to execute applications, similar to ROS. We could 
also generate ROS code from WCOMM components, 
however one of the distinguishing aspects of FraCC is that 
it does not impose any policy for executing components. 
The user can thus define how many processes and threads 
will execute the application, and where components will 
be run (see Section 4). This feature differentiates FraCC 
not only from ROS, but also from the other frameworks, 
since it allows applications to take into account 
concurrency and real-time requirements. 

Additionally, WCOMM provides modeling primitives 
(component, port, message, state, etc.) that have a higher 
level of abstraction than that of classes or functions 
provided by toolkits. These primitives help robotics 
developers to better design and review the application, 
even graphically, to overcome any deficiencies the 
implementation platform may have. For instance, 
WCOMM defines typed messages, which allow us to 



                                                                                                                                    

check at design time that components are correctly 
connected. ROS equivalents (i.e. “topics”) are strings, and 
the connections among components are checked at 
runtime. If one topic is incorrectly written, messages will 
not flow through nodes and the robot will not work 
properly. Another example is the use of Finite-State 
Machines (FSM) to model component behavior. It is 
easier to model and review a graphical model of an FSM 
than to write and review the equivalent code. 
 

 
3 System Description 

 
BUSCAMOS-Oil is a robotic marine platform composed 
of an ASV and an UUV applied to mapping oil spills (see 
Fig.1). The UUV is integrated within the ASV, and for 
ASV operations. The UUV is launched and recovered in 
the theater of operations. The two vehicles are joined by 
an umbilical cable, which allows them to share hardware, 
software and power resources. 

The system has been designed to carry out long-term 
oil spill monitoring operations. Both the ASV and the 
UUV are equipped with a C3 submersible fluorometer 
with three optical sensors to detect crude oil, refined fuel 
and rhodamine. 

 
Fig. 1 BUSCAMOS-Oil system. Composed by an ASV and an UUV. 

 
The detection ranges are: 0-2700 ppb for oil-crude, 10-

100 ppm for oil-fine and for Rodamine 0-1000 ppb. 
Figure 2a shows the oil sensor on the ASV prow under the 
waterline, the figure 2b shows the oil sensor located on 
the larboard side of the UUV rear body. 

 

 
(a)                                            (b) 

Fig. 2 Oil sensor on the ASV and UUV. (a) on ASV, (b) on UUV.  
 
BUSCAMOS-Oil looks for a spill from the initial 

position. When the spill is located, it determines its size, 
depth, speed and direction, and remains as a drifting buoy 
on the spill for long periods of time reporting any changes 
in its evolution. A mission includes the following 
sequence of actions:  

 
1. The base station (Point H in Figure 3) manages the 

operation  and launches BUSCAMOS-OIL to 
explore at a GPS point. The system receives this 
GPS point together with the mission parameters 
and goes to this point (see Figure 3 point E). 

2. Once at this point, the ASV follows a search path 
looking for the spill, for which it executes transects 
of length, orientation and distance between 
transects. This search path is parameterized for 
each mission. This maneuver stops when the 
sensor detects oil at point S1, as shown in Figure 
3. 

3. Once at the spill, in a series of sweeps, the ASV 
determines the extent of the spill.  When it ceases 
to detect oil, it stores this point as  the spill limit 
point (S points in Figure 3a), then turns and 
follows another straight line in parallel for a given 
distance, parameterized for each mission. The 
polygon formed by the S points determines the 
contour of the spill on the surface. When this 
maneuver is finished, it goes to the center of the 
spill (Point C in Figure 3a). 

4. Once at C, the ASV ships its propellers to prevent 
umbilical cable curl and launches the UUV. 

5. The UUV zig-zags at various depths (see Figure 
3b). When it no longer detects oil, it marks the 
underwater limit of the spill U, then turns and 
resumes its zig-zag. The extent of the spill is 
determined by the polygon formed by the U points 
(see Figure 3b).This maneuver is executed in 
north-south and east-west directions. (see Figure 
3b). 

6. After recovering the UUV, the ASV acts as a 
drifting buoy on the spill. When oil is no longer 
detected, it unships its propellers and executes 
Actions 2, 3, 4, 5 and 6. This maneuver is repeated 
periodically to determine the spill extent. 



 

 
Fig. 3. Example of BUSCAMOS-Oil Mission. 

 
The position of the two vehicles is always known, in 

the ASV by GPS receivers and in the UUV by combining 
the GPS data from the ASV and calculating the relative 
position from the UUV by USBL. The difference in the 
position from Point C is used to determine the velocity 
and direction of the spill.  

The umbilical cable is 500 m long and the submarine 
has a maximum depth of 300 m. The umbilical cable 
allows both vehicles to share the same Ethernet 
communication network and the same power lines. This 
common communication network facilities the 
distribution of software components and the integration of 
redundant components. The common power supply, 
composed of a photovoltaic plant on the ASV’s deck and 
a backup diesel generator, are designed for long-term 
operations.  

 
3.1 BUSCAMOS ASV. 

 
The BUSCAMOS ASV is a monohull vessel built of 

polyester reinforced with fiberglass (see Fig. 4). The 
dimensions of the hull are 5.10 m length overall and 1.97 
m maximum width. The displacement of the vessel under 
normal operating conditions is approximately 1,000 kg 
with an average draft of 0.325 m.  

 

 
Fig. 4 BUSCAMOS-Oil ASV. 

 
The ASV has an electric propulsion system made up of 

two outboard propellers anchored to the transom. Each 
thruster is powered in series by two 28V serial connected 
lithium ion batteries. The energy stored in the batteries is 
10,740 kW·h, giving the system an autonomy in 
operations of around 6 hours without battery recharge.  

The vessel is steered by the independent operation of 
the two propellers, as well as a rudder control. The rudder 
consists of a linear motor that changes the thrust direction 
of the propellers. 

Recharging the batteries is by a dual system of solar 
panels and a backup diesel generator. This configuration 
provides recharging redundancy and allows the vessel an 
extended time of operations. The photovoltaic panels are 
fixed to an aluminum structure for best performance. 

The ASV is equipped with an electric winch to stow the 
umbilical cable and a set of pulleys that guide the cable in 
deployment and recovery operations.  

Launch and recovery operations, critical maneuvers for 
long-term operations, are fully automated and controlled 
from the stern. 

During ASV navigation, the UUV is stored in a 
hydraulic basket on the ASV. For launching, the platform 
lowers the UUV into the water in a horizontal movement 
of the platform (see orange arrows in Figures 5a and 5b) 
and another vertical (Figure 5c). The ASV propellers are 
shipped during this maneuver to prevent the umbilical 
cable fouling the thrusters.  

In the recovery maneuver, the ASV lowers the basket 
in the water and open the basket to ease the maneuver. 
The UUV is located in front of the ASV stern, and 
maintaining an orientation 180º it goes back to the ASV 
helped by the pull of the umbilical cable from the winch. 
Once on the platform, it closes the basket, takes out the 
vehicle from the water and introduces it into the ASV. 

 



                                                                                                                                    

 

Fig. 5. UUV launch and recovery system. 
 
The photovoltaic system produces enough energy for 

the long term operation of the system. The panels’ 
position on the hull has little effect on the vessel’s 
aerodynamics and maneuverability. Six lightweight 
flexible photovoltaic panels cover an area on the ASV 
deck of 4,000 x 1,355 mm. Total installed photovoltaic 
power is 780 W. 

The photovoltaic system configuration is a typical 
standalone installation (see Fig. 5). As the demand from 
the load does not always equal the solar capacity, a battery 
bank stores excess energy and provides it when required. 
The battery bank provides stable current and voltage by 
eliminating transients and provides surge currents to the 
thrusters when required. Two solar charge controllers are 
placed between the PVs and the battery bank. These 
devices adjust the charge rates to the status of the battery 
bank, applying maximum power point tracker (MPPT) 
technology. This device boosts the PV lower voltage to 
charge higher voltage lithium batteries up to 54V 
nominal. 

The ASV integrates the following perception devices: 
a broadband 3G radar, an aft camera, bow camera, a 
sidescan sonar, and an imaging sonar for obstacle 
avoidance. 

 
3.2. BUSCAMOS UUV. 

 
The BUSCAMOS UUV is a refurbishment of a 
commercial unmanned underwater vehicle with an 
updated control system and new sensors. The vehicle has 
two hulls, one of which houses five motors for propulsion 
and maneuvering, battery power pack and electronics. 
The other is a spherical hull, forming the head of the 
vehicle and contains the sensors. The operational depth of 
the underwater vehicle is 300 m. Its maximum forward 
horizontal speed is 4 knots, and the vehicle can maintain 
position with horizontal currents of up 3 knots. The 

vehicle is maneuverable in all planes, two horizontal 
thrusters supply forward/reverse motion, two vertical 
thrusters supply the up/down motion and one transverse 
stern thruster provides right/left turns. The weight in air is 
163.4 kg with a displacement of 163.8 dm3, the vehicle is 
balanced with a positive buoyancy of 300 grams 
approximately, so that it tends to surface automatically 
when the controls are released. 

The vehicle incorporates side scan sonar to analyze the 
seabed, imaging sonar used for obstacle avoidance, a 
Doppler velocity log for precise navigation, a sonar 
positioning transponder to obtain the absolute position of 
the vehicle in the water, a multiparametric sonde and a 
submersible fluorometer with optical sensors to detect 
crude oil, refined fuels and rodhamine. 

 
3.3. Control Hardware Architecture. 
 
The control hardware has the computational resources 
necessary for the system to carry out its functions. The 
software control architecture runs entirely on the CPU of 
the system, which is located in the surface vessel. This 
CPU contains the control algorithms of both the ASV and 
UUV platforms. The neurocontrollers give resilient 
capabilities to the system against failure of the propulsion 
system and control of the ASV and UUV.  

Figure 6 shows a scheme of the BUSCAMOS-Oil 
control hardware. The system has an Ethernet network on 
which CPUs, real-time controllers and sensors (cameras 
and sonars) of the two vehicles are connected.  

In addition, each vehicle has a network-based 
distributed control based on CANBUS fieldbus, in 
NMEA2000 protocol in the ASV and CANopen protocol 
in the UUV. The two vehicles have NI RIO 
Programmable Automation Controllers (sbRIO-9606 and 
CRIO-9022), which make a bridge between the Ethernet 
and CAN networks and work as information servers to the 
system CPU reliably and deterministically.  

The NMEA2000 network includes the GPS units, 
rubber drive and the ASV propeller drives. The ASV’s 
CANopen network is composed of 4 nodes, two in the 
body section and two in the spherical front hull section of 
the vehicle. This network drives the actuator thrusters, 
head movement, focus control, and read the pressure 
sensors, inundation sensors, humidity, DVL, oil sensor, 
multiparametric sonde, among others. 

Communication with the remote station is by three 
types of wireless: wifi for access to the internal data 
network system, with a maximum coverage of 1km in a 
straight line; radio modem for reading states and key 
commands, with maximum coverage of 20 Kms; and 
iridium satellite communication for reading states and key 
commands in remote locations. 

 

http://en.wikipedia.org/wiki/Maximum_power_point_tracker


 

 
Fig. 6 BUSCAMOS-Oil hardware components and communication 

networks. 
 
4 Software Control Architecture 

 
As mentioned above, we follow a model-driven 
component-based approach to software development. The 
modularity provided by components eases design, allows 
for the incorporation of best practices, and facilitates the 
system reconfiguration. In the context of the MISSION-
SICUVA project, we developed the C-Forge (Ortiz et al. 
2014a) tool-chain,  which includes WCOMM for formally 
modeling components, and FraCC, which provides the 
runtime support required for executing the application. C-
Forge follows an iterative and incremental development 
process in which the benefits of using models are driven 
as far as possible towards the final execution in FraCC. 
We model components as units that encapsulate their 
contents, communicate with other components by sending 
asynchronous messages only through their ports, and 
whose behavior (i.e. reaction to external and internal 
stimuli) is expressed as a finite-state machine (FSM). The 
use of models also helps in each step of the design process 
to check whether the application models have been 
correctly created. The following subsections briefly 
describe the application of C-Forge to the design of 
BUSCAMOS-Oil, but the reader can also consult (Ortiz 
et al. 2014b) for an example of the application of C-Forge 
to another underwater vehicle. 

    The C-Forge user starts by defining the architecture 
of the application, which is a computational model that 
can be refined and expanded as the development process 
advances, and which is later on transformed and linked to 
algorithm libraries to execute the application in FraCC. 
Fig. 7 shows the architecture of the BUSCAMOS-Oil 
system (ASV and UUV) modeled with the graphical tool 
included in C-Forge. As can be seen, both the ASV and 
UUV architectures are very similar. It is worth noting that 
the components C_IncidentManager and 
C_EnergyManager are included to ensure long-term 
vehicle autonomy and to improve the system’s resilient 
capabilities.  

CRIOConnectors: interface with the CRIO hardware 
controller (SBRIO 9606). The CRIO acquires acoustic 
data from imaging sonar via serial port and are sending to 
the C_ASVObstacleDetector. It also obtains sensor data 
(Doppler velocity sensor, pressure/depth sensor, inertial 
unit, etc.) to provide information on distance from 
seafloor, depth, etc. 

C_IncidentManager. Manages failures and problems 
that may arise in long-term missions, especially in the 
hostile marine environment. It monitors several system 
parameters (e.g. status of motors, sensors, etc.) and 
executes actions to overcome any detected problems. For 
instance, it can ask C_MissionPlanner to change the 
sequencing of a mission. 

C_EnergyManager. Manages the energy produced and 
consumed by the vehicle, ensuring the vehicle power 
supply during long-term maneuvers. It monitors the 
photovoltaic system, activates the back-up diesel 
generator when needed, and enables low power modes 
when possible. It reports incidents to C_IncidentManager. 

C_UserInterface allows the operator to interact with 
the system in order to define and plan the mission, as well 
as to receive perception information, like video and sonar 
images, historic sensor information, etc.  

C_MissionPlanner. Since missions are composed of 
simple actions, e.g. “ASV performs a route of parallel 
transepts”, then “UUV does an immersion in transepts”, 
etc., C_MissionPlanner is responsible for sending the 
activities to be performed to the C_MissionSequencer of 
each vehicle, as well as monitoring the mission status. It 
receives alerts from C_IncidentManager. 
C_ASVMissionSequencer, C_UUVMissionSequencer. 
These sequencing components ensure the implementation 
and dispatching of individual actions to the ASV and 
UUV controllers and correct the plan if necessary.  

C_ASVLocalizer determines the absolute position of 
the ASV from the GPS coordinates and compass data. 

 
 

 
 
 



 
Fig. 7 Complete software architecture of the BUSCAMOS-Oil system 
 

C_OilDetector collects data from the fluorometers 
equipped in both the ASV and UUV and fuses the data 
with the absolute position of the vehicles. 

C_ASVNeuroPathTracker. This component ensures 
the optimal path is followed between setpoints and adapts 
to any previously learned contingency that may arise, 
such as the presence of obstacles in the route of the ASV 
or excessive swell. This is possible thanks to a 
biologically inspired neuro-controller with a self-
organizing map structure, which generates the velocity 
setpoints of the propellers from the position setpoints. The 
network has two operational modes: controlling and 
learning, which are externally triggered. 

C_ASVObstacleDetector interprets the data from the 
imaging sonar which has been acquired in the CRIO 
controller in order to detect nearby obstacles. All the 
acoustic data are connected directly as CS stimuli of the 
NNAB. This NN has been trained to interpret these 
stimuli and to translate them into directional changes for 
obstacle avoidance. These direction increments are 
provided to the C_ASVNeuroController.  

C_UUVNeuroController controls the UUV between 
setpoints. It implements the same biologically-inspired 
neural controller with a self-organizing map structure as 
the C_ASVNeuroController component.  

C_UUV_Localizer merges the information received 
from the positioning system sonar (USBL de MicroNav) 
and navigation systems of the UUV for precisely 
estimating its position. To do this, this component binds 
to a commercial software (Seanet Pro from Tritech) that 
is responsible for obtaining the position of the UUV 
relative to the ASV. This distance is fused with the GPS 
position of the ASV to get the absolute position of the 
UUV under water. 

The UUV itself obtains the distance travelled from an 
origin, thanks to the combined use of DVL and the IMU. 
This measure is accurate but sometimes has to be 
corrected, as it is based on integrating the velocity over 

time. When the UUV is under water this last estimation 
has priority. But when there are discrepancies with the 
result obtained from the SeaNet Pro software, the UUV 
rises to the surface and recalculates its position with DVL 
and IMU from the accurate measurement of the UUV GPS 
on the Surface. 

C_UUVObstacleDetector interprets the data from the 
imaging sonar in order to detect obstacles near the UUV. 
It provides any directional changes needed to avoid 
collisions to the C_UUVNeuroController. 

Once the architecture of the system has been defined, 
the next step is to model the components internals and the 
messages they exchange. If any of the components is 
already available, it can be now imported and reused. 
Each component in Fig. 7 is defined as shown in Fig. 8, 
with its behavior specified by means of an FSM. For this, 
the user models the application datatypes (e.g. D_Pose3D 
in Fig. 8-1), the messages the components exchange (e.g. 
M_Goal in Fig. 8-2), the activities (e.g. A_Controller in 
Fig. 8-3) that will be executed in each component state, 
the component ports and the FSM that describes its 
behavior (Fig. 8-4).  

 

 
Fig. 8 Relationship among modeling primitives: datatypes with 
messages, messages with activities, and activities with component states  



                                                                                                                                                                         

Starting from the previous models, a model 
transformation generates (i) code skeletons for all 
component activities, and (ii) an application deployment 
model, where the user defines the number of threads and 
processes that will run the components. Finally, FraCC 
model loader takes all these artifacts (component models, 
deployment model and user code) and uses them to run 
the application. For BUSCAMOS-Oil, the systems 
architecture presented in Fig. 7 is deployed in three nodes: 
(i) a ground station including only C_UserInterface, 
(ii) an on-board control computer for the ASV with the 
mission planner, incident and energy managers and its 
navigation components, and (iii) an UUV node with its 
own navigation and control components. 

The main characteristics that differentiate C-Forge 
from other approaches mentioned in Section 2.3 are: 
(i) the component behavior is explicitly modeled as an 
FSM instead of being embedded and buried in the code, 
and (ii) the application code, the component models and 
the application deployment can evolve and be maintained 
separately. 
 
5 Autonomous navigation system based on biologically 
inspired neural algorithms. 

 
Both of BUSCAMOS-Oil’s biologically-inspired 
autonomous marine vehicles (ASV and UUV) use the 
same neuronal control scheme, which consists of a 
kinematic SODMN and a NNAB (García-Córdova and 
Guerrero-González 2013), (Guerrero‐González et al. 
2010). 

All the inputs to the ASV and UUV neurocontrollers 
are provided by the software architecture. These inputs 
are the position of the vehicles, and the data from the 
obstacle-detection imaging sonar. The output of the 
neurocontrollers are the commands to the UUV and ASV 
actuators, five commands to the UUV thrusters and three  
commands to the two ASV thruster and rudder control . 

The neural architecture of the autonomous marine 
vehicles’ navigation system is shown below. 

 
5.1 Neural Control System 

 
Fig. 9 illustrates the proposed neural architecture 
embedded in the components C_ASVNeuroPathTracker 
and C_UUVNeuroController, as explained in the previous 
section. The trajectory tracking control without obstacles 
is implemented by the SODMN and obstacle avoidance 
behavior by a NNAB. 

For dynamic positioning in path tracking, a filter is 
incorporated into the control system architecture which 
smoothes the error signal in reaching objectives. 

 

 
Fig. 9 Neural architecture for reactive and adaptive navigation of the 
ASV and UUV.  
 
5.2 Trajectory Tracking Control 

 
The SODMN learns to control the robots through a 
sequence of spontaneously generated random movements 
(shown in Fig. 10), which enable the neural network to 
learn the relationship between the angular velocities 
applied to the propellers and the incremental displacement 
that ensues during a fixed time step. The proposed 
SODMN combines associative learning and Vector 
Associative Map (VAM) learning (Gaudiano and 
Grossberg 1991; Bullock et al. 1999; Chang and Gaudiano 
1998) to generate transformations between spatial 
coordinates and propeller velocity coordinates. The 
proposed kinematic adaptive neuro-controller 
continuously calculates a vectorial difference between the 
desired and actual velocities. The underwater robot can 
move to arbitrary distances and angles, even though it has 
only sampled a small range of displacements during the 
initial training phase. 

The online error-correcting capacity of the architecture 
endows the controller with many useful properties, such 
as the ability to reach targets in spite of drastic changes in 
the robot’s parameters or other perturbations. 

At a given set of angular velocities the differential 
relationship between underwater robot movements in 
spatial coordinates and the angular velocities of the 
propellers is expressed as linear mapping that varies with 
propeller velocity. 

The transformation of spatial directions to the propeller 
angular velocity is shown in Fig. 10. The tracking spatial 
error (e) is computed and filtered to get the desired spatial 
direction vector (xd) and the actual spatial direction vector 
(DVs). The DVs is transformed by the direction mapping 
network elements Vik to the corresponding motor direction 
vector (DVm). On the other hand, a set of tonically active 
inhibitory cells which receive broad-based inputs that 
determine the context of a motor action is implemented as 
a context field that selects the Vik elements based on the 
configuration of the propellers’ angular velocity. 

A speed-control GO signal acts as a nonspecific 
multiplicative gate and controls the movement’s overall 
speed. The GO signal is an input from a decision center in 
the brain, and starts at zero before movement and then 
grows smoothly to a positive value as the movement 
develops. During learning, the sensed angular velocities 
of the propellers are fed into the DVm and the GO signal 



 

is inactive (García‐Córdova 2007). An analysis of the GO 
signal shape and its effect on the bell-shaped velocity 
profile and other properties observed during movements 
can be found in (Bullock et al. 1993; Bullock et al. 1999). 
Timing behavior is thus more robust with respect to the 
fluctuations in the equation parameters and allows the 
synchronization of concurrent cortical dynamic processes. 

The activities of the cells in the DVs are represented in 
the neural network by quantities (S1, S2, ⋯, Sm), while 
activities of the cells of the DVm are represented by 
quantities (R1, R2, ⋯, Rn). The direction mapping is 
formed with a field of cells with activities Vik. Each Vik 
cell receives the complete set of spatial inputs Sj,  j = 1, 
… , m, but connects to only one Ri cell (see Figure 10). 
The mechanism that is used to ensure weights converge to 
the correct linear mapping is similar to the VAM learning 
construction (Gaudiano and Grossberg 1991). The 
direction mapping cells (V∈R∈ Rn×k) compute any 
difference of activity between the spatial and motor 
direction vectors via feedback from the DVm. During 
learning, this difference drives the adjustment of the 
weights. In actual performance the difference drives DVm 
activity to the value encoded in the learned mapping.  

 
Fig. 10 Self-organization direction mapping network (SODMN) for 
trajectory tracking of the UUV. 

 
A context field cell pauses when it recognizes a 

particular velocity state (i.e., a velocity configuration) in 
its inputs, and thereby disinhibits its target cells. The 
target cells (direction mapping cells) are completely shut 
off when their context cells are inactive (see Fig. 10). 
Each context field cell projects to a set of direction 
mapping cells, one for each velocity vector component. 
Each velocity vector component has a set of direction 
mapping cells associated with it, one for each context. A 
cell is “on” for a compact region of the velocity space. It 
is assumed for simplicity that only one context field cell 
turns “on” at a time. In Fig. 10, inactive cells in the context 
field are shown as white disks. The center context field 
cell is “on” when the angular velocities are in the center 
region of the velocity space, in this three degrees-of-
freedom example. The “on” context cell enables a subset 

of direction mapping cells through the inhibition variable 
ck, while “off” context cells disable the other subsets. 
When the kth context cell is "off" or inactive (modeled as 
ck=0), in its target cells, the entire input current to the 
soma is shunted away, so that there is only activity in the 
axon hillock, which decays to zero. When the kth context 
cell is "on" or active, ck =1, its target cells (Vik) receive 
normal input. 

The DVs cell activities, S ∈ Rm, are driven by the 
desired spatial direction, xd ∈ Rm, computed from the 
difference of the desired spatial position and the current 
spatial position of the robot. Direction mapping cells with 
activity Vik compute the difference of the weighted DVs 
input and the DVm activity. The motor direction cell 
activities, R ∈ Rn, are driven by the Vik during performance 
and by propellant velocities Vp during the learning. 

Learning takes place by decreasing weights in 
proportion to the product of the presynaptic and 
postsynaptic activities (Gaudiano and Grossberg 1991; 
Chang and Gaudiano 1998; García-Córdova and 
Guerrero-González 2013; Guerrero-González et al., 
2010). The learning rule can therefore be obtained by 
using the gradient-descent algorithm. Training takes place 
by generating random movements and by using the 
resulting angular velocities and observed spatial velocities 
of the UUV robot as training vectors for the direction 
mapping network.  

 
5.3 Obstacle Avoidance Adaptive Neuro-Controller 

 
The obstacle avoidance adaptive neuro-controller is a 
neural network that learns to control avoidance 
behaviours in a marine vehicle based on a form of animal 
learning known as operant conditioning. Learning, which 
requires no supervision, takes place as the robot moves 
around an environment cluttered with obstacles. The 
NNAB requires no knowledge of the geometry of the 
robot or of the quality, number, or configuration of the 
robot’s sensors (see Fig. 11). Our implementation is based 
on Grossberg’s conditioning circuit, which follows 
closely that of (Grossberg 1971; Chang and Gaudiano 
1998; Chang 2005).  

In this model the sensory cues (both conditioned 
stimuli (CS) and unconditioned stimuli (UCS)) are stored 
in the Short Term Memory (STM) within the population 
labeled ST, which includes competitive interactions to 
ensure that the most salient cues are contrast-enhanced 
and stored in the STM while less salient cues are 
suppressed.  

The ST population is modeled as a recurrent competitive 
field in a simplified discrete-time version, which removes 
the inherent noise, efficiently normalizes and contrast-
enhances from the ultrasound sensor activations. In the 
present model the CS nodes correspond to activation from 
the each ‘pixel’ of the imaging sonar. In the network, Ii 

represents a sensor value which codes proximal objects 



                                                                                                                                                                         

with large values and distal objects with small values. The 
drive node (D) corresponds to the Reward/Punishment 
component of operant conditioning (an animal/robot 
learns the consequences of its own actions). 
 

 
Fig. 11 Neural network for avoidance behaviour (NNAB). A threshold 
approach is considered a collision (UCS). 
 

Learning can only occur when the D is active. 
Activation of the D is determined by the weighted sum of 
all the CS inputs, plus the UCS input, which is presumed 
to have large, fixed connection strength, plus a 
homeostatic signal corresponding to a sort of “survival 
instinct” (Ty), which is active at all times and is a threshold 
that controls how easily the drive node is activated.  

In this proposed neural controller, when the robot 
reaches an approach threshold (permissible minimum 
distance between the robot and the obstacle) a collision 
and a UCS input are considered to perform an escape 
maneuver. 

The drive node is active when the robot collides with 
an obstacle (the robot reaches the established approach 
threshold), which could be detected through a collision 
sensor, or when any one of the sonar sensors indicates that 
an obstacle is closer than the sensor’s minimum range. 
The unconditioned stimulus in this case then responds to 
the collision detected by the robot. The activation of the 
drive node and sensory nodes converges upon the 
population of polyvalent cells (P). Polyvalent cells require 
the convergence of two types of inputs in order to become 
active. Each polyvalent cell receives input from only one 
sensory node, and all polyvalent cells also receive input 
from the drive node. Outputs from this type of cell are 
represented by xyi and are conditioned or unconditioned 
responses (CR and UCR, respectively). 

Finally, the neurons (xmj) represent the angular velocity 
map and are thus connected to the motor system. The 
motor population consists of nodes (i.e., neurons) 
encoding desired angular velocities of avoidance, i.e, the 
activity of a given node corresponds to a particular desired 
angular velocity for the marine vehicles. When driving the 
robot, activation is distributed as a Gaussian centered on 
the desired angular velocity of avoidance. The use of a 
Gaussian leads to smooth transitions in angular velocity 
even with few nodes.  

The output of the angular velocity population is 
decomposed by SODMN into angular velocities of the left 
and right horizontal thrusters. A gain term can be used to 

specify the maximum possible velocity. In NNAB the 
proximity sensors initially do not propagate activity to the 
motor population because the initial weights are small or 
zero.  

The robot is trained by allowing it to make random 
movements in a cluttered environment. Each node in the 
angular velocity map is systematically activated for a 
short time, causing the robot to cover a certain distance 
and rotate through a certain angle, according to the node 
activated. Whenever the robot collides with an obstacle 
during one of these movements or comes very close to it, 
the nodes corresponding to the largest (closest) proximity 
sensor measurements just prior to the collision will be 
active.  

Before a collision occurs and before any learning has 
taken place, the CS node sends activation to its 
corresponding polyvalent cells. However, the connection 
from the CS node to the drive node is very weak, so that 
the drive node does not activate. Hence the polyvalent cell 
only receives one kind of input and does not become 
active. 

When the same CS node is on when a collision occurs, 
the UCS causes the drive node to become active. The 
drive node sends its activation to all polyvalent cells; 
however, only the polyvalent cell corresponding to the 
active CS turns itself on, because it is the only one 
receiving both kinds of input. At this point, the activation 
of the drive node allows two types of learning to take 
place simultaneously: the learning that couples sensory 
nodes (sonar sensors) with the drive node (the collision 
threshold), and the learning that inhibits the movements 
of the angular velocity pattern that existed just before the 
collision.  

The first type of learning follows an associative 
learning law with decay. This learning enables the most 
active sensory nodes to accrue strength in their 
connections to the drive node, so that eventually the 
sensory nodes will be able to activate the drive signal on 
their own, and thus to activate the polyvalent cells (P), and 
ultimately a motor response. The primary purpose of this 
learning scheme is to ensure that learning occurs only for 
those CS nodes that were active within a time window 
prior to the collision (UCS).  

The second type of learning, which is also associative 
in type but inhibitory in nature, is used to map the sensor 
activations to the angular velocity map. This learning 
takes place between the polyvalent cells and the cells that 
actually generate the robot´s movements, whereby 
simultaneous activation of the pre- and post-synaptic cells 
leads to an increasingly large negative (i.e., inhibitory) 
weight. By using an inhibitory learning law, the 
polyvalent cell corresponding to the active sensory nodes 
acquire negative connection weights that learn to generate 
a pattern of inhibition matching the angular velocity 
profile active at the time of collision. 

Once learning has occurred, the angular velocity map 



 

is activated by two components. An excitatory component 
(generated directly by the sensory system) reflects the 
angular velocity required to reach a given target in the 
absence of obstacles. For the sake of simplicity, here we 
assume that the angular velocity is proportional to angle 
between the robot’s current heading and the target. A 
second, inhibitory component, generated by the 
conditioning model in response to sensed obstacles, 
moves the robot away from the obstacles as a result of the 
activation of sensory signals in the conditioning circuit. 

After learning, when the robotic vehicles are required 
to reach a target by turning at a certain angular velocity �̇�𝜓, 
the actual angular velocity might differ if obstacles are 
detected. In the presence of obstacles, the polyvalent cells 
generate inhibitory activation, causing the peak in the 
angular velocity map to shift, moving the robotic vehicle 
away from the obstacles and also away from its current 
desired direction. Once the obstacle has been passed, the 
vehicle’s movements will simply be determined by the 
desired angular velocity. 
 
6 Experimental results 
 
In order to validate the performance of the BUSCAMOS-
Oil system, the system was verified in three different 
ways. Experiments were conducted to validate and test (i) 
the capabilities of the UUV adaptive controller (ii) the 
adaptive and reactive capabilities of the ASV controller 
and (iii) the system’s capacity to carry out a complete 
mission. These tests were carried out off the Cartagena 
coast, in the Region of Murcia (Spain) in the south 
western Mediterranean. 
 
6.1. Reactive and adaptive navigation of UUV 

 
The proposed neural architecture for reactive and adaptive 
navigation of an UUV is capable of generating optimal 
trajectory for underwater vehicles in an arbitrarily varying 
environment. Figure 12 shows the performance of the 
trajectory tracking controller implemented as a SODMN. 
These tests were carried out off the Cartagena coast in a 
3-D workspace without any obstacles, with an initial 
position (P0) at (x, y, z) = (2, 2, 2)m and an initial 
orientation, shown in Fig. 12, as (ϕ0, θ0, ψ0). Note that the 
depth was recorded as positive (Z). The approach 
behaviors and the tracking of a trajectory by the UUV 
robot with respect to the reference trajectory are shown in 
Fig. 12a. The desired trajectory is a sine wave with an 
initial position of Pd0 (4, 30, 9)m and a final position of 
(40, 60, 9)m. 

In our NNAB model, the range sensors initially do not 
propagate activity to the neural motor population because 
the initial weights are small or zero. Both marine vehicles 
are trained by allowing them to carry out random 
movements in a cluttered environment. Collisions 

(approach thresholds) in the experiments and learning 
phases were established at 5m and 2m for the ASV and 
UUV, respectively. The goal of the training phase is to 
give each CS node the opportunity to sample different 
movements that lead to collisions.  

 
Fig. 12 Tracking control of a desired trajectory. (a) The tracking 
performance of the UUV. (b) Tracking error.  

 
In practice we found that it is sufficient for each CS 

node to be active for only a small number of collisions 
when using 12 nodes in the angular velocity map. In order 
to generate a wide range of movements, during the 
training phase we turn on each node in the angular map 
for a brief time until a collision is registered, then switch 
to a new angular map node and repeat the process. This 
means good avoidance behavior is achieved with only a 
few collisions for each node. Figure 13a illustrates the 
learning process. This curve was obtained by starting with 
all the weights in the network set to zero. We turned on 
one node in the angular map and let the robot collide with 
an obstacle, generating a small amount of learning. Then 
another node is turned on, the process is repeated, and so 
on. At regular intervals during the training phase, we 
temporarily disable learning and allow the robot to move 
from a new starting position for a total of 500 steps 
through the cluttered environment, and count the step 
number  at which a collision was detected. In the first trial, 
before any learning has taken place, as soon as the robot 
collides, it remains immobile against the obstacle, so the 
number of collisions is very close to 500. By the time we 
have trained it through 50 collisions the robot is able to 
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navigate with virtually no collisions. This means that each 
of the sensory nodes, on average, has sampled fewer than 
ten collisions and the signal of the avoidance sonar is 
decomposed into ten sensory nodes. 

Figure 13b shows the inhibitory weights developed by 
the neural network, which are represented by the 
projections of the adaptive connections between the 
sensory nodes (xyi) and the angular velocity map (𝑥𝑥𝑥𝑥𝑗𝑗). 
The adaptive connections between the sensory nodes and 
the angular velocity map develop in such a way that 
angular velocities that make the robot turn to the right 
(nodes close to 20) are inhibited when the sensors located 
on the right side of the robot are active (sensory nodes 6 
and 10). Similar yet opposite inhibitory weights develop 
for left turns when obstacles are sensed on the left side. In 
the center of Fig. 13b (nearly straight-forward movements 
with obstacles located straight ahead), a Gaussian-like 
inhibitory curve accounts for the fact that in such cases 
turns to either the left or right are needed to avoid 
collisions. 

Fig. 13 Results of the learning process of NNAB. (a) Learning in the 
UUV. (b) Adaptive connections in sensory nodes. The collision 
threshold was 2 m. 

 
In the first stage, the NNAB algorithm was allowed to 

set the weights by letting the robot carry out movements 
at different angular velocities in an environment cluttered 
with obstacles, by activating sequentially the nodes in the 
angular velocity map. After this initial learning phase the 
robot is able to avoid obstacles in arbitrary positions.  

Figure 14 shows the performance of the UUV with the 
presence of several obstacles. The underwater vehicle 
starts from the initial position P0=(10,30,1)m and reaches 
a desired position (goal). During the movements, 
whenever the UUV is approaching an obstacle (boat), the 

inhibitory profile from the conditioning circuit (NNAB) 
changes the selected angular velocity and makes the 
vehicle turn away from the obstacle. The presence of 
multiple obstacles at different positions in the UUV’s 
sensory field causes a complex pattern of activation that 
steers the underwater robot between the obstacles. 

 
Fig. 14 Obstacle avoidance trajectory of the UUV with a goal of (50, 
35, 1)m in (a) and of (50, 20, 1)m in (b). 
 

 
Fig. 15 Reach to different desired targets of the ASV.  

 
6.2. ASV reactive and adaptive navigation. 
 
Figure 15 shows the path traveled by the ASV when it 
reaches different targets (Ti). The ASV starts from the 
position P0(10,35)m, and reaches the following desired 
targets: T1(20,30)m  T2(30,10)m  T3(50,5)m  
T4(70,40)m  T5(60,60)m  T6(40,50)m  T7(50,30)m. 
The approach behavior and the tracking by the ASV of a 
desired sinusoidal trajectory where the vehicle starts from 

(a)

(b)



 

the position P0(20,35)m is shown in Figure 16. 
 

 
Fig 16. Tracking control of a desired sinusoidal trajectory of the ASV. 

 

 
Fig 17. Obstacle avoidance trajectory of the ASV with a goal of 
(85,35)m and of (95,50)m. 

 
Figure 17 shows the ASV performance in the presence 

of several obstacles. The ASV starts from the initial 
position P0=(20,20)m and reaches two desired targets, 
with T1(85,72)m and T2(95,50)m. 

Figure 18 shows the navigation paths of the ASV with 
different faults when it reaches a target. The experiment 
was carried out on the coast of Cartagena, Murcia. The 
ASV starts from the position TestASV1(50, 15)m, and 
reaches the desired target TestASV2(750, 218)m. The 
initial navigation path of the vehicle is generated by the 
SODMN using the 2 propellers and rudder control (2Ps-
RC). The actuator faults were simulated, and consisted of 
the failure of an ASV actuator to navigate in 
underactuated mode. When the vehicle has traveled a 
distance of approximately 156m from the start position, it 
initiates a simulated actuator failure. The proposed 
autonomous navigation system adapts to changes suffered 
by the ASV to navigate in underactuated mode by using 
either the left propeller and rudder control (1 LP-RC), the 
right propeller and rudder control (RC RP-1) or both 
propellers (2Ps). The trajectories generated with 
simulated faults in the actuators are shown in Fig. 19b. 
The deviation errors with respect to the generated 
trajectory when using 2Ps-RC are shown in Fig. 20. 

 

 
Fig 18.  Navigation trajectories of the ASV with different faults when it 
reaches a goal of TestASV2(750, 218)m. 
 

 
Fig 19. Deviation errors with respect to the generated trajectory by using 
2Ps-RC. 
 

6.3 Experimental long-term mission.  
 

The experiment involved determining the extent, velocity 
and direction of a rhodamine spill (see Fig. 20). The spill 
had to be updated every day during the experiment. The 
test lasted for 5 days in September and was carried out in 
coastal waters near Cartagena  (Spain).  
 

 
Fig. 20. Rhodamine spill in the long-term test. 

 
The mission was configured in the remote land base, 

indicating the initial exploration point E0, length (1Km) 
and width (100m) of the searching transects, and was 
downloaded to the system via wifi. During the mission, 
the vehicle reported the state information (operation 
mode, GPS coordinate, size, direction and velocity of the 
rhodamine spill) through radio modem to the remote base 
station. 
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Fig 21. (a) Displacement to the operation point, (b) Searching of the 
rhodamine spill, (c) Determination of the spill dimension. 

 
The ASV with the integrated UUV initiated the 

maneuver at 8:00 in the morning in Cartagena Bay (Point 
H in Fig. 21a) and navigated autonomously to the initial 
exploration point E0 at 4.26 nautical miles in 
approximately two hours. Once at E0, it began a searching 
maneuver by means of straight transects in the east-west 
direction for 1000 meters and in parallel lanes 100 meters 
wide. The system detected rhodamine at the S0 point (see 
Fig. 21b). From this point it began the maneuver to 
determine the extent of the spill on the surface by sailing 
straight parallel east-west courses, each 20 meters in 
length. The vehicle changed direction when it failed to 
detect rhodamine. The vehicle followed a path from S0 to 
S5 and finally went to the center of the spill at Point C. 
Figure 21c shows the vehicle’s actual trajectory in yellow. 
The extent of the spill on the surface was determined by 
the discontinuous green polygon, which connects the S0-
S5 points, and is shown in Fig.21c. 
 

 
Fig 22. Launching the UUV. 

The UUV was launched at Point C (see Fig.22) and 
began an underwater zig-zag to the north to determine the 
extent of the spill.  

The UUV detected the spill limits at Points U1, U2 y 
U3, as indicated in Figure 23. With these points and the 
perimeter data of the spill on the surface, the spill profile 
at depth in the North-South plane was determined. This 
procedure was repeated in the East-West plane to obtain 
the profile in this plane. 

 

 
Fig 23. Limit points at depth obtained by the UUV for the North-South 
plane. 

 
After the UUV had completed operations, the vehicle 

was recovered and shipped in the ASV. Thereafter, the 
ASV-UUV stayed at Point C to monitor the spill. The 
entire maneuver was terminated at 11:55 am. The system 
contains a programmed event which initiates the search 
for and characterization of the spill if the sensors stop 
detecting a spill. 

From the data obtained from the ASV and UUV 
vehicles, a graph of spill concentration values was 
obtained. Figure 24 shows the evolution of the rhodamine 
in ppb at depths of 0, 2 and 4 meters. 

 

 
Fig. 24 Measurements of the oil spill reported by BUSCAMOS-OIL 

 
For 5 days the spill monitoring maneuver  was carried 

out every 24 hours, starting at 11:00 am to take advantage 
of the hours of maximum energy generation. The 
evolution of the center of the spill during this period is 
shown in Figure 25. The spill moved 2.25 miles following 
a course of 030º. After determining the size of the spill on 
the 5th day, it returned to the base Point H. A total distance 
of 2.23 miles was covered and the mission concluded at 
14:37 hours on Day 5. 
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Fig 25. Direction and velocity of the rhodamine spill. 

 
The ASV power system fully satisfied the energy 

demands of this operation. In Figure 26, the graphics of 
production and power generation for the mission are 
shown. In the displacement to the operation point and 
search and the return to base, consumption exceeded 
power generation, but over the spill, the data acquisition 
process required less power than that generated. The 
overall balance was positive, with more energy produced 
than consumed. 

 
Fig. 26 Measurements reported by BUSCAMOS-OIL 

 
7 Conclusions 
 
This paper presents the BUSCAMOS-Oil monitoring 
system composed of an ASV and an associated UUV, 
designed for long-term oil-spill monitoring missions. The 
system searches for the spill from an initial exploration 
position. After locating the spill, it measures its extent 
both on the surface and under water and remains over the 
spill to monitor its evolution. This approach has great 
advantages as the slick can be characterized on the surface 
from the ASV and under water by the UUV. Even though 
the system can operate autonomously, it maintains 
permanent wireless communications with the base station. 
It also generates all its own power supplies, permanently 

monitors the spill evolution and can act as a drifting buoy 
over the spill for as long as necessary, thanks to its solar 
energy generation system. 

BUSCAMOS-Oil is designed for long-term operations, 
has long-range power autonomy, constructional 
robustness, component redundancy and resiliency. These 
features are supported by a software architecture that 
includes dedicated systems for handling power supply and 
equipment redundancy, as well as two bio-inspired neural 
networks in charge of reactive and adaptive navigation. 
The neural controller architecture consists of a Self-
Organization Direction Mapping Network (SODMN) for 
trajectory generation and a Neural Network for 
Avoidance Behaviour (NNAB) for avoiding obstacles. 
The neural controllers also allow the vehicles to 
reconfigure themselves on failure or malfunction of the 
thrusters in a non-stationary environment, as has been 
demonstrated in the experiments described in the paper.  

The C-Forge model-driven toolchain used to develop 
the control software architecture clearly separates three 
concerns: application modeling, application deployment 
and application coding, all of which can be independently 
developed by different teams.  

The validation tests carried out included: 1) tests on the 
control system for trajectory generation and obstacle 
avoidance, 2) the platform’s resilience in situations of 
underactuation (e.g. malfunction of the thrusters), and 3) 
long-term monitoring of a real spill. 

The latter experiment monitored the extent, velocity 
and direction of a rhodamine slick for 5 days in September 
in coastal waters near Cartagena  (Spain). The system 
searched for the spill from an initial point, determined its 
extent both on the surface and under water with joint ASV 
and UUV maneuvers and finally remained over the spill 
acting as a drifting buoy. The system successfully 
reported invaluable data for spill monitoring during the 
entire period.  

Future work will include new sensorization and control 
strategies to  design an adaptive spill tracking system. 
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