
Received January 3, 2021, accepted January 22, 2021, date of publication January 28, 2021, date of current version February 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3055462

Passive In-Band Network Telemetry Systems:
The Potential of Programmable Data
Plane on Network-Wide Telemetry
PILAR MANZANARES-LOPEZ , JUAN PEDRO MUÑOZ-GEA ,
AND JOSEMARIA MALGOSA-SANAHUJA, (Senior Member, IEEE)
Department of Information Technologies and Communications, Universidad Politecnica de Cartagena, 30202 Cartagena, Spain

Corresponding author: Pilar Manzanares-Lopez (pilar.manzanares@upct.es)

This work was supported by the Research State Agency (RSA)/European Regional Development Funds (ERDF) through the European
Union Project under Grant TEC-2016-76465-C2-1-R (AIM).

ABSTRACT In the last few years, the emergence of Programmable Data Planes and the appearance of
programming protocol-independent languages such as P4 have offered powerful tools to define new network
protocols, as well as to redesign existing network applications and systems. Network telemetry is one of
the main areas of interest identified by the P4 Application Working Group. The collection of network-
wide, fine-grained network information in real-time is a critical requirement for the design of useful and
adequate monitoring tools that can be integrated into complex Operations, Administration & Maintenance
applications. Recent research has focused on the definition and implementation of in-band monitoring
systems, where specifically dedicatedmonitoring packets are not required. Even though the In-BandNetwork
Telemetry specification proposed by the P4 Language Consortium is the starting point of many of the in-band
monitoring systems, this is not the only alternative. Therefore, in this work, we will describe and compare
other P4-based in-band passive telemetry proposals.

INDEX TERMS In-band network telemetry, network monitoring, P4, passive monitoring, programmable
data plane, remote network management.

I. INTRODUCTION
Efficient solutions to monitor the performance of a network,
to detect congestion, failures and anomalies, and the ability to
respond to them in real-time have been, and will remain, a key
point in current networks. Many passive and active moni-
toring solutions have been proposed and developed over the
years to provide a network-wide perspective of the network
status to Operations, Administration & Maintenance (OAM)
applications [1].

Active monitoring (which is also known as synthetic mon-
itoring) involves the injection of test traffic and then the
measurement of network performance. This offers a proac-
tive approach to detect any potential problems before they
happen. However, active monitoring does not always offer an
accurate view of the network’s performance. In contrast, pas-
sive monitoring analyses real network traffic, which involves

The associate editor coordinating the review of this manuscript and

approving it for publication was Zehua Guo .

the capturing of all, or just some part, of the traffic flowing
through the network, which offers a more accurate view of
the network.

Passive monitoring is a common approach, which collects
counters and statistics directly from network devices using
protocols such as SNMP [2] or NETCONF [3]. However, pas-
sive monitoring’s polling-based nature and high processing
overhead can lead to performance limitations. Consequently,
large-scale networks require an alternative approach, which
has led to the proposal of network telemetry solutions, where
network devices push specific network metrics in real-time
(or not) to a collector.

In the last few years, the emergence of programmable
data plane (PDP) [4], [5] has led to a new line of net-
work telemetry solutions. PDP is an emerging technology
for programming packet processing tasks, which works by
means of a domain-specific high-level language and pro-
grammable switches. POF [6] and P4 [7] are two of the most
prominent programming languages that enable data plane

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 20391

https://orcid.org/0000-0003-1296-7158
https://orcid.org/0000-0001-8342-4797
https://orcid.org/0000-0001-7314-410X


P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

programmability. The recent advances of data plane pro-
grammability have led to possible the proposal of new teleme-
try methods that can perform end-to-end monitoring directly
in the data plane. This network telemetry is based on in-band
measurement where monitoring information is embedded
into data packets as they traverse the network rather than
being sent within specifically dedicated packets.

Programming Protocol- independent Packet Processor
(P4) [7] is a representative data plane programming language
that provides packet processing abstractions in networking
elements in a target-independent way. Although POF and
P4 have the same goal, the P4 language provides higher level
abstractions [8]. In P4, a program codes how packets are
going to be processed; that is, the P4 program defines the
packet forwarding behaviour within a network element, and
later a compiler generates a configuration for a specific and
protocol-independent switch.

At this point, it is interesting to clarify the difference
between P4 and OpenFlow (which is one of the most
widespread SDN (Software Defined Networking) protocols).
The OpenFlow protocol [9] was developed as a communi-
cation protocol to allow interoperability between the control
plane and the data plane. OpenFlow functions consider a set
of predefined protocol headers that must be supported by
the OpenFlow-compatible switches. Although the OpenFlow
specification has grown from a reduced set of matching fields
to dozens of fields, multiple tables, meters and groups [10],
the inclusion of new protocols or protocol changes is not
trivial or immediate. In contrast, P4 avoids the need to extend
the OpenFlow specification, providing adaptable header def-
inition and matching functionality. The P4 language offers
end-users the ability to create custom protocols and algo-
rithms in an agile and generic way. Another key feature of
the P4 language is that thanks to the definition of advanced
programming functions, such as custom pipelines and mem-
ory registers that can be accessed when processing a packet,
P4 offers stateful programming [11]. Thus, forwarding proce-
dures can be defined based on the network state, variations,
and history of flow statistics at node level, without requiring
the intervention of a controller. On the other hand, state-
ful processing without controller intervention is minimal in
OpenFlow.

The P4 framework offers researchers a powerful tool to
enhance existing network applications. The P4 Application
Working Group identifies, among others, the following as
some areas of interest: forwarding-plane telemetry; flow
monitoring using sketches; heavy-hitter detection in the data
plane; low latency congestion control; big data aggregation
inside the network; middlebox functions (e.g. layer-4 con-
nection load balancing); fast in-network cache of distributed
services; and, consensus protocol at network speed.

In this survey, we will focus on the first line, and we will
review the main network-wide in-band telemetry solutions
that are implemented in P4 (see table 3). It is important
to remark that in-band refers to the fact that monitoring
and data collection is directly performed in the data plane.

TABLE 1. A list of the most used acronyms.

As will be described in the following sections, In-Band Net-
work Telemetry (INT) is perhaps the main network monitor-
ing framework implemented using P4, and is developed by
P4 Language Consortium [12]. However, alternative network
telemetry approaches that make use of P4 have also been
proposed. The main objective of this article is to survey the
academic publications and projects related to this topic.

The remainder of the paper is organised as follows.
Section II offers a description of the background and fun-
damental information of P4 ecosystem. Next, Section III
to V present the new trends in network-wide passive in-band
telemetry solutions using P4. The INT approach is described
in Section III, which brings together the majority of the
works. Based on the use of INT dataplane specification,
different monitoring systems have been proposed in the last
few years. However, this is not the only in-band network-wide
telemetry proposal. Section IV describes another recent pro-
posal called Alternate Marking-Performance Measurement
(AM-PM) that has been implemented in P4 network ele-
ments to implement a monitoring system. The last reviewed
approach is called FlowStalker and is described in Section V.
Section VI presents a comparison of the described propos-
als considering some network telemetry challenges. Finally,
Section VII concludes this article and it also identifies future
lines of work. Table 1 provides a list of most used acronyms
in the paper.

II. P4 ECOSYSTEM REVIEW
A. INTRODUCTION
P4 is a high-level language for programming protocol-
independent packet processors. P4 is used to program how

20392 VOLUME 9, 2021



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

FIGURE 1. P4 Compiler Architecture. From [13].

packets are to be processed by the data plane of pro-
grammable forwarding elements (e.g. hardware or software
switches, network interface cards, routers, or network appli-
ances), which are commonly known as p4 targets. The name
P4 comes from the original paper that introduced the lan-
guage [7]. The P4 specification is open and public.

The P4 language is the main component of the P4 ecosys-
tem. It is a high-level domain-specific language that is ded-
icated to the programming of network elements. It allows
the user to specify the format of packets (protocol’s headers)
to be recognised by network devices and the actions to be
performed on incoming packets (e.g. forwarding, headers
modification, adding protocol header). P4 also allows the
definition of stateful forwarding behaviours based on the use
of memory registers that can be accessed when processing a
packet.

As represented in Fig. 1, the P4 source code is not
directly consumed by the network elements. A P4 program
must be compiled for a particular platform. These plat-
forms can be hardware-based (e.g. Barefoot Tofino, FPGA)
or software-based (e.g. BMv2, eBPF/XDP, PISCES or
P4rt-OVS). P4c is a reference p4 compiler [14], that sup-
ports both P4 language versions P4-14 [15] and P4-16 [16].
A survey of P4 compilers can be found in [17].

Fig. 2 shows a typical workflow when programming a
P4 target. Target manufacturers provide a model of a spe-
cific hardware or software implementation, an architecture
definition (that is, the P4 programmable blocks and an API
to program the target) and a P4 compiler for the target.
The P4 compiler maps the P4 source code into the tar-
get model, and it then produces a data plane configuration
that implements the forwarding logic and an API to man-
age the state of the data plane objects from the control
plane.

Programming the data plane using P4 offers several advan-
tages, as summarised in [18], as follows:

• Flexibility: P4 makes many packet-forwarding poli-
cies expressible as programs, in contrast to tradi-
tional switches, which expose fixed-function forwarding
engines.

• Expressiveness: P4 can express sophisticated, hardware-
independent packet processing algorithms using solely

FIGURE 2. Workflow for programming a network device using P4.

general-purpose operations and table look-ups. These
programs are portable across hardware targets that
implement the same architectures (assuming that suffi-
cient resources are available).

• Resource mapping and management: P4 programs
describe storage resources abstractly (e.g. IPv4 source
address), while the compilers map such user-defined
fields to available hardware resources and manage
low-level details such as allocation and scheduling.

• Software engineering: P4 programs provide important
benefits, such as type checking, information hiding, and
software reuse.

• Component libraries: Component libraries supplied by
manufacturers can be used to wrap hardware-specific
functions into portable high-level P4 constructs.

• Decoupling hardware and software evolution: Target
manufacturers may use abstract architectures to further
decouple the evolution of low-level architectural details
from high-level processing.

• Debugging: Manufacturers can provide software models
of an architecture to aid in the development and debug-
ging of P4 programs.

B. PROTOCOL INDEPENDENT SWITCH ARCHITECTURE
Protocol Independent Switch Architecture (PISA) [20] intro-
duced a new generation of high-performance forwarding
architectures that defined the need to program the data
plane, which is the origin of P4. Following this archi-
tecture, the V1Model P4 switch architecture [21] can be
used as an excellent example to review many of the main
concepts.

As described in the abstract model defined by V1Model
(see Fig. 3), the input packets are first handled by P4 pro-
grammable Parser Stage. The packet parser in P4 is defined
as a state machine. Each state in the state machine extracts
header fields (e.g. Ethernet, IPv4, TCP/UDP), which are
declared in the P4 program and, depending on the field value,
the state will change to another state.

After the packet is parsed, it passes through the P4 pro-
grammable Ingress pipeline where Match&Action tables are
used. A table compares the matching fields in flow entries
with packet headers or metadata to determine the appropriate
actions (i.e. add/remove/change fields or passing the table
without any action). These actions include the possibility of

VOLUME 9, 2021 20393



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

FIGURE 3. V1Model P4 switch Architecture.

TABLE 2. P4 switch Architectures.

modifying the header fields of the current packet (stateless
or transient information) and perform stateful operations that
store state persistently, i.e. for more than a single packet.
P4 allows the programmer to maintain stateful or persistent
information in the form of counters (for counter events asso-
ciated to entries in tables), meters (for data rate measurement)
and registers (counters that can be operated from actions in a
general way).

Between the Ingress pipeline and the Egress pipeline
stages, the V1Model includes a non-p4 programmable
block that represents the non-programmable traffic manager
including fixed functions provided by target vendor. Next,
the packets pass through the Egress pipeline, which is also
defined as Match&Action tables for further modifications.
Finally, the packets pass through the Deparser for serializa-
tion and then they exit the switch.

Table 2 shows a list of the existing P4-programmable
switch architectures.

C. P4RUNTIME
P4Runtime is another component of the P4 ecosys-
tem [19]. P4Runtime is defined as a standard, open and
silicon-independent API to enable runtime-control of P4 for-
warding planes. It is open (i.e. it can be used to control any
switch ASIC), extensible (i.e. it is designed to make it easy to

add new features over time), and customisable (i.e. different
networks can use different protocols and features while still
using the same API).

Although both the P4 language and the P4Runtime API
include the term P4, they are different projects. The P4 lan-
guage is used to define how a switch processes packets,
specifying the switch pipeline. Meanwhile, P4Runtime is
an API that is used to control fixed, semi-programmable
or completely programmable switches whose behaviour has
been specified in the P4 language.

III. IN-BAND NETWORK TELEMETRY (INT)
In-Band Network Telemetry (INT) is one of the main
P4 applications that has been developed by the P4 Appli-
cations Working Group [26]–[29]. Based on the INT Data-
plane Specification, different monitoring systems have been
proposed in the last few years. In subsection III-A, we will
describe the basic concepts of INT, and we will then review
the most relevant INT-based monitoring systems in the
literature.

A. DESCRIPTION AND TERMINOLOGY
As defined in the INT Dataplane Specification, In-Band Net-
work Telemetry (INT) is a framework that is designed to
allow the collection and reporting of network state by the data
plane, without requiring intervention or work by the control
plane. This ‘in-band’ feature offers the possibility to attach
real-time network state to every packet at the line rate, which
allows fine-grained monitoring [30].

INT packets are defined as packets that contain header
fields (INT headers) that include instructions (INT instruc-
tions) interpreted by network devices. Following these
instructions, network devices attach network information
(INT metadata; e.g. switch id, ingress port id, hop latency,
queue status or link utilisation) to the packets, and this infor-
mation will be used to provide real-time, end-to-end network
telemetry, with packet-level granularity.

An INT system consists of INT sources (entities that create
and insert INT headers into packets and send them out), INT
transit hops (network devices that add their own INT Meta-
data to the INT packets by following the INT Instructions in
the INT header) and INT traffic sinks (network devices that
extract the INT headers and collect the path state contained
in the INT headers).

20394 VOLUME 9, 2021



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

FIGURE 4. INT System. Example of INT-capable network.

TABLE 3. Summary of network-wide passive in-band telemetry solutions using P4.

INT-capable network elements are programmed to match
on particular network flows and they then execute the pro-
grammed instructions on these flows. Thus, the INT pack-
ets are periodically generated by INT sources and injected
into the network, where they will be queued and forwarded
together with the background traffic. In each INT transit
hop along the forwarding path, the INT packet will extract
device-internal states and push them into the INT packet
stack. At the last hop, the INT packet containing the end-
to-end monitoring data will be sent to a centralised controller
for further analysis.

Fig. 4 describes an INT capable network. Switch 1 (the INT
source) inserts telemetry headers into the packet. Switches
2 and 3 (acting as INT Transit Hops) append telemetry data
related to the green flow, and switches 5 and 3 (acting as

INT Transit Hops) append telemetry data related to red flow.
Switch 4 acts as the INT Sink for both flows.

Neither INT Dataplane Specification v0.5 [26] nor
v1.0 [27] specify a specific INT header location (although
potential encapsulations are described). An INT header could
be inserted as an option or payload to any encapsulation
type as long as the encapsulation header provides sufficient
space to carry the INT information and that all INT switches
agree on the location of the INT Headers. INT Dataplane
Specification v2.0 [28] and v2.1 [29] specify four encapsu-
lation formats, covering different scenarios, with and without
network virtualisation: INT over IPv4/GRE (the INT headers
are carried between the GRE header and the encapsulated
GRE payload), INT over TCP/UDP (a shim header is inserted
following TCP/UDP header, and INT Headers are carried

VOLUME 9, 2021 20395



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

FIGURE 5. Processing Flow of an IntMon data plane. Adapted from [30].

between this shim header and TCP/UDP payload), INT over
VXLAN (VXLAN generic protocol extensions are used to
carry INT Headers between the VXLAN header and the
encapsulated VXLAN payload) and INT over Geneve (using
Geneve options).

INT over TCP/UDP are the most common encapsulation
formats used in the INT-based telemetry systems found in
the literature. As stated earlier, the INT Dataplane Speci-
fications define the encapsulation format as an INT shim
header, and the INT metadata header and INT metadata
stack being encapsulated between the shim header and the
TCP/UDP payload. In parallel to INT specification evolution,
the telemetry report format has also been subject to changes,
from v0.5 Nov. 17 [31] to the last version v2.0 June 20 [33].

The first prototype of the INT system was described
in [34].

B. INTMON
IntMon [30] was proposed as an INT-based monitoring sys-
tem implemented in SDN networks using Open Network
Operating System (ONOS) controller. This solution uses the
INT over UDP encapsulation format, defining the INT packet
as a shim header in UDP packets. The INT header includes
an INT port (to differentiate the INT UDP flows from others),
an INT length field and a bit field is used to indicate if the
INT packet must be sent to the controller or just forwarded.
The INT data, after the INT header, will carry monitoring
data.

Fig. 5 shows the processing flow of an INT-capable data
plane in the proposed IntMon system. The Parser stage iden-
tifies the presence of INT packets in incoming packets. After
packet parsing, the packets are fed to the Ingress pipeline for
packet forwarding based on MatchAction tables. It is then
determined whether the switch is source or sink, and the
corresponding flags in the INT metadata are set. If the switch
is a sink switch, then the packet is cloned. After completing
Ingress pipeline, the packets are sent to Queues/Buffers and
then sent to the Egress pipeline. Egress pipeline checks the

FIGURE 6. ONOS-based IntMon Monitoring Architecture. Adapted
from [30].

source flag and adds an INT header if the packet matches
a MatchAction table used to identify packets that are going
to be monitored. Then, the INT information of the switch
is attached to the end of the INT data. Finally, the packet
is sent to the Deparser and sent out of the switch. If the
switch is the last switch, then two packets are processed (the
original and the cloned packets). One of them is sent to the
controller, while the other suffers the INT sink process to
remove the INT header and the INT data, and is then sent
to the destination. Thus, monitoring tasks are transparent to
end hosts.

The ONOS-based IntMon monitoring architecture is
shown in Fig. 6. IntMon controller is the module that is
in charge of populating the flow rules in the tables of INT
network elements. The rules for setting up which flows and
which fields to monitor are entered through a Web Interface.
INT packets sent from INT sinks to ONOS controller, through
the Thrift protocol, are processed at low-level layer of the
ONOS core by the INT data processor. To reduce the huge

20396 VOLUME 9, 2021



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

FIGURE 7. Knowledge-Defined networking using in-band network
telemetry. From [36], [37].

amount of packet, the INT data processor decides if an INT
packet must be analysed by the IntMon service or just dis-
carded. In addition, IntMon service provides interfaces for
other applications to offer real-time data.

The IntMon system was implemented using ONOS con-
troller and BMv2 software switches [35] that are configured
using P4 language, and evaluated using Mininet in a simple
tree topology. The average CPU usage of the ONOS con-
troller was analysed, concluding that the CPU usage increases
linearly with the number of INT packets sent to the ONOS
core. Bandwidth overhead for carrying INT data was also
evaluated. The paper concludes that both CPU usage and
bandwidth overhead are obstacles to useful and practical
large-scale use of INT.

In an effort to improve the initial system, [36], [37] propose
the use of IntMon architecture to define an INT monitoring
system for SDN networks that includes Knowledge-Defined
Networking (KDN). The new proposed architecture is com-
posed of four planes: control and data planes, management
plane and knowledge plane (see Fig. 7). The SDN controller
works as control plane and deploys INT functionality to
programmable network elements. It controls network mon-
itoring using INT and converts requirements from the knowl-
edge plane into specific network policies. In the data plane,
INT metadata is generated, extracted and transmitted to the
management plane. In the management plane, INT metadata
is collected, stored and aggregated. The result contains a
trajectory of packets, latency at each hop, queue occupancy
and congestion status for each queue it passed through. This
information is sent to the control plane (events that require
immediate actions, such as link failures or loop detection) or
to the knowledge plane (for actions such as resource planning,
optimisation, performance management, and verification).

As pointed out earlier, although INT monitoring works
directly at the data plane, high INT report rates in real-time
and complex scenarios imply the need for a high-performance
INT collector. To improve the INT-based telemetry system,
the authors of IntMon propose a high-performance collector
called INTCollector [38] that would replace the INT con-
troller services implemented by ONOS controller. IntCollec-
tor defines two processing paths: a fast path and a normal
path. The fast path processes every INT report, and therefore
it requires a high packet processing rate. The normal path
processes special events sent from the fast path (e.g. varia-
tion of a defined metric), and stores INT metric values in a
database.

A complete and formal description of the INT monitoring
architecture including INTCollector is published in [39].

To sum up, IntMon embeds telemetry data in real-time,
covering the entire network. The knowledge plane offers
to the management plane the intelligence to optimise the
monitoring tasks, and the implementation of INT collector
optimises the collector’s resources. The extension of IntMon
system to other encapsulation approaches will be necessary to
evaluate the performance of the proposed monitoring system
in current scenarios.

C. PREFILTERING APPROACH IN INT SINKS
Although INTCollector [38], [39] improves the INT con-
troller performance, all INT reports have to be processed by
the controller, which results in a very high load on it. With
the aim of reducing this load, [40] proposes a programmable
event detection mechanism, programmable in P4, that allows
customisation of which events at the network elements are
allowed to give rise to the generation of an INT report to be
sent to the INT controller.

Through an SDN controller, the control plane config-
ures the network element role (INT source, INT transit or
INT sink). In the case of INT sources, they insert teleme-
try headers and an instruction bitmask to determine which
telemetry items to collect. INT transits insert INT metadata
(queue occupancy or hop latency) into the header. INT sinks
receive the packets with telemetry, remove the INT headers
and run the configured event detection algorithm. If the con-
figured threshold is exceeded (end-to-end latency or queue
occupancy threshold), then the INT report is sent to the
INT controller; otherwise, it does not. This proposal also
introduces the use of a Kafka cluster and an Elastic Search
stack for processing the received telemetry reports, where
advancedmonitoring tasks can be executed (see Fig. 8). Thus,
the SDN controller can use the obtained data to reconfig-
ure and fine-tune the threshold and algorithm settings.

Two event detection algorithms are defined in this work:
fast_detection and complex_detection. The algorithm and
the related parameters are obtained by the INT sink device
in the P4 egress block from a match-action table. When
fast_detection is selected, three options are possible: per-flow,
per-hop and moving average. In the per-flow case, an event
is detected if the difference between the sum of the INT

VOLUME 9, 2021 20397



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

FIGURE 8. INT monitor system proposed in [40].

metadata for all hops in a specific flow and previous sums is
greater than the threshold. In the per-hop case, the metadata
is analysed for each switch id. If the difference between the
incoming INT metadata and the previous metadata is greater
than the threshold, then the new value is stored and an event
is considered. The moving average is similar to the per-flow
algorithm, but a simple exponential moving average between
the current and the last received sum is performed. Mean-
while, a complex_detection algorithm allows the definition
of complex logical operations.

The proposed event detection algorithms, which are imple-
mented in P4_16 language, have been evaluated in a real
testbed consisting of an INT sink equipped with a Netronome
Agilio 2 × 40G NFP-4000 SmartNIC, an INT monitor and
a NetFPGA-SUME running a traffic generator. The results
show that the proposal is highly scalable reducing the pro-
cessor load due to the pre-filtering in the switch data plane.
While the INT report collector can process around 3 Mpps
telemetry reports per core, using event pre-filtering increases
the capacity by 10-15x.

In summary, this proposal is also able to embed telemetry
data in real-time, covering the entire network (managed by
the monitoring application). Considering telemetry traffic
optimisation, event detection algorithms are defined to reduce
telemetry report sent from INT sink. As far as resource opti-
misation is concern, the same event detection algorithms are
also designed to optimise the controller load. The proposal
of more complex event detection mechanisms and the per-
formance evaluation on switches have been identified as new
lines of work.

D. INT-PATH
INT-Path [41] proposed another INT-based network-wide
traffic monitoring, including two new approaches. The first
novelty of this proposal is the use of Segment Routing
(SR) [42] to include the route that it must take through
the network into the INT packet. This removes the need to
populate the Match/Action tables of the network elements
with forwarding rules. Meanwhile, focusing on obtaining a
network-wide view, the INT-Path defines two path planning

policies to generate multiple non-overlapped INT paths that
cover the entire network.

INT-Path uses INT over UDP encapsulation to carry the
SR-INT payload (see Fig. 9). The destination port is used
to include the SR-INT port and, above the UDP header,
a 512-bit field is reserved for the SR label stack. Above the
SR label stack, a variable-length INT label stack is allocated.
Each INT label occupies 22 bytes containing information
such as device ID, ingress/egress port, egress queue depth.
The destination IP (DIP) address of the probe packet is set
using controller’s IP to guarantee that the probe packet will
finally be forwarded to the controller for further analysis.

From the forwarding behaviour, INT network elements
perform three different functionalities. The INT source
(called INT generator in the paper) is responsible of injecting
the SR-INT probe packets into the network. Periodically,
an INT generator receives ‘empty’ probes from an attached
host, and it then rewrites the packet header to allocate the
SR label stack and includes its local INT information. The
SR label stack (that is, the packet route) is determined at the
controller applying a centralised route calculation. The INT
transit nodes (called INT forwarders in the paper) perform
packet forwarding of SR-INT packets and background traffic.
Finally, at the last hop of the monitoring path, the INT sink
(called INT collector in the paper) forwards the probe packet
to the controller for analysis.

As stated earlier, the INT-Path proposes two path plan-
ning policies. The first is based on depth-first search (DFS),
which is straightforward but time-efficient. The second is
an Euler trail-based algorithm that can optimally generate
non-overlapped INT paths with a minimum path number.

INT-Path proposal was tested and evaluated using Mininet
and BMv2 software switches. To achieve the capability of
protocol independent header rewriting and forwarding of cus-
tomised INT packets, which contain additional source routing
metadata, the switches were programmed in P4. The two
path planning policies were evaluated considering the number
of generated INT paths and INT path length variance under
different network topologies. The INT telemetry overhead
was also evaluated, differentiating controller overhead caused
by INT probe collection, and switches overhead measured as
total number of INT probes processed by switches per sec-
ond. The execution time of path planning algorithms and the
impact of telemetry granularity were also studied.

The main novelty introduced by INTPath with respect
to the previously described proposals is the use of SR to
optimise the resource utilisation of the network elements.
Again, only the INT over UDP encapsulation approach has
been considered.

E. INT-BASED SYSTEM FOR TRACKING MATCHED RULES
The work presented in this section [43] defines an INT-based
system to track the rules matches by the packets of a flow
in real or past time. In this way, this proposal extends the
network information that can be monitored using In-Band
Network Telemetry (INT).

20398 VOLUME 9, 2021



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

FIGURE 9. INT-Path monitoring system. From [41].

FIGURE 10. INT-based system for tracking matched rules. Adapted
from [43].

The proposal implements INT over TCP encapsulation
considering the telemetry report format specified by the last
version (Telemetry Report Format v2.0 [33]). It defines a
16-bit metadata bitmap to indicate which optional metadata
is present in the telemetry report header, where bit 1 to bit 8
indicate the network states that are included in the report (e.g.
ingress and egress interface ID, hop latency, queue id and
queue occupancy, etc.). This work proposes the use of the
9th bit, which is reserved in the specification, to indicate the
matched rule tracking.

Fig. 10 shows the system architecture. Using the numer-
ation generated by a Rule Manager, the controller assigns a
globally unique ID (a 32-bit unsigned integer counter vari-
able) to every rule that is installed in a programmable network
element. The Rule Manager associates the rule ID with the
switch ID and table ID, and stores the record in a Rule
Database. In the P4-programmable network element, each
rule is composed of the match keys, the action function to be
invoked when the rule is matched, and the data that should be

passed into the action function as its arguments. For tracking
rules, the rule ID is one of these arguments, and the action
function copies the value into the INT header of the packet.

With the aim of reducing the rate of INT reports, two INT
report traffic reduction schemes are proposed: enumerable
network state traffic reduction and threshold-based network
state traffic reduction. The first scheme is applied when the
network states to be monitored are enumerable (e.g. switch
ID, output port ID and rule ID). The second scheme is applied
if the monitored network states change all the time (e.g.
timestamps and hop latency). In both cases, programmable
network elements maintain a P4 register array where the
network state last seen associated to a flow is stored. A flow
is indexed in the array using a Flow ID, which is obtained as
the hash value of 5-tuple information of packet’s header.

By applying enumerable network state traffic reduction,
when a switch receives an INT packet, it obtains the flow
ID and the hash value of the INT metadata. If there is no
difference between the obtained value and the stored value
in the P4 register, then the network state has not changed and
therefore there is no need to add the network state into the
packet. The INT Sink receives the packet, but the INT report
is not sent to the collector. In the case of threshold-based net-
work state traffic reduction, the system employs a threshold
to identify a change when the difference between the current
network state and the previous stored value is greater than the
threshold. In this case, the state is added into the INT header
of the packet.

Both reduction schemes are evaluated in a real testbed con-
sisting of three Edge-core Wedge100BF series switches [44].
It is demonstrated that both schemes save network bandwidth
consumed by INT reports and reduce the processing require-
ments at the INT collector.

This proposal defines an INT-basedmonitoring system that
allows the tracking of the rules that have been matched by
the packets (in real-time and in the past). This monitoring
information, that is not offered by other INT-based proposals,

VOLUME 9, 2021 20399



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

FIGURE 11. sINT architecture. Adapted from [46].

can be useful to detect unexpected behaviours related to
network security problems.

F. FS-INT
Previous works [40] and [43] have proposed their respective
methods to reduce the number of INT reports sent to the con-
troller in the defined systems. Briefly, in the first case, the INT
sink executes an event detection algorithm to determine if
the INT report should be sent to the controller. In the second
case, each INT device executes a traffic reduction scheme to
determine if state information should be included in the INT
header. Consequently, if the INT sink receives an INT packet
without state information, then the INT report will not be sent
to the controller.

In this section, Flexible Sampling-based INT (FS-INT)
system [45] is presented, which includes a different approach
to reduce the INT report traffic. This work is an extension
of a previous work by the same authors, which is called the
Selective INT (sINT) system [46] (see Fig. 11).
The basic idea of sINT is to limit the number of pack-

ets belonging to a monitored flow that will include INT
information. Therefore, an sINT monitoring engine deter-
mines the ratio of INT header insertion associated to a cer-
tain flow, and it informs the sINT ingress node. The sINT
ingress node maintains an sINT table where each entry con-
sists of a flow ID (a hashed value of the 5-tuple: source
IP, source port, destination IP, destination port, protocol
type) and the corresponding insertion ratio. Thus, upon each
packet’s arrival, the sINT ingress switch extracts the flow ID
from the 5-tuple hash function and checks the sINT table.
If the matched entry exists, then the INT header will be
inserted according to the corresponding insertion ratio. Then,
the INT transit and sink switches insert the INT metadata
only for incoming packets to which the INT headers are
inserted.

As stated earlier, reference [45] extends the sINT and
proposes a flexible sampling-based INT (FS-INT) system
that includes two different sampling strategies: a rate-based
strategy and an event-based strategy (see Fig. 12). Using the
rate-based strategy (similarly to sINT), the INT source inserts
the INT header into every R-th packet. If a packet includes
the INT header, then all of the specified INT metadata
are inserted at each hop. In contrast, using the event-based

FIGURE 12. Sampling strategies defined in FS-INT: (a) rate-based
sampling strategy; (b) event-based sampling strategy. From [45].

strategy, the INT source inserts the INT header into all the
packets. For every incoming packet with INT headers, each
INT transit node determines whether a sample value for the
specified INT metadata type should be inserted based on a
certain criterion (e.g. the queue length exceeds a prespecified
threshold). Consequently, the number of values inserted at
each hop can vary. For that reason, an insertion bitmap will
also be added at the beginning of the metadata stack inserted
by an INT node. This metadata bitmap is defined as a new
INT metadata type. According to the specification [33], bit
1 to bit 8 in the instruction bitmap field are used to the
standard INT metadata type, and the others bits (bit 9 to bit
14) are reserved for future use. In this proposal, bit 14 is
used.

Both sampling strategies are evaluated and compared to a
non-sampled INT approach using the INT over UDP encap-
sulation method. In FS-INT-rate-based, metadata is inserted
for every R packets, and in FS-INT-event-based, metadata
is inserted only when the difference between the last hop
latency measurement and the current hop latency measure-
ment exceeds a pre-defined deviation threshold. As expected,
the protocol overhead in non-sampled INT approach is much
higher than in the proposed FS-INT alternatives. In addition,
the protocol overhead in the FS-INT-rate-based decreases
linearly to the increase of R, whereas the protocol over-
head in the FS-INT-event-based decreases as the threshold
increases. In addition, accuracy is analysed comparing the
measured average hop latency in the non-sampled INT to
FS-INT-rate-based and FS-INT-event-based results. This
work shows that the average hop latency measured in
FS-INT-event-based is closer to non-sampled INT compared
with FS-INT-rate-based.

Although the original work does not raise the possibility,
in our opinion both strategies could be applied together: not
all of the packets will include INT header, and those that
include it will include event-based monitor information.

20400 VOLUME 9, 2021



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

FIGURE 13. PAINT system Architecture. Adapted from [47].

G. PAINT
Policy-Aware In-band Network Telemetry (PAINT) [47] pro-
poses the use of In-Band Network Telemetry (INT) frame-
work as one of the blocks to deploy a policy-aware SDN fault
localisation system, as shown in Fig. 13.
Network operators define network services using a

high-level Service Provisioning Language (blue boxes in
the figure). From the service policy, the SDN controller
decides (and performs) how the service is deployed in the
network, and the policy parser module parses the policy
to identify a casual relationship between network elements
and service-level symptoms that would allow the detection
of service fault. Based on this model, the service-oriented
monitoring module defines monitoring schemes to detect
service-level symptoms, which will be submitted to the con-
troller for deployment.When the symptoms are received, then
the fault reasoning module tries to locate the root causes.
If the received symptoms offers sufficient information to
identify specific problematic network elements, the fault rea-
soning process can stop. Otherwise, the INT Service module
is used to collect additional and relevant information directly
from appropriate network elements.

The PAINT system is implemented in Python 2.7 and
Erlang 16.2.1. Python is used to map the provisioned ser-
vices to the corresponding monitoring schemes. Erlang is
used as a backend engine for symptom-fault-telemetry model
construction and distributed monitoring. The INT over UDP
encapsulation scheme is used by the INT service module.

The PAINT system is evaluated by comparing its per-
formance with the Symptom-Fault bipartite model based
approach (in particular, the Risk Share model based
approach) in two different network topologies (binary
tree and fat tree topologies) simulated in Mininet, where
BMv2 switches connected with ONOS controller through
Thrift protocol are employed. Two parameters are considered
to evaluate the accuracy of the PAINT system: the fault
detection rate and the false positive ratio. The obtained fault
detection rate is very high with an average value of 95% for

different fault scenarios; and the false positive ratio is very
low (3%).

PAINT -unlike the rest of proposals- does not work col-
lecting INT-based monitoring information continuously. INT
Service module is only used to collect punctual information.
Therefore, the proposal of resource optimisation methods or
telemetry traffic optimisation solutions have not been consid-
ered in this work.

H. MULTILAYER INT
The last INT-based contribution reviewed in this section
focuses on IP-over-optical networks. Multi-Layer In-band
Network Telemetry (ML-INT) [48] defines a P4-based flexi-
ble INT-based system that treats IP and optical levels jointly
for monitoring and troubleshooting in real-time.

The architecture of an ML-INT system is shown
in Fig. 14-(a). The IP layer consists of P4 network elements
(two types are considered: Linux servers equipped with
P4-enabled SmartNICs, and programmable ASIC switches)
interconnected by lightpaths established in the optical layer.
The optical layer consists on BV-WSS (Bandwidth-variable
wavelength selective switches) and fiber lines. To implement
ML-INT, an Optical Performance Monitor (OPM) is imple-
mented on each BV-WSS.

Similarly to the approach previously introduced by sFlow,
when an IP flow is involved in ML-INT monitoring tasks,
not all of the packets will include INT header. The ingress
switch selects a portion of the flow’s packet according to
a preset sampling rate and INT fields are inserted in them.
Meanwhile, to limit the bandwidth overhead, only part of the
statistics of all the electrical/optical network elements will be
included in the INT packet along the path. The egress switch
mirrors the INT packet to a data analyser for data analysis and
storage, and converts the INT packet back to a regular one by
removing the INT fields to be sent to the destination host.

Fig. 14-(b) shows the implementation details of the Data
Analyser, a P4 network element and the OPM on each
BV-WSS. The Optical INT module of the P4 switch receives
from the Optical ChannelMonitor (OCM) the lighpaths’ opti-
cal parameters, and the Packet INTmodule collects the statis-
tics of the flow in real-time. Both parameters (IP layer and
Optical layer values) will be aggregated by the INT Agent.
On the other hand, the Packet Processing Pipelines defined in
the P4 switch will be used to define: 1) the sampling rate for
INT insertion, 2) the maximum number of INT fields that can
be inserted in an INT packet, 3) the electrical/optical network
elements that are selected for statistic collection, and 4) the
required statistics of each selected network element.

In ML-INT system, the INT over TCP/UDP encapsulation
method is adopted. The INT header consists of an INT Info
field and an INT data stack that includes a series of INT
Fields, each one corresponds to a hop on the routing path.
ML-INT limits the number of statistics that can be included
in an INT field to its smallest value (in particular, two) to
avoid long INT headers. One of these two values must be the
switch ID, and the other can be selected from all the supported

VOLUME 9, 2021 20401



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

FIGURE 14. (a) System architecture of ML-INT system. (b) Details inside the data analyser, P4-based Programmable-Data-Plane (PDP)
switch and Optical Performance Monitor (OPM). From [48].

statistics of the electrical/optical network element. ML-INT
proposes that if more than two values are required, then the
system distributed them in different INT packets.

Fig. 15 describes the packet processing pipelines imple-
mented in (a) INT ingress (source) switches, (b) INT transient
switches and (c) INT egress (sink) switches. Common mod-
ules are the INTArbiter and INT Selection modules. The INT
Arbiter determines the sampling rate of the selective insertion
and the type of statistics to be encoded in the INT Field, which
are the statistics that will be given by the INT Agent. The
INT Selection module obtains tokens from the INT Arbiter
to execute the INT header insertion.

The ML-INT system implementation is validated in
small-scale real IP-over-optical network testbed. In addition,
three use-cases are considered to demonstrate the usefulness
of the proposed system. In a further work [49], the ML-INT
system is expanded to integrate AI-assisted data analytic to
process the obtained telemetry data for network monitoring
and troubleshooting.

IV. AM-PM NETWORK TELEMETRY
As described in the previous section, In-Band Network
Telemetry (INT) is a P4-based application that was designed
by the P4 alliance to allow the collection and reporting
of network state directly by the data plane. To that end,
the INT framework makes use of P4 language to program
programmable data plane (PDP) network elements. However,
the potential of the P4 language and PDP switches enables
implementation of other types of solutions that are not based
on the INT standard and which also offer in-band telemetry
solutions.

One of these in-band telemetry approaches is Alternate
Marking-Performance Measurement (AM-PM) [50], [51].

AM-PM is an efficient method that measures network flows
by using a very small number of bits in each data packet: one
or two bits, or even as few as zero bits per packet. In this
section, we will review this recent proposal.

A. DESCRIPTION AND TERMINOLOGY
AM-PM monitoring action is executed between two or more
Measurement Points (MPs) in the network, which can either
be end-hosts or network devices. The basis of AM-PM is the
use of marking bits, which are used for signalling and coor-
dinating the measurement between the measurement points.
The AM-PM method, which was documented and published
as an RFC by the IETF [51], is considered in the context of
various encapsulations, including Geneve, SFC NSH, BIER,
MPLS, andQUIC. AM-PM can also be deployed over IPv4 or
IPv6 by using reserved values of fields in the IP header.

Alternate marking offers a method to measure packet
loss, packet delay, and packet delay variation. Consequently,
AM-PMmakes use of the marking bits and two basic abstrac-
tions: step detection and pulse detection. As shown in Fig. 16,
a step is detected when the value of the marking bit is toggled,
and remains at the new value in the following packets; and a
pulse is detected when the value of the marking bit is toggled
in a single packet, and returns to its previous value in the
following packets.

Step marking can be used to define loss measurement
solutions. At the initiating MP, the inclusion of a mark-
ing bit (usually called color indication) in the header of
every packet allows the division of the traffic into equal
length blocks of data. The reception and count of consecu-
tive packets marked with a certain value at the terminating
MP allows the detection of losses comparing the counters
at a central controller. Step marking can also use to define

20402 VOLUME 9, 2021



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

FIGURE 15. ML-INT. Packet processing pipeline in (a) an INT ingress switch, (b) and transient switch and
(c) an egress switch. From [48].

FIGURE 16. AM-PM marking bits. From [53].

the single-marking methodology to measure one-way delay.
Whenever the color changes (which means that a new block
has started), a network device can store the timestamp of the
first packet of the new block. That timestamp can then be
compared with the timestamp of the same packet on a second
router to compute packet delay.

Step marking in coordination with pulse marking can be
used to define the double-marking methodology that allows
the implementation of fuller delay measurement solutions.
The pulse bit is used to mark specific packet that are used
by MPs to obtain delay/jitter measurements. This method
offers to the central controller more information about
delay.

These basic measurement methods are extended in [52],
where additional methods based on single-bit or two-bit
marking are defined.

B. AM-PM BASED NETWORK TELEMETRY
IMPLEMENTATION IN P4
An AM-PM based time-multiplexed parsing approach that
enables a practical and accurate implementation of AM-PM

methodology in network devices in presented in [53]. This
work details a P4-based implementation of AM-PM double
marking method in P4 network elements.

As described earlier, to develop the AM-PM double mark-
ing method, it is necessary to implement a step marking and
a pulse marking solution.

Starting with the first, step marking implemented in this
solution requires the identification of periodic time range
at network elements. Therefore, this proposal makes use
of time-bit-as-a match criterion in the match-action lookup.
Fortunately, this programming abstraction is provided by
P4 as the packet’s ingress time is included in the P4 meta-
data, which allows the timestamp to be used in ternary
matches. For example, if the timestamp consists of two fields
(a Seconds field and a Second Fraction field), then the least
significant bit of the Second field can be used to deter-
mine periodic 1 second intervals defining a ternary match
rule that considers this TimeBit and masks the rest of the
bits.

In this case, the match-action rules at the initiating MP
to implement step marking are indicated in Table 4a and
the match-action rules at the terminating MP are shown
in Table 4b.

For pulse marking, which is implemented in this proposal,
it is necessary for the initiatingMP to detect the first packet of
the interval to be able tomark just one packet at a certain point
of the interval. To implement this, the TimeBit and a register
that stores the previous value of the TimeBit are used.

The match-action rules at the initiating MP to mark the
first packet at the beginning of each interval and store the

VOLUME 9, 2021 20403



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

TABLE 4. Step marking.

TABLE 5. Pulse marking.

FIGURE 17. Time-muxed parsing. From [53].

timestamp are shown in Table 5a. The match-action rules at
the terminating MP are simpler, as shown in Table 5b.

In addition to the implementation of the AM-PM double
marking method using two-bit marking, this work defines a
multiplexed (or time-muxed) marking method (see Fig. 17).
The advantage of time-muxed marking is that it requires just
a single bit per packet on the wire, while providing the same
measurement resolution and accuracy as the double marking
approach. This technique divides time into slots, and defines
a meaning of the value of the marking bit depending on the
time slot.

As an example, and due to software implementation
restrictions, the implementation in [53] considers intervals
of 16 seconds. Therefore, as can be seen in Fig. 17, the 5-th bit
of the Seconds field (or Seconds[4]) defines 16-seconds inter-
vals. In turn, each interval is divided into four sub-intervals
using the following two bits (Seconds[4:2]). At the initiating
MP, a pulse bit is located at the middle of the 16-seconds
interval. TimeBits=010 or TimeBits=110 and the value of
the register are used to detect that point using adequate
match-action rules. At terminating MP, the second and third
quarter of each interval are used to detect a pulse, whereas the
rest of the time is used for detecting steps. To implement this
method in p4 network elements, Table 6a and Table 6b show

TABLE 6. Muxed marking.

thematch-actions at the initiatingMP and the terminatingMP,
respectively.

The evaluation of the P4 software implementation was per-
formed in Mininet and the code is available in [54]. Loss and
delay were synthetically configured in the Mininet environ-
ment to compare the measured performance and the expected
performance. The delay measurement error was on the order
of 1 millisecond compared to the anticipated delay, and the
loss measurement error was on the order of 10%. These
results are reasonable given the software-based emulation
environment that runs on a single machine.

As described in this section, AM-PM does not embed
flow related metadata (e.g. switch-level information, ingress
and egress information, buffer information) into packets,
as it does INT-based solutions. Instead, AM-PM defines
efficient monitoring methods using only a few bits in each
packet for not wasting bandwidth. However, it is important to
point out that AM-PM is a compatible and complementary
method that can be used along with INT-based solutions.
The implementation and evaluation of a monitoring system
that integrates both approaches is an unsolved and interesting
task.

V. FLOWSTALKER
To conclude this review, we will describe FlowStalker [55],
a monitoring system that makes use of the data plane pro-
grammability offered by P4. Although this work has been
included here, FlowStalker is not a passive in-band mon-
itoring approach but is instead a mixed solution. As was
described earlier, FlowStalker monitors real traffic flows,
but also requires the injection of some packets from the
controller (out-band traffic). These packets, called Crawler
Packets (CPs), will only be processed by network elements in
the data plane to obtain network element information (in-band
telemetry).

The proposed monitoring scheme consists of two phases:
a proactive and lightweight stage, and a reactive and

20404 VOLUME 9, 2021



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

FIGURE 18. FlowStalker System. Steps 1 to 5 in the figure describe the steps after the monitoring warning of a flow goes off. From [55].

heavyweight stage. On the one hand, the proactive and
lightweight phase is in charge of detecting target flows
based on heavy hitter detection strategies. On the other hand,
the reactive and heavyweight phase will be used to cap-
ture metadata (per-packet and per-flow metrics) about these
detected
flows.

In the proactive phase, each switch intercepts all the
incoming packets of each flow, increments a packet counter,
and classifies a flow as a target flow when the number of
received packets is higher than a certain threshold. At this
point, the reactive phase is activated for the identified target
flows, during which they are monitored by the switch. When
a defined threshold associated to a metric of interest of
a target flow is exceeded, the switch sends a ‘warning’
to the controller informing it of the violation (step 1 in
Fig. 18).

To store the flow metrics, each switch maintains a hash
table composed of an array of P4 registers where the lookup
key is the source and destination IP address of a flow. Due
to the limited length of the P4 data structures, the moni-
tored per-flow and per-packet metrics are space-efficiently
encoded.

As a result of thewarning notification, the controller injects
an empty Crawler Packet through the control path in a spe-
cific and predefined entry point in the network (or cluster)
(step 2 in Fig. 18). Then, the Crawler Packet is routed through
the data plane in the network (or cluster), appending stateful
data into the Crawler Packet hop-by-hop (step 3 and step 4
in Fig. 18) until the Crawler Packet reaches a predefined

FIGURE 19. FlowStalker. Structure of a crawler packet.

exit point for that flow, and it is then forwarded back to the
controller (step 5 in Fig. 18).

As mentioned earlier, FlowStalker defines an aggre-
gated data plane information gathering strategy based on
the partitioning of the network into clusters (based on
the closeness of nodes). The definition of logical groups
enables a quick and efficient cluster data collection. Fig. 18
described a FlowStalker systemwhere two clusters have been
defined.

The structure of a Crawler Packet is shown in Fig. 19.
A Crawler Packet consists of a Layer 2 header, a CP
header that stores control information for the switches, and a
read/write area to be filled by the switches within the cluster.
This read/write area is divided into equal chunks, and each
fragment will contain information of a single switch. The
type of the measurement is specified by the InfoType field,
avoiding mixing measurements.

FlowStalker has been implemented in BMv2 P4 soft-
ware switches and it has been evaluated considering a ring
topology. Two experiments were performed to compare
the communication overhead, defined as the total number
of bytes exchanged through the control path, using Flow-
Stalker system and the BMv2 Control Plane API that pools
every single switch in the topology; and to evaluate the

VOLUME 9, 2021 20405



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

TABLE 7. Comparison of the solutions considering six features that define the in-band network systems.

end-to-end delay of crawler packets depending on the cluster
size.

As the authors indicates, the FlowStalker proposal is
mainly focused on the definition of the data plane. Thus,

the definition and implementation of a more complex
control plane (e.g. using KDN) which uses the moni-
tored data provided by the control plane is a pending
task.

20406 VOLUME 9, 2021



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

VI. COMPARISON
The state-of-art of network-wide passive in-band telemetry
approaches is an open issue thanks to the emergence of data
plane programmability. This survey reviews the main works
that have been proposed to date.

Table 7 lists the recent contributions described in this arti-
cle summarising how each fulfils different features of in-band
telemetry, which we have identified from [56]:

• Embedding telemetry data: information obtained by net-
work elements is sent in the body of packets to be used
by the monitoring application.

• Real-time: a telemetry system provides real-time net-
work status to feed controllers and users withmonitoring
information.

• Fine-grained: a telemetry system provides fine-grained
network information (e.g. queue length, link utilisation,
etc.)

• Network Coverage: a telemetry system covers the full
network topology or just part.

• Telemetry traffic optimisation: a telemetry system opti-
mises the bandwidth consumption due to telemetry over-
head to scale solutions to large amount of traffic and
network sizes.

• Resource optimisation: network elements and telemetry
controller requirements to respond to large amount of
traffic and network sizes.

VII. CONCLUSION AND FUTURE WORK
The main objective of a network telemetry system is to col-
lect data to report information of the network in a real-time
and fine-grained way to operators and OAM (Operation,
Administration &Maintenance) applications. With the inclu-
sion of SDN, network management solutions have changed
from human operator based systems to programmable and
automated systems. Therefore, the integration of an in-band
telemetry system with existing network monitoring and man-
agement systems, or with particular applications (e.g. net-
work anomaly detection, heavy hitter detection, NFV Service
Function Chain planning and monitoring, etc.) is a promising
avenue for further research work.

Another interesting line of work is focused on the adap-
tation or extension of in-band telemetry systems to wireless
sensors networks (WSNs). For example, recent work [57]
proposes a novel monitoring telemetry solution based on
In-BandNetwork Telemetry (INT) for 6TiSCH (IPv6 over the
TSCH mode of IEEE 802.15.4e) networks [58], [59], where
TSCH stands for Time-Slotted Channel Hopping.

As summarised in Table 3, most of the reviewed
in-band telemetry proposals rely on UDP/TCP encapsula-
tion. Although other options are possible (e.g. GRE, Generic
Routing Encapsulation; VXLAN, Virtual eXtensive LAN
encapsulation; or GENEVE, GEneric NEtwork Virtualisa-
tion Encapsulation), the performance evaluation of in-band
telemetry system considering overlay networks using encap-
sulation protocols has not been studied.

Closely related to the in-band encapsulation, the space
required for the inclusion of monitoring actions and/or data
into the packets is in conflict with the MTU (Maximum
Transmission Unit) value of links. From INT specification
v1.0, two different ways to address this problem are proposed:
the first recommends the adequate configuration of the MTU
of links between INT sources and sinks; the second proposes
the use of dynamic discovery of Path MTU for flows being
monitored. It would be interesting to evaluate both proposed
alternatives and also the impact of IPv4 fragmentation on
applications.

Finally, linked to any in-band network telemetry solu-
tion, using P4 framework or not, the In-Band Network
Telemetry Orchestration (INTO) problem is currently under
study. This problem consists in obtaining the most efficient
and effective set of network elements to be monitored
to provide full monitoring coverage while minimising the
overhead. In particular, works such as [60]–[62] propose
heuristic solutions to this challenging problem, which will
undoubtedly and directly affect the design of in-band
telemetry systems. This problem will be extremely impor-
tant in Internet of Things (IoT) networks, which will
require millions of traffic flows between IoT devices to be
monitored.

REFERENCES
[1] T. Mizrahi, N. Sprecher, E. Bellagamba, and Y. Weingarten, An Overview

of Operations, Administration, and Maintenance (OAM) Tools, document
RFC 7276, IETF, 2014, doi: 10.17487/RFC7276.

[2] W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, 3rd ed.
Boston, MA, USA: Addison-Wesley, 1998.

[3] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, Network
Configuration Protocol (NETCONF), document RFC 6241, IETF, 2011,
doi: 10.17487/RFC6241.

[4] R. Bifulco and G. Rétvári, ‘‘A survey on the programmable data
plane: Abstractions, architectures, and open problems,’’ in Proc. HPSR,
Bucharest, Romania, 2018, pp. 1–7.

[5] S. Han, S. Jang, H. Choi, H. Lee, and S. Pack, ‘‘Virtualization
in programmable data plane: A survey and open challenges,’’
IEEE Open J. Commun. Soc., vol. 1, pp. 527–534, 2020, doi:
10.1109/OJCOMS.2020.2990182.

[6] H. Song, ‘‘Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,’’ in Proc. 2nd ACM SIGCOMM
Workshop Hot Topics Softw. Defined Netw. (HotSDN), New York, NY,
USA, 2013, pp. 127–132.

[7] P. Bosshart, G. Varghese, D. Walker, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, and A. Vahdat, ‘‘P4:
Programming protocol-independent packet processors,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[8] W. L. da Costa Cordeiro, J. A. Marques, and L. P. Gaspary, ‘‘Data plane
programmability beyond OpenFlow: Opportunities and challenges for net-
work and service operations and management,’’ J. Netw. Syst. Manage.,
vol. 25, no. 4, pp. 784–818, Oct. 2017.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[10] OpenFlow Specifications. The Open Networking Foundation (ONF).
Accessed: Jan. 28, 2020. [Online]. Available: https://opennetworking.
org/software-defined-standards/specifications/

[11] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and
P. Castoldi, ‘‘P4 edge node enabling stateful traffic engineering and cyber
security,’’ J. Opt. Commun. Netw., vol. 11, pp. 84–95, Jan. 2019.

[12] P4 Language and Related Specifications. Accessed: Jan. 28, 2020.
[Online]. Available: https://p4.org/specs/

VOLUME 9, 2021 20407

http://dx.doi.org/10.17487/RFC7276
http://dx.doi.org/10.17487/RFC6241
http://dx.doi.org/10.1109/OJCOMS.2020.2990182


P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

[13] M. Budiu. Programming Network With P4. Accessed: Jan. 28, 2020.
[Online]. Available: https://volansys.com/p4-programming-networks-
forwarding-plane/

[14] P4c. Accessed: Jan. 28, 2020. [Online]. Available: https://github.com/
p4lang/p4c

[15] The P4 Language Specification Version 1.0.5. The P4 Language Consor-
tium. Accessed: Nov. 2018. [Online]. Available: https://p4.org/p4-spec/p4-
14/v1.0.5/tex/p4.pdf

[16] The p416 Language Specification Version 1.0.0. The P4 Language Con-
sortium. Accessed: May 2017. [Online]. Available: https://p4.org/p4-
spec/docs/P4-16-v1.0.0-spec.pdf

[17] H. Stubbe, ‘‘P4 compiler & interpreter: A survey,’’ in Proc. Seminars
FI/IITM, Munich, Germany, 2017, pp. 1–72.

[18] M. Budiu. Programming Networks With P4. Accessed: Jan. 28, 2020.
[Online]. Available: https://blogs.vmware.com/research/2017/04/07/
programming-networks-p4

[19] P4Runtime Specification. Version 1.2.0. The P4.org API Working
Group. Accessed: Jul. 2020. [Online]. Available: https://p4.org/
p4runtime/spec/master/P4Runtime-Spec.html

[20] P. Bosshart, G. Gibb, H. S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz, ‘‘Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for SDN,’’ ACM SIG-
COMM Comput. Commun. Rev., vol. 43, pp. 99–110, Aug. 2013.

[21] Version 1.0 Switch Architecture Model. Accessed: Jan. 28, 2020. [Online].
Available: https://github.com/p4lang/p4c/blob/master/p4include/v1model.
p4

[22] P416 Portable Switch Architecture (PSA). The P4.org Architecture Work-
ing Group. Accessed: Jul. 2020. [Online]. Available: https://p4.org/p4-
spec/docs/PSA.html

[23] FlexSAI. Accessed: Jan. 28, 2020. [Online]. Available:
https://github.com/opencomputeproject/SAI/tree/master/flexsai/p4

[24] Portable NIC Architecture. Accessed: Jan. 28, 2020. [Online]. Available:
https://github.com/p4lang/pna

[25] P4—NetFPGA: A Low-Cost Solution for Testing P4 Programs in Hard-
ware. Accessed: Jan. 28, 2020. [Online]. Available: https://p4.org/p4/p4-
netfpga-a-low-cost-solution-for-testing-p4-programs-in-hardware.html

[26] In-band Network Telemetry (INT) Dataplane Specification. Version
0.5. The P4.org Applications Working Group. Accessed: Dec. 2017.
[Online]. Available: https://github.com/p4lang/p4-applications/blob/
master/docs/INT_v0_5.pdf

[27] In-Band Network Telemetry (INT) Dataplane Specification. Version
1.0. The P4.org Applications Working Group. Accessed: Apr. 2018.
[Online]. Available: https://github.com/p4lang/p4-applications/
blob/master/docs/INT_v1_0.pdf

[28] In-Band Network Telemetry (INT) Dataplane Specification. Version
2.0. The P4.org Applications Working Group. Accessed: Feb. 2020.
[Online]. Available:https://github.com/p4lang/p4-applications/
blob/master/docs/INT_v2_0.pdf

[29] In-band Network Telemetry (INT) Dataplane Specification. Version
2.1. The P4.org Applications Working Group. Accessed: May 2020.
[Online]. Available: https://github.com/p4lang/p4-applications/
blob/master/docs/INT_v2_1.pdf

[30] N. Van Tu, J. Hyun, and J. W.-K. Hong, ‘‘Towards ONOS-based SDN
monitoring using in-band network telemetry,’’ in Proc. 19th Asia–Pacific
Netw. Oper. Manage. Symp. (APNOMS), Seoul, South Korea, Sep. 2017,
pp. 76–81.

[31] Telemetry Report Format Specification. Version 0.5. The P4.org
Applications Working Group. Accessed: Apr. 2017. [Online].
Available: https://github.com/p4lang/p4-applications/blob/master/
docs/telemetry_report_v0_5.pdf

[32] Telemetry Report Format Specification. Version 1.0. The P4.org
Applications Working Group. Accessed: Apr. 2018. [Online]. Available:
https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_
report_v1_0.pdf

[33] Telemetry Report Format Specification. Version 2.0. The P4.org Applica-
tions Working Group. Accessed: Jun. 2020. [Online]. Available: https://
github.com/p4lang/p4-applications/blob/master/docs/telemetry_report_v2
_0.pdf

[34] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
‘‘In-band network telemetry via programmable dataplanes,’’ in Proc. ACM
SOSR, London, U.K., 2015.

[35] Behavioral Model (BMV2). Accessed: Jan. 28, 2020. [Online]. Available:
https://github.com/p4lang/behavioral-model

[36] J. Hyun, N. Van Tu, and J. W.-K. Hong, ‘‘Towards knowledge-defined
networking using in-band network telemetry,’’ in Proc. IEEE/IFIP Netw.
Operations Manage. Symp. (NOMS), Taipei, Taiwan, Apr. 2018, pp. 1–7.

[37] J. Hyun and J. W. Hong, ‘‘Knowledge-defined networking using in-
band network telemetry,’’ in Proc. APNOMS, Seoul, South Korea, 2017,
pp. 54–57.

[38] N. V. Tu, J. Hyun, G. Y. Kim, J. Yoo, and J. W. Hong, ‘‘INTCollector:
A high-performance collector for in-band network telemetry,’’ In Proc.
CNSM, Rome, Italy, 2018, pp. 10–18.

[39] J. Hyun, V. T. Nguyen, J.-H. Yoo, and J. W.-K. Hong, ‘‘Real-time and fine-
grained networkmonitoring using in-band network telemetry,’’ Int. J. Netw.
Manag, vol. 29, no. 6, Oct. 2019, Art. no. e2080.

[40] J. Vestin, A. Kassler, D. Bhamare, K.-J. Grinnemo, J.-O. Andersson,
and G. Pongracz, ‘‘Programmable event detection for in-band network
telemetry,’’ in Proc. IEEE 8th Int. Conf. Cloud Netw. (CloudNet), Coimbra,
Portugal, Nov. 2019, pp. 1–6.

[41] T. Pan, E. Song, Z. Bian, X. Lin, X. Peng, J. Zhang, T. Huang, B. Liu, and
Y. Liu, ‘‘INT-path: Towards optimal path planning for in-band network-
wide telemetry,’’ in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Paris, France, May 2019, pp. 487–495.

[42] C. A. Sunshine, ‘‘Source routing in computer networks,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 7, no. 1, pp. 29–33, 1977.

[43] S. Wang, Y. Chen, J. Li, H. Hu, J. Tsai, and Y. Lin, ‘‘A bandwidth-efficient
INT system for tracking the rules matched by the packets of a flow,’’ In
Proc. GLOBECOM, Waikoloa, HI, USA, 2019, pp. 1–6.

[44] Edge-Core Wedge100BF Series Switches. Accessed: Jan. 28, 2020.
[Online]. Available: https://www.edgecore.com/

[45] D. Suh, S. Jang, S. Han, S. Pack, and X. Wang, ‘‘Flexible sampling-based
in-band network telemetry in programmable data plane,’’ ICT Exp., vol. 6,
no. 1, pp. 62–65, Mar. 2020.

[46] Y. Kim, D. Suh, and S. Pack, ‘‘Selective in-band network telemetry for
overhead reduction,’’ in Proc. CloudNet, Tokyo, Japan, 2018, pp. 1–3.

[47] Y. Tang, Y. Wu, G. Cheng, and Z. Xu, ‘‘Intelligence enabled SDN fault
localization via programmable in-band network telemetry,’’ inProc. HPSR,
Xi’An, China, 2019, pp. 1–6.

[48] B. Niu, J. Kong, S. Tang, Y. Li, and Z. Zhu, ‘‘Visualize your IP-over-optical
network in realtime: A P4-based flexible multilayer in-band network
telemetry (ML-INT) system,’’ IEEE Access, vol. 7, pp. 82413–82423,
2019.

[49] S. Tang, J. Kong, B. Niu, and Z. Zhu, ‘‘Programmable multilayer INT:
An enabler for AI-assisted network automation,’’ IEEE Commun. Mag.,
vol. 58, no. 1, pp. 26–32, Jan. 2020.

[50] T. Mizrahi, G. Navon, G. Fioccola, M. Cociglio, M. Chen, and G. Mirsky,
‘‘AM-PM: Efficient network telemetry using alternate marking,’’ IEEE
Netw., vol. 33, no. 4, pp. 155–161, Jul./Aug. 2019.

[51] G. Fioccola, A. Capello, M. Cociglio, L. Castaldelli, M. Chen, L. Zheng,
G. Mirsky, and T. Mizrahi, Alternate-Marking Method for Passive and
Hybrid Performance Monitoring, document RFC 8321, IETF, Jan. 2018.

[52] T. Mizrahi, C. Arad, G. Fioccola, M. Cociglio, M. Chen, L. Zheng, and
G. Mirsky, Compact Alternate Marking Methods for Passive and Hybrid
Performance Monitoring, document Internet-Draft draft-mizrahi-ippm-
compact-alternate-marking-05, IETF, 2019.

[53] A. Riesenberg, Y. Kirzon, M. Bunin, E. Galili, G. Navon, and T. Mizrahi,
‘‘Time-multiplexed parsing in marking-based network telemetry,’’ in Proc.
SYSTOR, Haifa, Israel, 2019, pp. 80–85.

[54] P4 Alternate Marking Algorithm. Accessed: Jan. 28, 2020. [Online]. Avail-
able: https://github.com/AlternateMarkingP4/FlaseClase

[55] L. Castanheira, R. Parizotto, and A. E. Schaeffer-Filho, ‘‘FlowStalker:
Comprehensive traffic flow monitoring on the data plane using p4,’’ in
Proc. ICC, Shanghai, China, 2019, pp. 1–6.

[56] H. Song, T. Zhou, Z. Li, Z. Li, P. Martinez-Julia, L. Ciavaglia, and
A. Wang, Network Telemetry Framework, document Internet-Draft draft-
song-opsawg-ntf-02, IETF, 2018.

[57] A. Karaagac, E. De Poorter, and J. Hoebeke, ‘‘In-band network telemetry in
industrial wireless sensor networks,’’ IEEE Trans. Netw. Service Manage.,
vol. 17, no. 1, pp. 517–531, Mar. 2020.

[58] IEEE Standard for Local and Metropolitan Area Networks—Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1:
MAC Sublayer, IEEE Standard 802.15.4e-2012, Apr. 2012.

[59] P. Thubert, Ed., An Architecture for IPv6 Over the TSCH Mode of IEEE
802.15.4, document Internet-Draft draft-ietf-6tischarchitecture-24, IETF,
Jul. 2019.

20408 VOLUME 9, 2021



P. Manzanares-Lopez et al.: Passive In-Band Network Telemetry Systems: The Potential of PDP on Network-Wide Telemetry

[60] J. Marques, M. Luizelli, R. T. da Costa Filho, and L. Gaspary,
‘‘An optimization-based approach for efficient network monitoring using
in-band network telemetry,’’ J. Internet Serv. Appl., vol. 10, no. 12,
pp. 1–20, 2019.

[61] R. Hohemberger, A. G. Castro, F. G. Vogt, R. B. Mansilha, A. F. Lorenzon,
F. D. Rossi, and M. C. Luizelli, ‘‘Orchestrating in-band data plane teleme-
try with machine learning,’’ IEEE Commun. Lett., vol. 23, no. 12,
pp. 2247–2251, Dec. 2019.

[62] R. Hohemberger, A. F. Lorenzon, F. D. Rossi, and M. C. Luizelli,
‘‘A heuristic approach for large-scale orchestration of the in-band data
plane telemetry problem,’’ in Advanced Information Networking and
Applications (Advances in Intelligent Systems and Computing), vol. 1151,
L. Barolli, F. Amato, F. Moscato, T. Enokido, and M. Takizawa, Eds.
Cham, Switzerland: Springer, 2020.

PILAR MANZANARES-LOPEZ received the
master’s degree in telecommunication engineer-
ing from the Universidad Politécnica de Valencia
(UPV), Spain, in 2001, and the Ph.D. degree in
telecommunication engineering from the Univer-
sidad Politécnica de Cartagena (UPCT), Spain,
in 2006.

She started working as an Assistant Profes-
sor with UPCT, in 2001, where she currently
works as an Associate Professor with the Depart-

ment of Information and Communication Technologies. Her research inter-
ests include software-defined networking, P2P networks, and distributed
systems.

JUAN PEDRO MUÑOZ-GEA received the mas-
ter’s and Ph.D. degrees in telecommunication
engineering from the Universidad Politécnica de
Cartagena (UPCT), Spain, in 2005 and 2011,
respectively.

He started working as a Research Assistant
with UPCT, in 2006, where he currently works
as an Associate Professor with the Department
of Information and Communication Technologies.
His research interests include software-defined

networking and large-scale distributed networks.

JOSEMARIA MALGOSA-SANAHUJA (Senior
Member, IEEE) received the degree in telecom-
munication engineering from the Technical Uni-
versity of Catalonia, Spain, in 1994, and the Ph.D.
degree in telecommunication from the Univer-
sity of Zaragoza, in November 2000. In Septem-
ber 1999, he joined the Universidad Politecnica
de Cartagena as an Associate Professor. Since
2001, he has been an Assistant Professor with the
Department of Information and Communication

Technologies, UPCT. His research interests include switching technologies
and distributed systems.

VOLUME 9, 2021 20409


