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Abstract 

Air quality management is underpinned by continuous measurements of concentrations 

of target air pollutants in monitoring stations. Although many approaches for optimizing 

the number and location of air quality monitoring stations are described in the literature, 

these are usually focused on dense networks. However, there are small and medium-size 

urban areas that only require one monitoring station but also suffer from severe air 

pollution. Given that target pollutants are usually measured at the same sampling points; 

it is necessary to develop a methodology to determine the optimal location of the single 

station. In this paper, such a methodology is proposed based on maximizing an objective 

function, that balances between different pollutants measured in the network. The 

methodology is applied to a set of data available for the city of Cartagena, in southeast 

Spain. A sensitivity analysis reveals that 2 small areas of the studied city account for 80% 

of the optimal potential locations, which makes them ideal candidates for setting up the 

monitoring station. The methodology is easy to implement, robust and supports the 

decision-making process regarding the siting of fixed sampling sites. 

 

Capsule 
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This paper describes an easy-to-use methodology to find out the optimum location for 

setting up a single air quality monitoring station, especially useful for small and medium-

size urban areas.  

 

Keywords: air quality, monitoring stations, optimization, small urban areas, medium-size 

urban areas
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1. Introduction 1 

Monitoring pollutant concentrations in air is pivotal to properly manage air quality. European 2 

Directive 2008/50/EC (European Commission, 2008) on ambient air quality and cleaner air for 3 

Europe establishes the minimum number of sampling points for fixed measurements of 4 

concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2) and nitrogen oxides (NOx), lead, 5 

benzene and carbon monoxide (CO) in ambient air as a function of the population of an 6 

agglomeration or zone in its Annex V, amended by Commission Directive 2015/1480. Similar 7 

requirements for fixed measurements of ozone can be found in Annex IX of European Directive 8 

2008/50/EC, also modified by Commission Directive 2015/1480. In Table 1, these numbers are 9 

gathered. Requirements are different if maximum concentrations measured are above the upper 10 

assessment threshold, or if they are in between the upper and lower assessment thresholds, except 11 

for ozone where the number of fixed monitoring points depends on the type of agglomeration or 12 

zone. 13 

Table 1.- Minimum number of sampling points for fixed measurements of SO2, NO2 and NOx, 14 

lead, benzene, CO and O3 to assess compliance with limit values for the protection of human 15 

health (European Commission, 2008). 16 

Population of 
agglomeration 

or zone 
(thousands) 

Fixed measurements of SO2, NO, NOx, lead, benzene 
and CO 

Fixed measurements of O3 

If maximum 
concentrations exceed the 

upper assessment 
threshold 

If maximum 
concentrations are 

between the upper and 
lower assessment 

thresholds 

Agglomeration  Other 
zones  

0-249 1 1  1 
250-499 2 1 1 2 
500-749 2 1 1 2 
750-999 3 1 1 2 
1000-1499 4 2 3 3 
1500-1999 5 2 3 4 
2000-2749 6 3 4 5 
2750-3749 7 3 5 6 
3750-4749 8 3 One additional station per 2 

million inhabitants 4750-5999 9 4 
≥ 6000 10 4 

 17 
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A few instructions are also given regarding the macroscale selection of monitoring sites. Thus, 18 

for protection of human health, sampling points shall be sited in such a way as to provide data on 19 

the following: 20 

— the areas within zones and agglomerations where the highest concentrations occur to which 21 

the population is likely to be directly or indirectly exposed for a period which is significant in 22 

relation to the averaging period of the limit value(s), 23 

— levels in other areas within the zones and agglomerations which are representative of the 24 

exposure of the general population. 25 

Achieving both of these requirements is fairly difficult for zones or agglomerations where just a 26 

single sampling point is required (González Ferradás et al., 2010). In these cases, the final location 27 

is eventually selected most of the times based on the judgement of the managers of the air quality 28 

monitoring network of that area. Something similar happens in denser networks, which are not 29 

usually designed as a comprehensive whole. A number of works in the literature have aimed at 30 

redistributing existing stations in order to optimize the information and the cost (Ainslie et al., 31 

2009; Al-adwani et al., 2015; Andó et al., 1999; Pires et al., 2008a, 2008b; Wu et al., 2011). In 32 

some cases, a lower number of stations than the existing ones is required to properly characterize 33 

an area without any redundancies. In other works, however, the coverage area needs to be 34 

increased by installing one or more stations. In other studies, the dimension of the network is 35 

appropriate but a relocation of the stations is needed. 36 

Different approaches have been used to select fixed monitoring sites. As a starting point, most of 37 

them imply knowing the spatial distribution of pollutant concentrations over the study area. These 38 

can be attained, for instance, by means of the data provided by an already available dense air 39 

monitoring network (Ainslie et al., 2009; Andó et al., 1999; Orlowski et al., 2017; Pahlavani et 40 

al., 2017; Pope and Wu, 2014; Wu et al., 2011). Moreover, passive sampling campaigns 41 

(González Ferradás et al., 2010; Lozano et al., 2010; Orlowski et al., 2017; Soares et al., 2018) 42 

and modelling have commonly been used. Both of these strategies allow for describing the study 43 

area with a high spatial resolution at a low cost. 44 
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Among the most used air dispersion models stand out the use of the multiple cell approach (Al-45 

adwani et al., 2015; Elkamel et al., 2008; Zoroufchi Benis et al., 2016), the WRF-CALPUFF (Hao 46 

and Xie, 2018), the WRF-CMAQ (Araki et al., 2015) or Gaussian plume models to estimate 47 

pollutant concentrations coming from point sources (Chen et al., 2006; Corti and Senatore, 2008; 48 

Mazzeo and Venegas, 2008; Mofarrah and Husain, 2010). Other methodologies take advantage 49 

of the correlation between some atmospheric properties such us turbidity and pollutant 50 

concentrations (Sarigiannis and Saisana, 2008). 51 

Once this information is available, the spatial resolution of the grid can be increased by kriging 52 

or other geostatistical methods that interpolate concentrations. At this point, the selection of the 53 

monitoring sites can be done under different approaches. Some studies have directly selected sites 54 

that fulfil the Directive’s macroscale siting requirements (González Ferradás et al., 2010; Lozano 55 

et al., 2010); whereas others have used optimization algorithms (Chen et al., 2006; Mofarrah and 56 

Husain, 2010; Sarigiannis and Saisana, 2008). 57 

A variety of approaches can be found in the literature obtained from the combination of a single 58 

or multipollutant approach with a single or multi-objective optimization. For the most relevant 59 

works found in the literature regarding air quality network design, Table 2 shows for each of 60 

them, if it is single or multipollutant-oriented, how the spatial information on pollutant 61 

concentration has been obtained, and which techniques have been used to select the final location 62 

of sampling sites, with indication of the nature of the selecting criteria (single or multi-objective). 63 

With a few exceptions, however, most of them deal with two or more stations, which gives the 64 

possibility and flexibility of monitoring both traffic-oriented and background locations. 65 
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Table 2.- Different approaches for the selection of air pollution monitoring sites 

Reference 
Single (S) or 
multi-pollutant 
(M) 

Spatial distribution of concentrations Single (S) or multi-objective (M) Design/optimization 
technique 

(Andó et al., 1999) S Existing air monitoring station S 

Linear and neural 
models / selection of 
candidate points with 
maximum levels of 
pollutants 

(Corti and Senatore, 
2008) M Mobile analytical lab/ ISC3 dispersion model S 

Selection of sites 
with higher pollutant 
concentrations 

(Baldauf et al., 2001) M Air dispersion model M Risk-based approach 

(Kanaroglou et al., 2005) S Passive samplers / land-use regression model M Location-Allocation 
model 

(Chen et al., 2006) S ISC3 dispersion model M 

Modified bounded 
implicit enumeration 
algorithm/constraint 
arrangement method 

(Sarigiannis and Saisana, 
2008) S Atmospheric turbidity as a surrogate for air 

pollution M 

Maximum gain of 
the information 
function with the 
minimum overlap of 
stations 

(Mazzeo and Venegas, 
2008) S DAUMOD model for diffuse sources / ISCST3 

model for point sources S 

Rank of preselected 
sites according to 
number of 
exceedances 
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(Elkamel et al., 2008) M Air dispersion model (multiple cell approach) M 
Heuristic 
optimization 
algorithm 

(Ainslie et al., 2009) S Existing air monitoring network S Entropy-based 
Bayesian algorithm 

(González Ferradás et 
al., 2010) S Diffuse sampling + kriging S 

Selection of sites 
with concentrations 
representative of 
population exposure 

(Mofarrah and Husain, 
2010) M ISC3 dispersion model M 

Fuzzy analytical 
hierarchy process 
with triangular fuzzy 
numbers / Sphere of 
influence 

(Lozano et al., 2010) S Passive samplers + spatial interpolation M 

Selection of 
candidate points that 
fulfil EC Directive 
micro and macro 
scale requirements 

(Wu et al., 2011) S Existing monitoring network + geostatistical 
estimation methods to interpolate M Stochastic 

optimization method 

(Pope and Wu, 2014) S Existing monitoring network M 
Multi-indicator 
approach coupled to 
GIS-based model 

(Al-adwani et al., 2015) M Air dispersion model (multiple cell approach) M Sphere of influence / 
neural network 

(Araki et al., 2015) S Chemical transport model (WRF/CMAQ) + kriging S Genetic algorithm + 
simulated annealing 

(Zoroufchi Benis et al., 
2016) M Air dispersion model (multiple cell approach) M 

Sphere of influence / 
Ant colony 
optimization 
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algorithm and 
genetic algorithm 

(Orlowski et al., 2017) M Existing air monitoring network + passive samplers M PROMETHEE 
selection tool 

(Pahlavani et al., 2017) M Existing monitoring network S 

Shannon information 
index / correlation 
maps / fuzzy overlay 
process 

(Hao and Xie, 2018) M Air dispersion model (WRF/CALPUFF) M Genetic algorithm 

(Soares et al., 2018) S Existing air monitoring network + diffusive 
sampling + modelling S 

Chemical transport 
model + cluster 
analysis 

(Alsahli and Al-Harbi, 
2018) M No use of concentrations but surrogate parameters M GIS suitability 

analysis 

(Kazemi-Beydokhti et 
al., 2019) M Existing air monitoring network M 

Analytical Network 
Process (ANP) 
method + fuzzy 
quantifier-guided 
ordered weighted 
averaging (OWA) 
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From the approaches in Table 2, methodologies that only focus on a single pollutant cannot be 66 

applied to solve the present problem (locating a single station in a small or medium-size urban 67 

area), as it should be acknowledged the need of taking into account all pollutants measured in the 68 

Air Quality Monitoring Network (AQMN). From the multi-pollutant approaches, there are works 69 

that aim at establishing a rank of the best locations based on different criteria. These could be 70 

applied to the present case. However, in some of the approaches the data needed to apply the 71 

methodology can be difficult to be accessed and, if available, its uncertainty is high. For instance, 72 

in Baldauf et al. (2001), an inhalation rate per time unit representative of each class of population 73 

subgroups (children, elderly, healthy adults and adults with previous diseases) is needed, as well 74 

as the average exposure time to the pollutant, the average body weight and the number of 75 

individuals belonging to each population group for all the grids that the city is divided into. These 76 

data are not available straightaway, making this methodology very complex to apply. Another 77 

methodology that could be applied is described in Orlowski et al. (2017). They start from the data 78 

of an existing AQMN and they rank the existing monitoring sites as a function of the correlation 79 

among stations data. The less correlated stations are on top of the rank, whereas the more 80 

correlated ones are at the bottom. To do this, they use monthly average concentrations of the 81 

target pollutants for 3 years, which represents a huge amount of data, which can only be available 82 

if there is an existing network or by modeling. Other works (Al-adwani et al., 2015; Elkamel et 83 

al., 2008; Mofarrah and Husain, 2010; Zoroufchi Benis et al., 2016) propose a similar 84 

methodology but they obtain the time series needed to calculate the correlation coefficients from 85 

modeling. Air pollution models can provide very useful information on air quality from the 86 

knowledge of the emissions and the atmospheric processes that control pollutant dispersion, 87 

transport, deposition and conversion, together with the meteorology and topography of the studied 88 

area. However, they must be run by experts due to their complexity, their results can have large 89 

uncertainties and they require very demanding computational requirements. Thus, these 90 

techniques cannot always be applied, as big data sets are needed, and these are difficult to obtain 91 

without an existing network or the use of modeling.  92 
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Another limitation of other methodologies (Kazemi-Beydokhti et al., 2019), as admitted by the 93 

authors, is that experts’ opinions are involved in the selection of weights using linguistic variables 94 

whose values can be rather ambiguous (e.g., “at least one”, “few”, “some”, “half”, “many”, 95 

“most”), so the process could be highly influenced by these opinions. Mofarrah and Hussain 96 

(2010) try to overcome the possible uncertainty of the weight selection based on experts’ opinion 97 

by using triangular fuzzy numbers, but they are still based on the experts’ opinion scale. 98 

A general reader may also wonder why not using a general method for locating a facility, such as 99 

the location-allocation method (LAM). In fact, these models have not often been used in selecting 100 

optimum sites for air quality monitoring stations. An exception is the work by Kanaroglou (2005), 101 

that was strongly criticized by Kumar (2009). In his own words “the goal of an optimal network 102 

for air pollution monitoring should be to capture the best representation of air pollution exposure 103 

with the available sample size (or the minimum one) rather than optimizing geographic access or 104 

attendance at the monitoring stations” and “the LAMs are not designed to solve spatial sampling 105 

problems”. 106 

An interesting approach by Alsahli and Al-Harbi (2018) consists of using a GIS system to 107 

establish the optimum sites for the AQMN. They produce 4 layers based on the following criteria: 108 

population density, spatial proximity to main roads, spatial proximity to industries and spatial 109 

proximity to high-traffic areas. Each layer is ranked and weighted, and finally they are spatially 110 

overlaid to produce a final layer that illustrates the optimum locations. The methodology is 111 

validated by comparing the optimal sites retrieved with the concentrations of pollutants measured 112 

by existing AQM stations close to the optimum sites. However, one can argue why using 113 

surrogate measurements of air pollution concentrations such as population density or distance to 114 

main emission sources instead of actual measurements of air pollution. It is necessary to 115 

remember that concentrations in air of pollutants are the result of many complex processes and, 116 

that not all pollutants are emitted, but some are produced through chemical transformations from 117 

those emitted, and their maximum concentrations may occur far from the emission sources, such 118 

as ozone. 119 
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In summary, although there are many approaches in the literature to tackle this problem, most of 120 

them are complex to apply and do not pay attention to simple but critical details such as validation 121 

of model predictions, adequate selection of weights and/or a global sensitivity analysis. 122 

Urban areas in countries of the Organization for Economic Cooperation and development 123 

(OECD) are classified as large metropolitan areas if they have a population of 1.5 million or more; 124 

metropolitan areas if their population is between 500 000 and 1.5 million; medium-size urban 125 

areas if their population is between 200 000 and 500 000; and, small urban areas if their population 126 

is between 50 000 and 200 000 (OECD, 2018). In Europe, the percentage of population that lives 127 

in small or medium-size urban areas can be up to 100% in some countries such as Luxembourg 128 

(Table 3). 129 

Table 3.- Percentage of population in small and medium-size urban areas in 2014 in several 130 

European countries (OECD, 2018). 131 

Country Small urban areas 
(%) 

Medium-size urban areas (%) Total (%) 

Sweden 25.3 5.0 30.3 

France 14.6 23.0 37.6 

Germany 9.6 30.0 39.6 

Italy 19.4 21.0 40.4 

United Kingdom 13.9 31.0 44.9 

Spain 20.9 26.0 46.9 

The Netherlands 21.5 29.0 50.5 

Czech Republic 46.0 10.0 56 

Luxembourg 0.0 100 100 

 132 

Although it is acknowledged that larger metropolitan areas are prone to have worse air quality, it 133 

is also important to monitor the air quality of small and medium-size urban areas to ensure the 134 

necessary protection of their inhabitants along with that of larger metropolitan areas. In most 135 

cases, only one monitoring station is required in these areas. In this paper, a multi-pollutant single-136 

objective methodology is proposed to select the best location to set up a single monitoring station 137 
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in small or medium-size urban areas. The methodology is proved to be simple and robust, in 138 

contrast to other approaches found in the literature. 139 

 140 

2.  Methodology 141 

The methodology developed in this paper is based on the fact that it is common that different 142 

pollutants share the same monitoring sites; that is, there is not a network exclusive for each 143 

pollutant, but these are usually measured at the very same sites. This means that the selection of 144 

sampling points should not be assessed based on individual pollutants but taking into account all 145 

of them. This makes even more sense in the particular case where only a single monitoring station 146 

is required in an area or agglomeration: all pollutants will be measured in the only station of the 147 

area. 148 

As mentioned before, it is fairly difficult to comply with the Directive macroscale criteria for a 149 

single pollutant with a single monitoring station (measuring at the same time both maximum and 150 

representative concentrations). This becomes even more complicated if more pollutants come 151 

into play. Thus, the approach of this paper to select the monitoring site tries to take into account 152 

all the pollutants measured in the network through the use of an objective function in the form 153 

of: 154 

𝑓(𝑥, 𝑦) = 𝑊!
[#$%%!]",$
'#$%%!,%&'(

+𝑊)
[#$%%(]",$
'#$%%(,%&'(

+⋯+𝑊*
[#$%%)]",$
'#$%%),%&'(

  (1) 155 

Where W1, W2, and Wn are coefficients that range from 0 to 1 and weigh the relative importance 156 

of each measured pollutant, +𝑃𝑜𝑙𝑙+/,,. is the concentration of pollutant 𝑗 = {1,2, … , 𝑛}, being n 157 

the total number of pollutants, at the location (x, y), and +𝑃𝑜𝑙𝑙+,/01/ is the average concentration 158 

of pollutant j in all measured locations. 159 

Given that this methodology has been developed for locating a single station, the optimization 160 

criterion is to select the location where f(x, y) is maximized. Regarding the value of coefficients 161 

W1, W2 and Wn, they can be assigned according to different criteria. For instance, violations of 162 
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the limit values for one or several pollutants are good arguments for assigning high values of W 163 

to those pollutants. 164 

Another criterion may be based on the variability of pollutant concentrations over the study area. 165 

A high spatial concentration variability may be a good reason to assign a high value of W to a 166 

particular pollutant. On the contrary, low spatial variability would mean that it does not really 167 

matter where the pollutant is measured as its concentrations do not significantly change over the 168 

study area. 169 

In Section 3 the proposed methodology is applied to a medium-size urban area (Cartagena, Spain) 170 

and both the aforementioned criteria are applied. Two values of f(x,y) are calculated in each 171 

sampled location. Subsequently, kriging is performed to obtain estimates of the objective 172 

function (equation 1) in unsampled sites and the optimum locations according to each index are 173 

selected. Other criteria to assign weights to each pollutant may also be valid and, in order to 174 

study the sensitivity of the methodology to changes in the values of W1 to Wn, a sensitivity 175 

analysis is also performed in Section 3.3 for the case study. 176 

2.1.Kriging interpolation 177 

Kriging is an interpolation method introduced by Daniel Krige in the 1950s and formalised later 178 

by Matheron (Matheron, 1963). The term kriging includes different least-squares methods that 179 

provide best linear unbiased predictions (BLUP) (Oliver and Webster, 2014). Kriging provides 180 

interpolation values without any bias and minimizing variance, which makes the method one of 181 

the most used in different applications like environmental studies. 182 

Kriging formulation is based on the idea of “random processes”, whose principles can be 183 

synthetized as follows (Oliver and Webster, 2014): 184 

• The value of a property, say z (i.e., a pollutant concentration), at any (consider two 185 

dimensional) location d = (x, y), and denoted by z(d), is a realization of a random variable 186 

Z(d). 187 

•  The set of the infinite random values at all locations, is a random process, and is also 188 

denoted Z(d). 189 
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• The random variable is spatially correlated at some scale. 190 

Pollutant concentrations in an area can be seen as spatial random variables. When collecting data, 191 

usually one single measurement per location under the same conditions is available. Thus, in order 192 

to be able to do compute statistics from these realizations, the assumption of stationarity must be 193 

considered: there is the same degree of variation among locations. This means that the random 194 

process can be represented by the model 195 

𝑍(d) = 𝜇 + 𝜖(d) (2) 

where 𝜇 is the mean of the process and 𝜖(d) is a random quantity with a mean of zero and a 196 

covariance C(h), with h representing the distance between observations. Under some 197 

assumptions, the covariance is usually replaced by the semivariance, 𝛾(h), which is the basis to 198 

analyse spatial dependence using the semivariogram analysis. There are different models for the 199 

variograms, being the most popular ones the Spherical, Exponential, Gaussian or Matern among 200 

others (see Appendix of Oliver and Webster, 2014). The selection of the appropriate model as 201 

well as the values of the associated parameters is usually carried out by cross-validation 202 

techniques based on the experimental observations. 203 

As stated above, one of the strongest points of kriging is that it provides an estimation of both the 204 

mean and the variance of the predictions in the selected locations (commonly called grid). This 205 

makes the method especially suitable to do inference about the predictions and even to design 206 

optimization algorithms which make use of its statistical power (Egea et al., 2009; Huang et al., 207 

2006; Jones et al., 1998; Ur Rehman et al., 2014; Villemonteix et al., 2008). There are no explicit 208 

expressions of the kriging estimations for the mean and the variance. The mathematical procedure 209 

to obtain them is out of the scope of this work and the reader is referred to specific textbooks like 210 

e.g. Olea (Olea, 1999). 211 

Kriging has been employed in the present study because it has been widely used in air pollution 212 

research. In particular, ordinary kriging was selected due to its robustness and the fact that no 213 

trend was observed in the data. Apart from the above-mentioned strong points of the method, 214 
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Jerrett et al., (2005) highlight that kriging can better deal with much of the erroneous local 215 

variability produced with other interpolations given the intrinsic structure of the kriging model. 216 

A recent review by Xie et al., (2017) provides a list of references where kriging has been used in 217 

air pollution studies to assess single and multi-pollutant concentrations. This review also 218 

describes other spatial interpolation approaches that could be used in the proposed methodology, 219 

which is not restricted to the use of any interpolant.  220 

In this work, automap R package (Hiemstra et al., 2009) was used to obtain the most appropriate 221 

semivariance models using cross-validation and its optimal parameter estimates. With this 222 

information, kriging maps were made with Surfer 16 software (Golden Software Inc., Golden, 223 

Colorado (US)). 224 

 225 

2.2.Experimental set-up 226 

The procedure described above was applied to the data obtained in a one-week measurement 227 

campaign conducted in Cartagena in July 2009. Although the data set was not recently obtained, 228 

it is still fit for testing the proposed methodology. 229 

Cartagena is a medium-sized coastal city (211,996 inhabitants) from the south-east of Spain (INE, 230 

2018), which has a Mediterranean climate with warm summers, mild winters and a dry season in 231 

summer (rainfall rarely exceeds 300 mm per year). As regards the wind pattern, it is quite 232 

homogenous throughout the year prevailing those winds from the northeast (offshore breezes) or 233 

from the southeast (onshore breezes) (AEMET, 2011). 234 

Emissions are mainly due to road traffic, with a fleet of 679 vehicles per 1,000 inhabitants, with 235 

diesel being the most used fuel. Other significant pollutant sources are the port, a military arsenal 236 

and a nearby industrial estate (DGT, 2018). 237 

Ambient air quality information was collected using Radiello® diffusive samplers (Cocheo et al., 238 

1996). The concentration of benzene, NO2 and ozone were measured in 12 sampling points spread 239 

throughout the city. In order to estimate personal exposure to those species and to evaluate their 240 
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magnitude and spatial distribution, the samplers were sited 1.8 m above the pavement and 3 m 241 

away from the centerline of the closest road complying with the requirements of European 242 

regulations (European Commission, 2008). 243 

Passive sampling meets the requirements of the EC Directive for benzene and other volatile 244 

organic compounds in ambient air (CEN, 2005) and has been validated in laboratory experiments 245 

to control the effects of temperature, air humidity and wind speed (Ballesta et al., 2005). 246 

Once in the laboratory, the adsorbent cartridges were desorbed and analyzed. The benzene 247 

samples were desorbed from the activated carbon using carbon disulfide and the extracts analyzed 248 

by GC-FID. The NO2 molecules were adsorbed in a microporous polyethylene cartridge 249 

impregnated with triethanolamine (TEA). Under these conditions, NO2 is quantitatively 250 

transformed to nitrite. The presence of TEA generates an alkaline pH that prevents the oxidation 251 

of nitrites to nitrates. Finally, the nitrite ions are quantified by ion chromatography. The adsorbing 252 

cartridge for sampling ozone is covered by 4,4’-dipyridylethylene that reacts with ozone 253 

(ozonolysis) to give 4-pyridylaldehyde. This aldehyde is condensed with 3-methyl-2-254 

benzothiazolinone hydrazone to yield the corresponding azide, yellow colored, which is 255 

determined by visible spectrophotometry at 430 nm (Merck, 2019). 256 

After determining the mass of benzene, NO2, and ozone in their respective cartridges, the 257 

concentrations (C), in µg·m-3, were obtained through equation (3) using the corresponding 258 

sampling rates (SR) and the sampling time (t = 7 days = 10 080 min) (Cocheo et al., 1996). This 259 

methodology has been extensively tested and validated according to the protocols from the 260 

European Committee for Standardization (CEN). 261 

																																											𝐶(𝜇𝑔 · 𝑚!") = #$%%	(())
+,	(#-·#/0!")·1(234)

· 105                                          (3) 262 

 263 

3. Results and discussion 264 

3.1. Concentrations of benzene, NO2, and O3 in Cartagena 265 
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Table 4 gathers the measured concentrations of NO2, O3, and benzene during the field campaign. 266 

From these, isoconcentration contour maps were obtained for the study area using kriging as a 267 

geostatistical technique to interpolate pollutant concentrations. Kriging interpolations were 268 

overlaid on the map of the city in Figure 1 to actually observe the locations of maximum 269 

concentrations of each pollutant. 270 

Table 4. Concentrations of benzene, NO2, and O3 measured in each sampling point and their 271 

coordinates. 272 

Sampling point X Y Benzene (µg·m-3) NO2 (µg·m-3) O3 (µg·m-3) 

CT-1 -0.9743391 37.6073911 1.6 106 25.4 

CT-2 -0.9905928 37.6070843 0.73 53.6 10.1 

CT-3 -0.9935480 37.6112485 2.1 151 9.31 

CT-4 -0.9938839 37.6167716 0.72 86.6 25.1 

CT-5 -1.0024809 37.6163332 0.57 49.5 24.2 

CT-6 -0.9864958 37.6101527 0.96 57.2 30.1 

CT-7 -0.9993913 37.6269410 0.83 55.7 55.5 

CT-8 -0.9812570 37.6062953 1.1 135 4.01 

CT-9 -0.9745406 37.6121690 0.10 196 0.386 

CT-10 -0.9796451 37.6073911 0.35 51.0 58.8 

CT-11 -0.9777645 37.6041913 0.96 43.8 14.1 

CT-12 -0.9820630 37.6023941 0.28 97.9 17.0 

 273 

It should be noted that two of the three locations with maximum concentrations of benzene and 274 

NO2 take place at the same sites (CT-3 and CT-8). Both sites are located next to two busy roads, 275 

so it is likely that these higher concentrations may be caused mainly by traffic emissions. CT-1 276 

registers the second highest concentration of benzene, which may be due to the fact that this point 277 

is also close to a main road and located less than 75-m apart from a petrol station. 278 
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 279 
Figure 1. Location of diffusive samplers (a) and concentrations of pollutants in Cartagena 280 

obtained by kriging interpolation for b) benzene, c) NO2 and d) O3. Concentrations in µg·m-3 at 281 

293 K and 101.3 kPa. 282 

CT-9 shows the highest concentration of NO2 and the lowest of benzene, which is indicative of 283 

an emission source of NO2 different from traffic in this location. Regarding ozone, its minimum 284 

levels occur at locations with the highest concentrations of benzene and/or NO2 (CT-9, CT-8 and 285 

CT-3). This behavior is not unexpected, as ozone is a secondary pollutant that is produced from 286 

photochemical reactions in which NO2 and volatile organic compounds, such as benzene, are 287 

involved. Given the opposite dynamics of these pollutants in the air of Cartagena, it is not possible 288 
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to find a location where all three pollutant concentrations are maximum. Thus, objective function 289 

described in equation (1) was used to find the locations that maximize it (Section 3.2). 290 

3.2. Determination of the optimum locations to set up a single monitoring 291 

station 292 

The location of the monitoring station should not be based solely on the concentration of a single 293 

pollutant since it might not be representative of the overall air quality scenario. Equation (1) was 294 

used to calculate two indexes representing an average “pollutant” concentration in the locations 295 

where the three pollutants were measured. 296 

The elaboration of the pollution indexes was formulated as a weighted sum of the most relevant 297 

pollutants in environmental pollution studies, i.e., benzene, NO2, O3, as illustrated by equation 298 

(1). Other pollutants may also be taken into account. This weighted sum was performed on 299 

normalized concentrations, that is, the concentration of each pollutant in each location was 300 

divided by the average concentration of that pollutant in all locations sampled. 301 

Two different sets of weights were used to obtain the pollution indexes. The first one was obtained 302 

examining the concentrations measured of each pollutant in comparison to their respective limit 303 

values, what was called “violation index”. The second one was produced considering that the 304 

weight of each pollutant is proportional to its variance over the considered space domain, i.e. it 305 

assures greater weights to the pollutants whose concentrations show more variability, so these 306 

may be considered more difficult to control and regarded as the most critical. The second index 307 

was called “proportional-to-variability index”. 308 

The study of the concentrations of benzene, NO2 and O3 in Cartagena during the field campaign 309 

revealed that the most critical pollutant was NO2, with weekly average concentrations at some 310 

points that exceeded the hourly limit value (200 µg·m-3). The maximum concentrations of O3 and 311 

benzene were 58.9 and 2.13 µg·m-3, both below half the objective value for ozone (120 µg·m-3) 312 

and half the hourly limit value of benzene (5 µg·m-3), respectively. For this reason, according to 313 
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the “violation index”, the weights WNO2, WO3 and Wbenz were assigned as 0.5, 0.25 and 0.25, 314 

respectively. 315 

In order to calculate the weights WNO2, WO3 and Wbenz according to the “proportional-to-316 

variability” criterion, the standard deviation of each pollutant concentration over the studied area 317 

was calculated. Each weight was calculated as follows: 318 

                                                                   𝑊2 =
34*

34+,+%-
                                                               (4) 319 

Where SDi is the standard deviation of the normalized concentrations of pollutant i over the 320 

studied area and SDtotal is the sum of the standard deviations of the normalized concentrations of 321 

all pollutants taken into account in the study. The set of weights derived from this calculation was 322 

0.328, 0.269 and 0.403 for benzene, NO2 and O3, respectively. 323 

Finally, a kriging interpolation of the two indexes for the area of Cartagena city was performed 324 

in order to obtain the optimum location of the monitoring station according to both situations. As 325 

it can be seen in Figure 1, there is one clear optimum location to set up the monitoring station 326 

according to the “violation index”. This location (-0.9934682, 37.611330) is close to sampling 327 

point CT-3 (less than 15 meters apart) and the value of its index is 1.181403. Regarding the 328 

“proportional-to-variability index”, the second and third locations with the highest values of the 329 

index were two points located very close to CT-3 (less than 15 meters apart), which makes them 330 

ideal places to set up the monitoring station. On the other hand, a location close to CT-7 had the 331 

maximum value of the “proportional-to-variability index” and would therefore constitute an 332 

optimum location for setting the monitoring station according to this criterion. In order to choose 333 

among the two best sampling locations, a good criterion would be selecting the area representative 334 

of more person-hours of exposure. In this regard, the selected site would be CT-3, which is a 335 

typical urban area, whereas CT-7 can be classified as suburban. 336 
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 337 

Figure 2. Kriging interpolation of the “violation index” (a) and the “proportional-to-variability 338 

index” (b). 339 

 340 
3.3. Sensitivity analysis of weight selection 341 

Several weight combinations different from those proposed above could be chosen for the 342 

calculation of the proposed index values. These different weight combinations would give rise to 343 

different index values whose maximums could return different optimal areas to locate the air 344 

quality monitoring station. 345 

In order to test the effect of the choice of weights on the index values, and thus, the robustness of 346 

the methodology, many kriging interpolations were carried out with all possible combinations of 347 

three weights with a resolution of two decimals (5151 combinations). 348 

The results manifest five clear confined candidate areas (Figure 3). Out of 5151 total points, 2680 349 

points (~52%) corresponded to an area next to CT-3, which was the area predicted by the 350 

“violation index”; while 1459 (~28%) to an area next to CT-7, which was the area predicted by 351 

the “proportional-to-variability index”. From the remaining points, 502 (9.7%) belong to a region 352 

next to CT-9, 497 (9.6%) to a zone next to CT-10 and 13 (0.25%) points are nearby CT-12. This 353 

means that the areas next to CT-3 and CT-7 account for 80% of the optimal locations and thus, 354 

are ideal spots to set up the monitoring station. 355 
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 356 

Figure 3. Maximum values of 5151 kriging interpolations covering all combinations of weights. 357 

Five plausible areas to locate a monitoring station appear. 358 

Average weights (𝑊56(,/0, 𝑊6.,/0 and 𝑊78*9,/0) in the five candidate areas are displayed in 359 

Table 5. When an area has a high weight in one pollutant is indicative of a high concentration of 360 

that pollutant in that area. For instance, when high importance is given to NO2, its coefficient 361 

WNO2 will be high compared to the coefficients of the other two pollutants. This means that 362 

locations with a high concentration of NO2 will retrieve high values of the index, as it is the case 363 

of the area close to CT-9. 364 

In CT-3 the proportion of benzene/NO2/O3 weights is approximately distributed as 50/30/20, 365 

whereas in area CT-7 this distribution is approximately 25/25/50. Thus, it can be concluded that 366 

in the two best candidate areas the relative weights of each pollutant are more or less balanced, 367 

with benzene being the pollutant that dominates in CT-3 area, and ozone the one that dominates 368 

in CT-7 area. Regarding the 3 remaining minority areas, locations close to CT-9 are NO2 369 
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pollution-prone, locations close to CT-10 are ozone-prone, and locations next to CT-12 have a 370 

distribution of weights of roughly 50/20/30. 371 

Table 5. Average weights of benzene, NO2 and O3 in the five areas obtained in the sensitivity 372 

analysis (standard deviation in parentheses). 373 

Area Benzene NO2 O3 Comment 
CT-3 0.49 (0.21) 0.34 (0.21) 0.18 (0.11) ≈50/30/20 
CT-7 0.22 (0.13) 0.25 (0.16) 0.52 (0.1) ≈ 25/25/50 
CT-9 0.06 (0.04) 0.77 (0.11) 0.17 (0.11) NO2-prone 
CT-10 0.09 (0.06) 0.12 (0.09) 0.79 (0.08) Ozone-prone 
CT-12 0.47 (0.11) 0.17 (0.13) 0.36 (0.02) ≈50/20/30 

 374 

The methodology presented here provides one clear optimal site for locating the monitoring 375 

station; however, it is based on one-week average data. It would be interesting to compare the 376 

results obtained in other campaigns carried out at different seasons of the year. This would provide 377 

further evidence for the selected optimal site (if the distribution pattern of pollutant concentrations 378 

is steady throughout the year) or would retrieve new optimal sites. In this context, González 379 

Ferradás et al. (2010) found out that the distribution pattern of pollutants over a city remained 380 

more or less steady along the year if the emission sources also did, although the values of 381 

concentrations varied due to different dispersion conditions. If this applies to Cartagena, other 382 

measurement campaigns would validate the results obtained here. 383 

It is also important to mention that in this work particulate matter (PM) was not measured nor 384 

taken into account in the objective function. PM is one of the most alarming pollutants nowadays 385 

so, if possible, it is recommended to include it as an extra term in the objective function when this 386 

methodology is applied in future. 387 

 388 

4. Conclusions 389 

In this paper, a multi-pollutant methodology is described to support decision-making processes 390 

regarding the location of a single air quality monitoring station in small and medium-size urban 391 
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areas. The methodology is based on the fact that all measured pollutants have to be taken into 392 

account in an objective function, (equation 1), which is maximized. Each measured pollutant is 393 

assigned a relative weight depending on different criteria. Two criteria have been proposed in this 394 

work, namely, a “violation” criterion, where a pollutant is given a high weight when its 395 

concentrations exceed periodically its limit values; and a “proportional-to-variability” criterion, 396 

where the highest weight is given to the pollutant whose concentrations show a greater variability 397 

over the studied area.  398 

In order to ensure that the methodology does not provide as many different locations as 399 

combinations of weights, a sensitivity analysis was performed trying 5151 different combinations. 400 

The methodology has turned out to be very robust as only 5 candidate locations are eventually 401 

retrieved. From these, two of them account for the 80% of the potential locations, being the ideal 402 

places to locate the single monitoring site. These two locations coincide with the best locations 403 

obtained when applying both of the proposed criteria. The methodology is easy to apply and can 404 

be used with as many pollutants as desired, which facilitates and supports the management of the 405 

air quality in small and medium-size urban areas only requiring one monitoring station. The recent 406 

development of low-cost sensors may help further validate the proposed methodology through 407 

sampling campaigns in different seasons of the year. 408 
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