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Abstract. This document presents a procedure for the optimal design of reinforced concrete
sections of general shapes subject to a biaxial bending. The optimal design problem is
formulated as a non-linear mathematical programming problem. The problem is formulated
so that time-consuming searches for the precise location of the neutral axis are avoided
through inter mediate steps of the optimization process.

There are three kinds of design variables. geometry variables, reinforcement variables and
location of the neutral axis variables.

The objective function is the cost of a structural member per unit length. There are three
kinds of constraints: strength constraints, minimal amount of steel constraints and bound
constraints.
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1 INTRODUCTION

The problem of ultimate strength analysis of reinforced concrete sections under biaxial
bending appears in structural design frequently. Usually, the cross section has a simple
rectangular geometry, but the shape is often more complex.

In common practice, the biaxial capacity of a concrete section is interpolated from its
uniaxial capacities"?. More specifically, the capacity against the axia force and bending
moment acting simultaneously about the x-x and y-y axes is obtained by idealizing the M,-M,
interaction curve.

However, there are severa limitations on applying this method, which was developed
originally for rectangular sections with symmetrical arrangement of reinforcement, in order to
design irregular sections.

In this paper, to calculate the ultimate strength, the section is divided into fixed finite
elements, and for approximate integration, the coefficients in equilibrium equations® are
computed.

A procedure for the optimal design of shape and reinforcement arrangement for concrete
sections of general shapes subject to a biaxial bending is presented and severa examples have
been tested.

The problem is formulated so that time-consuming searches for the precise location of the
neutral axes are avoided through intermediate steps of the optimization process’.

The optimization problem is formulated as a non-linear programming problem.

Thiswork has been devel oped according to with the EH-91° Spanish design code.

2 ULTIMATE STRENGTH DETERMINATION OF REINFORCED CONCRETE
SECCTIONSUNDER BIAXIAL BENDING

Consider the section shown in fig. 1.a To calculate the ultimate strength of reinforced
concrete sections under biaxial bending is necessary to know the precise location of the
neutral axis, from the equilibrium and compatibility equations and stress-strain relationships
of concrete and steel in compression and tension. These equations can't be expressed in
analytic way where the variables are the parameters that fix the location of the neutral axis,
because of the problem has not an analytic exact solution, so it's necessary to use
approximate methods which are based on trial of several locations of the neutral axis.

The equilibrium equations for a reinforced concrete section of a given genera shape
subject to abiaxial bending:

”sdc(é‘c) ds+ anas(gs) A =N (1)
=1
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where
g, stress at concrete;
o, stress at steel;
& strain at concrete;
& strain at reinforcement;
N axial load,
e, 6  eccentricity about the y-y and x-x axis;
M,, M, bending moment about the x-x and y-y axis,
A area of j-th reinforcing bar;
X, Y, coordinates of j-th reinforcing bar;
ds area of an element of concrete, and
n number of reinforcing bars.
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Figure 1: a) Reinforced concrete section. b) General flow chart to compute ultimate strength
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In this work, to compute the ultimate strength of reinforced concrete sections, the section is
divided in finite elements; severa location of the neutral axis are tested and solved with an
approximate integration of the equilibrium equations until the convergence of the problem.
Figure 1.b shows the flow chart of the developed computer program for the ultimate strength
analysis of reinforced concrete sections,

where

xult

yult

strain at concrete or sted i-th element;
stress at concrete or stedl i-th element;
ultimate axial load;

ultimate bending moment about the x-x, and
ultimate bending moment about the y-y axis.

The EH-91 design code specifies that, the ultimate strain in a section, according to loading
conditions, the strain domains shown in fig. 2, the appropriate compatibility equations are (eg.
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The concrete stress-strain relationships are shown in fig. 3.a(eqg. 8), seefig 3.b. for steel.
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Figure 3: Stress-strain relationships for concrete (a) and steel (b)
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where

fed cylinder strength of concrete, and
fya calculus strength of steel.

3 OPTIMAL DESIGN PROBLEM

The most usual algebraic formulation for the general optimal design of structures and
structural elementsis:
To find adesign variables vector X (X;,Xs,...,X,) tO:
Minimize the objective function  f(x)
Satisfying the constraints:

h;(x)=0 j=12,...,m
g;(x)=0 j=12,...,.m,
X <x <% 1=12..,n,
where

X design variables n-dimensional vector;

f(x) objective function;

h(x)  number j of equality constraints;

g(x)  number j of the inequality constraints;

|

X lower limit of variable number i;

xiS upper limit of variable number i;

m number of equality constraints;

m, number of inequality constraints, and
Ny number of bound constraints.

Usually, the objective function f(x) and the equality h,(x) and inequality g;(x) constraints
are non-linear functions. Then the problem is said to be non-linear optimization.

The optimization algorithm is a Sequential Quadratic Programming (SQP) method. In this
method, a Quadratic Programming (QP) subproblem is solved at each iteration. An estimate
of the Hessian of the Lagrangian is updated at each iteration using the BFGS formula.

4 OPTIMAL DESIGN PROBLEM FORMULATION

The optimal design problem has been formulated as a non-linear mathematical
programming problem. A code has been written in MATLABS.
Figure 4 shows the flow chart for the optimization process.
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Figure 4: Flow chart for the optimization process

4.1 Design variables

There are three kinds of design variables. geometry variables, reinforcement variables and

location of the neutral axis variables.

Figure 5: Design variables
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The geometry variables used are the overal depth (h) and the width (b)of the section or
aso the modules of the vectors (r;) which have their origins in a fixed point and their
extremes in movable points, that define the location of every section vertexes (fig. 5). The
direction of each vector isfixed in the process of optimization.

Reinforcement variables correspond to the areas of steel allocated in the section.

The variables of location of the neutral axis are &y £, above definited.

4.2 Objective Function

The objective function is the cost of structural member per unit length, which is the sum of
the cost of concrete, reinforcing steel and formwork.

n
F= A: Cc +Sp Cf +pSCSZAj (9)

=

where

section areg;

section perimeter;

cost of concrete (u.c./volume unit);

cost of formwork (u.c./area unit);

cost of reinforcing (u.c./weight unit), and
steel density.

</>()—§)c'>()'0(f’<‘?>

i

4.3 Constraints

There are three kinds of constraints. strength constraints, minimal amount of steel
constraints and bound constraints.

The strength constraints are:
Ny =N (10)
€| 2 &

where

My =Max{]m,]
while 2-axisis the other one;

M y‘ } 1-axis corresponds to the largest acting bending moment,

My,  maximum ultimate bending;

My, minimal ultimate bending;
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— IVllult
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o NuIt
Ml
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a = & ]
Ml
The minimal amount of steel intension, given for the EH-91 design codeis:
A2 O,ZSE\ﬁ (11
fog D
where
A area of reinforcing barsin tension;

W, 1/(d-x), and
I section moment of inertia.

5 NUMERICAL EXAMPLES

Consider the section of fig. 6 taken from reference 4. Bar location 1 to 4 are mandatory.
The design parameters and variables are shown in fig. 6. Table 1 shows the five cases studied
with the reinforcing bars areas, geometry and location of the neutral axis variables, and table 2
the minimal, initial and maximum design variables values.

The objective function is the cost of the structural member per unit length.

The considered constraints are: strength constraints, minimal amount of steel constraints
and bound constraints.

The load parameters are: axia load (N) 1135 kN; bending about x-x axis (M,) 92,25 kN m
and bending about y-y axis (M,) 115,32 kN m.

The materials parameters are: calculus strength of steel (f,) 420 Mpa; strength of concrete
in axial compression (f.,) 20 Mpa; steel density (o) 78,5 kN/m3; modulus of elasticity of steel
(Ey 2,1 105 MPaand modulus of strain of concrete (E,) 2,5 10* MPa

The cost parameters are: cost of concrete (C,) 10865 u.c./volume unit; cost of formwork
(Cy) 4000 u.c./area unit and cost of reinforcement (C,) 14,7 u.c./weight unit.

The section has been divided into 9 elements (3x3 mesh) and it has been used 2x2 Gauss
pointsin numerical integration.
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Table 1. Cases studied. Design variables

Reinforcement variables Geometry variables Location of
Vaue Minimal Initial Maximum | Minimal Initial Maximum | thena
0,0 3,142e-4 | 3,142e-4 0,177 0,247 0,353
Casel -
Case?2 A=A=A=A bh
Case 3 Py Ay A Ag Ag Ay Ay Ay XAx? B
Case 4 r=r,ry=r,
Case5 r=r,r,=rs
Table 2: Design variables. Minimal, initial and maximum values
Variable Values
Minimal Initial Maximum
AL AA AL (M) 3,142e-4 3,142e-4 3,142e-4
A AL A AGAGAGAL A 0,0 3,142e-4 3,142e-4
(m?)
b h (m) 0,25 0,35 0,50
ryryrgr,(m) 0,177 0,247 0,353
g -1 0,625 2
B () 0,0 51,342 360
A y
M
N
J; 10 9 8 7
o} o
0,03 m r r
o 4 3 o M,
h n 6 < :X
or r, O
12 1 2 5
1 %2 % 4
ﬁL 0,03 m
b
Figure 6: Numerical example. Reinforced concrete section
5 Results

First of all the table 3 shows the optimal designs obtained for the five cases, and the fig. 7
shows the initial and optimal sections and the neutral axis location for each one case.

10
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Figure 7: @) Initial design, b) Case 1, c) Case 2, d) Case 3, €) Case 4, f) Case 5
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Table 3: Optimization results

f)

Variable Initial design Optimal design
Casel Case 2 Case 3 Case4 Case 5
A 4710 (M) 3,142e-4 3,142e-4 3,142e-4 3,142e-4 3,142e-4 3,142e-4
A, (M) 3,142e-4 0,0 0,0 0,0 0,0 0,0
A, (M) 3,142e-4 0,0 0,0 0,0 0,0 0,0
Ag (M) 3,142e-4 0,0 0,0 0,0 0,0 0,0
A (M) 3,142e-4 3,142e-4 0,0 0,0 1,742e-4 0,0
Ag (M) 3,142e-4 1,624e-4 0,0 0,0 0,0 0,0
Ay (M) 3,142e-4 0,0 0,0 0,0 0,0 0,0
AL (M) 3,142e-4 0,0 0,0 0,0 0,0 0,0
AL, (M) 3,142e-4 0,0 0,0 0,0 0,0 0,0
r, (m) 0,247 - - 0,177 0,177 0,177
r, (m) 0,247 - - 0,177 0,177 0,295
ry (m) 0,247 - - 0,331 0,290 0,295
r, (m) 0,247 - - 0,177 0,290 0,177
h (m) 0,350 - 33,505 - - -
b (m) 0,350 - 41,587 - - -
£ 0,625 0,555 0,558 0,765 0,715 0,710
B () 38,659 310,346 320,983 298,233 290,141 325,447
Object. F. (u.c.) 11281 8931 8831 7429 8191 8071

11
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The figure 8 shows a screen image, during an optimal design session in the developed
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5 CONCLUSIONS

Figure 8: Screen image, during an optimal design session for case 5

An iteration procedure to compute the ultimate strength for general shape reinforced
concrete sections is described.
The optimal design problem of shape and reinforcement for reinforced concrete sections
has been formulated. The design variables are the reinforcing bars areas, geometry variables,
and location of the neutral axis variables. The objective function is the cost of the structural
member per unit length. The considered constraints are: strength constraints, minimal amount
of steel constraints and bound constraints.
A code in Matlab to solve the problem written above has been devel oped.
Severa test examples have been solved so as to prove the accuracy and efficiency of the
techniques.
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