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Abstract
The dimensional character of permeability in anisotropic porous media, that is,
its dimension or dimensional equation, is an information that allows setting the
dimensionless groups that govern the solution of the flow equation in terms of
hydraulic potential patterns. However, employing the dimensional basis {L, M,
T} (length, mass, time), the dimensionless groups containing the anisotropic per-
meability do not behave as independent monomials that rule the solutions. In
this work, the contributions appearing in the literature on the dimensional char-
acter of permeability are discussed and a new approach based on discriminated
and general dimensional analysis is presented. This approach leads to the emer-

gence of a new and accurate dimensionless group, kx
ky

l∗2y

l∗2x
, a ratio of permeabilities

corrected by the squared value of an aspect factor, being l∗xand l∗y two arbitrary
lengths of the domain in the directions that are indicated in their subscripts. Spe-
cific values of this lengths, which we name ‘hidden characteristic lengths’, are
also discussed in this article. To check the validity of this dimensionless group,
numerical simulations of two illustrative 2-D seepage scenarios have been solved.
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1 INTRODUCTION

The importance of the study of permeability in porousmedia is demonstrated by the great effortmade bymany researchers
both in experimental and theoretical fields. In the latter area, they have tried to devise complex formulae for its estimation.
Nevertheless, this effort has not been orientated towards the search for the dimensional character of this parameter, nec-
essary information for finding reliable dimensionless groups that govern the solution of problems related to flow in porous
media, especially in anisotropic scenarios. These groups, when correctly established, lead to the representation of univer-
sal solutions as well as they simplify the study of the sensitivity analysis of the physical and/or geometrical parameters
involved in hydraulic processes.
Apart from Muskat1 and, to a lesser extent, Taylor,2 there are few contributions in the literature on the study of the

dimensional aspects involved in Darcy’s and Forchheimer’s laws. Muskat, who was very knowledgeable regarding the Pi
theorem,3 insisted on justifying these empirical laws as limit cases of a general dependence inwhich the effects of pressure,
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130 ALHAMA et al.

inertial and viscous forces were involved. However, his conclusions are of little use when applied to the deduction of
dimensionless groups in anisotropic scenarios. On the other hand, the application of discriminated dimensional analysis
in its spatial version,4,5 besides leading to the deduction of these laws, justifies two facts. First, the emergence of ‘𝜁Re’ (the
product of the friction factor and Reynolds number) as a dimensionless group, instead of 𝜁 and Re separately; second, the
derivation of new information on the dimensional character of the permeability, even though it does not lead to a correct
characterization of the anisotropic scenarios.
The absence of inertial forces in Darcy’s flow allows removing mass from the dimensional basis. Instead, the ener-

getic potential of the fluid (ξ) is introduced to the basis, justified in the application of the general discrimination concept
of the dimensional theory6 that allows defining the dimensional basis according to the physical phenomenon involved.
Although the new basis, {Lx, Ly, Lz, T, ξ}, does not provide a specific dimensional equation for permeability, it does so for
hydraulic conductivity (the ratio of the permeability and the viscosity), obtaining a new and precise dimensionless group
in anisotropic domains. This new group (which we name discriminated) degenerates into a simpler one by removing the
fluid viscosity, as the numerical value of this parameter does not depend on the spatial direction.
In order to verify these results, we numerically solve the equations for the flow in two anisotropic scenarios of seepage

under dams with and without a sheet pile. We prove that the emergent group (a ratio of permeabilities corrected by a
geometrical shape factor), together with the other discriminated aspect factors, behave as independent monomials that
define the solution of the problem in terms of equipotential distribution. Two characteristic lengths, one for each spatial
direction, must be defined to establish this new dimensionless group, although it can be a problem in some semi-infinite
scenarios. However, the introduction of these hidden lengths as unknowns (whose physical meaning is defined later)
solves this difficulty.
The paper is organized as follows. Sections 2 present the derivation of Darcy’s and Forchheimer’s laws by the Pi theorem.

For the first derivation, based on a commentary of the work of Muskat, classical dimensional analysis has been applied.
The seconduses the spatial discriminated analysis and enablesmore detailed on the dimensional character of permeability.
Section 2 also introduces a new dimensional basis employing general discrimination that leads to a dimensional equation
for hydraulic conductivity and derives accurate dimensionless groups for characterizing anisotropic problems. Section 3
discusses the results obtained and the advantage of using this new group for a better understanding and characterization of
hydrological processes in anisotropic media. In Section 4, the deduced dimensionless group are verified with an example
of a flow net for two anisotropic scenarios. Finally, Section 5 collects the contributions and conclusions of the paper.

2 THEORETICAL FRAMEWORK ANDMETHODS

2.1 Darcy’s law and the Pi theorem

Darcy’s law is written as Q = A𝜅i, with Q the water flow (m3/s), A the cross-section area (m2), and i the hydraulic gra-
dient, dh

dx
, where h is the hydraulic potential or head (energy per unit weight of fluid). Parameter κ is known as hydraulic

conductivity and its unit, deduced from Darcy’s law, is m/s. Muskat,1 who employed the pressure variable (p) instead of
h, expressed this law as

v =
k

𝜇

dp

dx
or Q = Co

A

Lo
(Δp) (1)

He introduced the parameter permeability k (m2) whose relation to conductivity is given by k =
𝜅𝜇

𝜌g
, where g is the

gravitational constant, ρ the fluid density and μ the fluid viscosity. Permeability can be obtained through a formulation in
which the geometrical properties of the soil are involved or, more precisely, by laboratory tests.7–11
In order to deduce Darcyťs law by applying dimensional considerations and citing Bridgman,12 Muskat started with a

relevant list of six variables, {Δp, ρ, μ, d, v, Δs}. In this list, d (m) is a characteristic length (average grain or pore size), v
(m/s) is the Darcy-velocity, and Δs (m) is the length of the porous medium sample. With the dimensional equations of
these variables, [Δp] = ML−1T−2, [𝜌] = ML−3, [d] = L, [v] = LT−1, [𝜇] = ML−1T−1 and [Δs] = L,Muskat determined
the three dimensionless groups that characterize the problem. These are

𝜋1 =
(Δp) 𝜌d2

𝜇2
, 𝜋2 =

v𝜌d

𝜇
, 𝜋3 =

(Δs)

d
(2)
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ALHAMA et al. 131

Based on the assumption (derived from experimental results) of linear dependence between v𝜌d

𝜇
and (Δs)

d
, and using the

Pi theorem, Muskat provided the solution

Δp

Δs
=

𝜇2

𝜌d
F

(
v𝜌d

𝜇

)
(3)

where F is an unknown function. He summarized his conclusions regarding Darcy’s law (exclusively referring to sandy
soils) stating that it was a very reliable approach to what he called the ‘law of flow’. Its validity range is, however, difficult
to establish due to the lack of definition of the parameter ‘d’. Properties such as porosity, connectivity, tortuosity, grain
shape, compaction and cementation degrees are the cause of the unclear definition and uncertainty of this characteristic
length.

2.2 Discrimination and Darcy’s and Forchheimer’s laws

In the theory of dimensional analysis,3,12 discrimination involves (through physical arguments) increasing the quantities
of the dimensional basis. This is a little-known and applied concept even though in its ‘spatial discrimination’ version it has
been known for decades. Its application has led to more accurate solutions in many engineering problems, particularly in
anisotropic media.13–16 Spatial discrimination states that each one of the spatial directions, whatever the geometry used,
is represented by a different quantity (length) in the dimensional basis. Therefore, other quantities in which length is
involved, such as velocity or acceleration, would have different dimensional equations, also according to their spatial
direction. In rectangular geometries, for example, the spatial discriminated basis consists of five magnitudes, {Lx, Ly, Lz,
M, T}. As a consequence of spatial discrimination in anisotropic media, it might be that some of the classical groups such
as Reynolds, Peclet, Rayleigh, etc. neither have null dimension nor represent balances of quantities that counteract in the
domain. In contrast, discriminated dimensionless groups do express the balance of quantities.
In the dimensional study of permeability, the use of the classic basis {L,M, T} attributes to the potential energy h (energy

per unit weight of the fluid) the same dimension as that of width or length of the domain. This causes confusion about the
physical meaning of the dimensional equations and produces imprecise results in the dimensionless groups to which this
basis gives rise. Furthermore, the use of the classical basis in an anisotropic problem involving lengths associated with
different spatial directions might lead to aspect ratios (quotients of these lengths) containing lengths in different spatial
directions. As shown in the illustrations in Section 4, such aspect ratios must be discriminated to rule as independent
groups.
To apply discriminated dimensional analysis to the deduction of Darcy’s law, a discriminated intrinsic dimensional

basis for any geometry is adopted, {M, L→, Lvis, Ln, T}. In this basis, L→ is the spatial dimension in the direction of the
fluid velocity, Lvis the spatial dimension in a normal direction to the fluid velocity, so both directions define the planes of
viscous surfaces, and Ln is the third spatial dimension, which is normal to the other two. The viscous or sliding surface
has the dimensional equation [Svis] = L→Lvis. The relevant list of variables {Δp/L, d, v, 𝜌, μ}, as well as the friction factor
and Reynolds number, have in this basis the dimensional equations shown in Table 1. Figure 1 shows the directions of L→,
Lvis and Ln, as well as Svis, in granular soils.
The direction normal to the viscous surface has been intentionally selected for d, so its value would be related to the

average grain size. It is also important to highlight that the chosen direction for the forces due to the pressure is the one of
the velocities since this is the direction in which the pressure produces its effects on flow. According to these dimensional
equations, the product 𝜁 Re = (

(Δp)d

2L𝜌v2
) (

v𝜌d

𝜇
) =

(Δp)d2

2Lv𝜇
is dimensionless.

Now, if we delete ρ from the list of relevant variables as this is the parameter essentially linked to (negligible) inertial
effects, no other discriminated groups can be formed. The other variables cannot be deleted since v is related to viscous
effects, and L and d, as boundaries of the domain in which the forces are balanced, are linked to inertial, viscous and
pressure effects. Thus, when inertial effects are neglected in respect of those of viscosity and pressure (or sufficiently low
velocities are considered to assume this hypothesis), 𝜁Re is the only discriminated dimensionless group that rules the
solution

𝜋pre−vis = 𝜉Re =
(Δp) d2

2Lv𝜇
∼ 1 (4)
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132 ALHAMA et al.

TABLE 1 Discriminated dimensional equations of the list of variables {Δp/L, d, v, 𝜌, μ} and of the friction factor and Reynolds number, 𝜁
and Re

Variable
Discriminated dimensional
equation

[Δp∕L] =
[

f

S⋅L

]
ML→T

−2

LvisLnL→
= ML−1visL

−1
n T−2

[d] Ln

[v] L→T
−1

[μ] =
[

fvis

Svis
𝜕v

𝜕n

]
M

LvisL→Ln
= ML−1→ L−1

vis
L−1n = MS−1visL

−1
n

[𝜌] =
[

mass

volume

]
M

LvisL→Ln
= ML−1→ L−1

vis
L−1n = MS−1visL

−1
n

[𝜁] =
[
(Δp)d

2L𝜌v2

]
=

ML→L
−1
vis
L−1n T−2Ln

L→ML
−1
→ L−1

vis
L−1n L2→T−2

ML→L
−1
vis
L−1n T−2Ln

L→ML
−1
→ L−1

vis
L−1n L2→T−2

=
Ln

L→

[Re] =
[
v𝜌d

𝜇

]
L→T

−1ML−1→ L−1
vis
L−1n Ln

ML−1→ L−1
vis
LnT−1

=
L→

Ln

F IGURE 1 Directions of L→, Lvis, Ln and Svis, in granular 3-D soils

TABLE 2 Possible pairs of discriminated dimensionless groups for the list of variables {Δp/L, d, v, 𝜌, μ}

First solution 𝜋pre−vis =
(Δp)d2

2Lv𝜇
, 𝜋pre−ine =

Δp

𝜌v2

Second solution 𝜋pre−vis =
(Δp)d2

2Lv𝜇
, 𝜋ine−vis =

𝜋pre−ine

𝜋pre−vis
=

𝜌vd2

2L𝜇

Third solution 𝜋ine−vis =
𝜋pre−ine

𝜋pre−vis
=

𝜌vd2

2L𝜇
,

𝜋pre−ine =
Δp

𝜌v2

The subscript ‘pre-vis’ expresses that pressure and viscous forces per unit of volume are balanced because themonomial
has an order of magnitude of unity. The fluid loses pressure (or pressure energy) as the energy is dissipated due to the
viscous friction. From the former equation, we canwrite v ∼

(Δp)d2

L𝜇
= (

d2

𝜇
)

Δp

L
, a result that is coherent withDarcy’s law.

For a general study that assumes pressure, inertial and viscous forces of the same order of magnitude, the independent
dimensionless groups that emerge from the list of variables {Δp/L, d, v, 𝜌, μ} are two, which can be chosen in three ways
(Table 2).
Adopting any of these pairs, for example the first one, the Pi theorem provides the solution 𝜋pre−vis = F(𝜋pre−ine), or,

(Δp)d2

2Lv𝜇
= F(

Δp

𝜌v2
), with F an unknown function. From this, Darcy’s law can be written in its most general form as

v =
𝑑2

𝜇

(
Δ𝑝

L

)
F

(
Δ𝑝

𝜌v2

)
(5)
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ALHAMA et al. 133

TABLE 3 Discriminated dimensional analysis solutions for Darcyťs and Forchheimerťs laws

Negligible inertial effects (Darcy’s law) 𝜋pre−vis =
(Δp)d2

2Lv𝜇
∼ 1 ⇒ v ∝

d2

𝜇
(
Δp

L
)

Negligible viscous effects (Forchheimer’s law) 𝜋pre−ine =
Δp

𝜌v2
∼ 1 ⇒ v2 ∝

L

𝜌
(
Δp

L
)

The limit cases of this result are: i) negligible inertial effects, ii) negligible viscous effects and, iii) negligible pressure
forces. Case i) removes 𝜌 from the list of variables providing the solution 𝜋pre−vis ∼ 1. Case ii) removes 𝜇, providing the
solution 𝜋pre−ine ∼ 1. Case iii) represents a kind of problem of a different nature related to the existence of a boundary
layer that does not have to be discussed here, as pressure forces are essential in the problems of interest in this study.
Table 3 summarizes the solutions of the two first cases.

2.3 The dimensional character of permeability and the emergence of the dimensionless
group 𝐤𝐱

𝐤𝐲

𝐥∗𝟐𝐲

𝐥∗𝟐𝐱
in anisotropic media

In its original definition of Darcyťs law, v = 𝜅
Δh

L
or v = Co

Δp

Δx
, constants 𝜅 and Co collect influences of the fluid and

the porous media, which is the reason why its dimensions cannot be assigned to a specific property. Muskat went back
to dimensional arguments and argued that the equation v = C(

d2

𝜇
)(
dp

dx
) should be the starting point since it separates

the influence of viscosity from the influence of the characteristic length, with C being a constant in which the rest of the
properties of the porous medium are collected.
The use of either the classical dimensional analysis (with [Δp

Δx
] =ML−2T−2, [d] = L, [v] = LT−1, and [μ] =ML−1T−1) or

discrimination (Table 1), assigns C a dimensionless character. This means that properties such as tortuosity or angularity
compensate each other dimensionally. The dimension of these physical characteristics of the porousmedia, not included in
this research, are expected to be associated with the aspect ratio (of dimensions L_n/L_vis or its inverse), what we assume
as a reasonable hypothesis. If not, the deduction of the dimensionless character of this constant might be supported by
erroneous arguments
Discriminated dimensional analysis can also be applied to the studies of Taylor2 based on the flow through circular

paths of different section. Doing this, the following dimensional equations are obtained:

[
Δ𝑝

L

]
= ML−1vi L

−1
n T−2, [do] = Ln (duct diameter) , [v] = L→T

−1, and [𝜇] = MS−1visLnT
−1

Taylor set a similitude between Poiseuille’s and Darcy’s laws, 𝐯 ∝
d2o

𝜇
(
Δp

L
) and 𝐯 = (

k

𝜇
) (

Δp

L
) respectively, arguing that

[k] = L2n, a result that agrees with Muskat’s. Yet, to conclude, Taylor admitted that ‘probably there are other factors related
to the shape effects of the pore section and other constants which should be considered to extrapolate the solution of his model
to what occurs in the real model.’
The paradox in this historical approach to the dimensional character of permeability is that the conclusions reached are

not coherent when trying to apply them to the search of the dimensionless groups that govern the anisotropic domains.
Indeed, simplifying the problem to a 2-D rectangular domain, the dimensions of kx and ky should be [kx] = L2y and

[ky] = L2x , thus the dimension of the permeability ratio is [
kx

ky
] =

L2y

L2x
. According to this, the dimensionless monomial of

anisotropic scenarios would present the form kx

ky

l∗2x

l∗2y
, where l∗x and l∗y are whatever two lengths that define the scenario

in the directions indicated by the subscript. As presented later, the dimensionless group that governs the problem is not
kx

ky

l∗2x

l∗2y
, but kx

ky

l∗2y

l∗2x
.

Based on general discrimination arguments, a newway is proposed for obtaining the dimensionless groups that involves
the permeability. Although this way, which prevents the energy potential from having the dimensions of a length, does
not give the exact dimension for permeability, it leads to interesting results in the search for the dimensionless groups that
characterize the flow in anisotropic media. In the most general conception,17 discrimination allows introducing the fluid
energetic potential variable, h, in the dimensional basis instead of mass, which can be removed since the inertial effects
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134 ALHAMA et al.

TABLE 4 Dimensional equation and physical meaning of the constants involved in Darcy’s law

Parameter
Energetic
potential Discriminated basis

Dimensional
equation Physical meaning

𝜅 =
k𝜌g

𝜇
=

v
dh

dx

h {L→, Lvis, Ln, T, ξ} [𝜅] = T−1ξ−1 velocity that causes a unity gradient of h

k𝜌

𝜇
=

𝜅

g
=

v
d(gh)

dx

gh {L→, Lvis, Ln, T, Θ} [ 𝜅
g
] = T−1Θ−1 velocity that causes a unity gradient of gh

k

𝜇
=

𝜅

𝜌g
=

v
d(𝜌gh)

dx

ρgh {L→, Lvis, Ln, T, Φ} [ 𝜅
𝜌g
] = T−1Φ−1 velocity that causes a unity gradient of ρgh

are negligible. Let us name ξ to the dimension of the potential quantity (either p or h) and define a new dimensional basis
in the form {ξ, Lx, Ly, Lz, T}. With this, Darcy’s law, v = (

k

𝜇
) (

Δp

L
) or v = Co (

Δp

L
), permits assigning to ( k

𝜇ρg
) and Co

the same dimensional equation, [ k

𝜇ρg
] = [Co] = L2 T−1𝜉−1. Thus, the dimensions of these parameters in x and y spatial

directions are
[
k

𝜇ρg

]
x

=

[
kx

ρg(𝜇)x

]
= [Co]x =

L2xT
−1

𝜉

[
k

𝜇ρg

]
y

=

[
ky

ρg(𝜇)y

]
= [Co]y =

L2yT
−1

𝜉

This allows writing [
kx

ρg(𝜇)x
]∕[

ky

ρg(𝜇)y
] =

L2x

L2y
, an essential result, as it implies that dimensionless groups can be found by

multiplying [ kx

ρg(𝜇)x
]∕[

ky

ρg(𝜇)y
] by the square of an appropriate aspect ratio (

l∗y

l∗x
) between the characteristic lengths involved

in the problem. Thus, this new discriminated group has the form 𝜋 =
kx𝜇y

ky𝜇x

l∗2y

l∗2x
and, as numerically 𝜇x = 𝜇y , such group

simplifies to

𝜋 =
kx

l∗2x

l∗2y

ky
(6)

This result, different from that obtained by the previous historical approach, might as well have been obtained with the
use of the energy potential per unit mass or the energy potential per unit volume, gh and ρgh, respectively. The bases and
the dimensional equations of the proportionality coefficients, as well as their physical meaning for this discrimination,
are shown in Table 4.
Some authors use an alternative way to investigate the dimensionless groups that govern a given problem. They intro-

duce the dimensionless variables in the governing equation tomake it dimensionless and deduce the dimensionless groups
from the resulting equation (see references in the next section). Introducing discrimination into this procedure,6 the pre-
viously obtained result is confirmed. Indeed, steady-state flow in porousmedia is governed by kx

𝜇x

𝜕2p

𝜕x2
+

ky

𝜇y

𝜕2p

𝜕y2
= 0, which

come from Darcy’s law and mass conservation. Introducing the dimensionless variables p′ = p

Δpo
, x′ =

x

l∗x
and y′ = y

l∗y
,

with Δpo, l∗x and l∗y suitable references, this equation is written in its dimensionless form

[
kx𝜇y

ky𝜇x

l∗2y

l∗2x

]
𝜕2p′

𝜕x′2
+

𝜕2p′

𝜕y′2
= 0 (7)
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ALHAMA et al. 135

The only group governing the equation is the coefficient of 𝜕2p′

𝜕x′2
, that is 𝜋 =

kx𝜇y

ky𝜇x

l∗2y

l∗2x
or, deleting the viscosity, 𝜋 =

kx

ky

l∗2y

l∗2x
. An identical result to that obtained using the energy potential in the discriminated dimensional basis, equation (6).

3 DISCUSSION

Historically, in literature referring to Darcy’s law and its applications to different hydrogeological problems, permeabil-
ity dimensions have always been accepted as a squared length (L2), either for isotropic or anisotropic soils. Therefore,
its unit in the International System is m2. Consequently, the ratio kx/ky is commonly considered as dimensionless. The
same occurs for the hydraulic conductivity, whose dimension and unit is LT−1 andm/s, respectively. Without further con-
siderations to its dimensional character, permeability values have been obtained either through formulations in which
geometrical properties of the soil are involved or carrying out laboratory tests. Developed formulae for permeability cal-
culation are given in many former works, for example those of Kozeny8 and Wyllie and Rose.18 The latter, which applied
to porous media with grains of constant diameter, uses dimensional analysis arguments and includes a modification for
soils with different grain sizes by introducing a shape factor. However, many authors have demonstrated that the different
theoretical and even semi-empirical formulations proposed for the calculation of the permeability fail to a good degree
Loudon.19 In, A general theory has not been found to date despite the countless efforts of some authors, such as Åberg20,21
and Scheidegger.22 Åberg used a simple stochastic model to perform precise calculations of porosity, bulk density and
permeability of granular soils depending on the size of grain, its shape, degree of densification and other physical character-
istics. Later, Odong23 provided empirical formulae for permeability based on grain-size analysis. Finally, Shin9 introduced
the tortuosity in the determination ofKozenyhydraulic diameter, providing formulations that have beenused to date as the
most accurate when applied to porous media with regular grain size. According to Shin, the ‘tortuous hydraulic diameter’
is the most important characteristic parameter governing flow aspects. Introducing this variable, the difference between
permeability values calculated by numerical computation and those obtained by experimentation decreases up to 1.67%.
As far as we have investigated the dimensional aspects of permeability, the new emerging group brought by general dis-

crimination arguments that add the dimension of the energetic potential to the base, 𝜋 =
kx

ky

l∗2y

l∗2x
, constitutes an advance

for the understanding and dimensionless characterization of hydrological processes in anisotropic media. On the one
hand, two of the classic monomials of many problems, namely the quotient of hydraulic conductivities ( kx

ky
) and the ratio

of two suitably chosen lengths (
l∗y

l∗x
), appear together in a single group. This significantly reduces the set of universal curves

or abaci that represent the universal solution of a flow problem in porousmedia. On the other hand, discrimination forces
to select the geometric shape factors, or quotients between pairs of lengths that define the geometry of the scenario, so
that the two lengths involved in the relationship have different spatial direction. Undoubtedly, these results set a better
and more consistent way to represent the solution of an anisotropic problem in porous media. As seen in the previous

section, the group kx

ky

l∗2y

l∗2x
can be also derived from the governing equation kx

𝜇x

𝜕2p

𝜕x2
+

ky

𝜇y

𝜕2p

𝜕y2
= 0 and has the meaning of a

balance between the two addends of the equation.
Assuming that the dimensionless variables are chosen in such a way that they and their spatial derivatives can be

averaged to the unit in the global scenario (a reasonable hypothesis), we can consider that the order of magnitude of
the value of the monomials, which are defined by the ratio of coefficients of the simplified equation that only contains
physical and geometrical parameters, is unity. This is an inherent property of the groups deduced under the protocol
of nondimensionalization.6 Higher (or zero value) orders of magnitude would make one of the terms of the equation
predominant over another, allowing neglecting the influence of the monomial in the solution of the problem, which is
the same as deleting the associated non-influential term in the governing equation. These arguments also justify that, for
correctly deduced dimensionless groups, a range of values that covers the order of magnitude of unity is representative of
all practical cases.
The studies that make direct use of the group obtained in the previous section from the general discrimination are

scarce. It is worthmentioning the work of Madanayaka and Sivakugan24 for the study of two-dimensional (confined flow)
seepage axisymmetric cofferdam problems using the method of fragments.25 Using classic arguments based on merely
dimensional analysis and from the list of relevant variables of the problem, these authors choose two dimensionless groups
consistent with those obtained in the previous section. This non-arbitrary choice allowed them to represent the solutions
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136 ALHAMA et al.

of these problems in a universal way. In a very similar work, Madanayaka and Sivakugan26 incorporated anisotropy in the
hydraulic conductivity to provide efficient solutions for the flow rate and exit gradient of confined seepage problems.

Other works that use dimensionless groups of type kx

ky

l∗2y

l∗2x
in complex anisotropic (flow and transport) problems deduce

them from the discriminated non-dimensionalization of the governing equations, which is the same protocol as that
described at the end of Section 2. Many of these scenarios refer to benchmark flow and transport problems in hydrol-
ogy. For example, Manteca et al.27 studied an intrusion scenario with a salt flat in which four complex dimensionless

groups emerged, one of which had the form kx

ky

l∗2y

l∗2x
. They verified the correct work of these groups by numerical sim-

ulations. Moreover, they also demonstrated that, although dimensionless groups can also be obtained by the classical
non-dimensionalization technique, these lead to wrong results. Later, Manteca et al.,28 following the same protocol,
deduced the dimensionless groups of salt intrusion in Henry (anisotropic) problem. In this work, they suggested bet-
ter references for benchmarking in order to obtain patterns that cover the whole domain, and not just a small region.
Alhama et al.29 and Cánovas et al. repeated the procedure for considering the length of the characteristic cell in the 2D

anisotropic Bènard problem. In these two problems, it was also verified that the group kx

ky

l∗2y

l∗2x
behaves as an independent

dimensionlessmonomial. In addition, Alhama et al.29 explained that the groups deduced in their work cannot be obtained
with the classical non-dimensionalization technique, while Cánovas et al.30 approached the problem introducing a sub-
domain instead of the whole scenario, showing a deep understanding of the phenomenon. Finally, the anisotropic Yusa

problem, in which, again, kx
ky

l∗2y

l∗2x
is one of the dimensionless groups that rule the solutions, was studied by Cánovas et al.13

It is interesting to note, first, that the characteristic lengths involved in the monomial kx
ky

l∗2y

l∗2x
have no other requirement

for their choice than that of spatial orientation. If there are several lengths with the same spatial orientation within the
scenario,27 the one that best represents the curves or abaci of the universal solution of the problem can be selected. Even if
there are no finite lengths in any of the directions, the introduction of an unknown length in the nondimensionalization

protocol makes the group kx

ky

l∗2y

l∗2x
emerge. Thus, in Bènard problem,30 since the only length is the thickness of the porous

medium confined between two plates of sufficient large extension, it is not possible to construct monomials of the form
kx

ky

l∗2y

l∗2x
, for which two characteristic lengths in perpendicular directions are required. However, as the horizontal extension

of the plates is irrelevant for the physical phenomena involved in a typical cell, the introduction of an unknown length
corresponding to the width of the cell makes it possible to deduce such monomials and represent the solution of the
unknown length using the Pi theorem.
The most important drawback that limits the dimensional characterization and, particularly, the use of the proposed

dimensionless group, is the lack of regularity in the geometry of the domain. Scenarios with sloping or curved borders

make it impossible to employ the group kx

ky

l∗2y

l∗2x
. However, since most of the standard problems choose scenarios of simple

geometry (even if they introduce a large number of parameters or physical properties of the medium), the utility of this
monomial is essential to obtain the least number of dimensionless groups that characterize and simplify the study of these
scenarios.

4 VERIFICATION OF THE DISCRIMINATED DIMENSIONAL GROUPS INVOLVING
THE PERMEABILITY

The aimof this section is to verify the influence of the group𝜋 =
kx

l∗2x

l∗2y

ky
(or alternatively the group 𝜅x

l∗2x

l∗2y

𝜅y
) in the patterns of

flow in anisotropic porousmedia.Wewill check that for the same value of the group,whatever the values of the parameters
involved, the solution patterns (flow net of iso-potential and streamlines) do not change. Two illustrative applications for
water flow under gravity dams, with and without a sheet pile at the end, are presented. Figure 2 shows the drawing of the

problems. To enhance the effect of the monomial kx
ky

l∗2y

l∗2x
, some simplifications are assumed: horizontal lengths upstream

and downstream the dam are large enough not to influence the results, and the dam foundation and sheet pileťs thickness
have negligible values. The value of parameters e, h2 and Δh is e = h2 = 0 and Δh = 10.
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ALHAMA et al. 137

F IGURE 2 Physical scheme and nomenclature of the problem

TABLE 5 Scenario data of application 1

κx κy wd H a b
Case I 0.0001 0.00008 10 20 200 200
Case II 0.0001 0.00005 10 15.81 200 200
Case III 0.0001 0.0001 8.94 20 178.89 178.89

Position (dimensionless)
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Equipotential
lines

Stream
lines

Dam
x'= -1.00 x'= 1.00

F IGURE 3 Flow net (solution pattern) for application 1. Cases I, II and III

The discriminated groups are chosen in the form

𝜋𝑘 =
𝑘x
𝑘y

H2

w𝑑
2
, 𝜋a =

a

wd
, 𝜋b =

a

b
, 𝜋e =

e

H
, 𝜋ds =

ds
H

For both applications, πa, πb and πe have the same values: 20, 1 and 0, respectively. The values of πds are 0 and 0.25 for
the first and second scenario, respectively. The numerical solution is carried out by the network method31–33 and the free
software Ngspice.34
For the first application (πk = 5, πa = 20, πb = 1 and πe = 0), three cases with different physical and geometrical

parameters are chosen (Table 5). Figure 3 shows the solution of the flow net for the three cases. Iso-potential lines go from
the upper side of the scenario to the lower side, while streamlines (that displays the fluid particle movement) go from
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138 ALHAMA et al.

TABLE 6 Scenario data of application 2

κx κy wd H a b e ds Δh h2
Case I 0.0001 0.00008 10 20 200 200 0 5 10 0
Case II 0.0001 0.00005 10 15.81 200 200 0 3.95 10 0
Case III 0.0001 0.0001 8.94 20 178.89 178.89 0 5 10 0

Position (dimensionless)

062042022002081061

D
ep

th
 (

d
im

en
si

o
n

le
ss

)

0

2

4

6

8

10

12

14

16

18

x'=-0.10x'=-0.15x'=-0.20x'=-0.25 x'= 0.10 x'= 0.15 x'= 0.20

y'= 1.00

y'= 0.25

y'= 0.50

y'= 0.75

x'= 0.25 x'= 1.00x'= -1.00
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F IGURE 4 Flow net (solution pattern) for application 2. Cases I, II and III

upstream to downstream. As expected, all cases have the same pattern when represented in a normalized geometrical
scale given by dimensionless coordinates x′ = x

a+
wd
2

and y′ = y

H
.

The second application introduces a fourth monomial, 𝜋ds =
ds

H
,whose value is 0.25. Again, three cases are simulated,

the values of the other monomials (πk, πa, πb and πe) are the same as in the first application. Table 6 shows the data of
these cases. The solution pattern for the three cases is shown in Figure 4, again a coherent solution when providing the
same normalized geometrical scale.

5 FINAL COMMENTS AND CONCLUSION

There are two overall contributions of this work, where the initial objective is the search for a dimensional equation for
permeability (k) that allows obtaining the accurate dimensionless groups that govern the solution of problems of flow
through porous media (particularly in anisotropic scenarios).
First, an accurate dimensional equation for permeability is obtained by the application of the spatially discriminated

dimensional analysis to Darcy’s and Forchheimer’s laws expressed in terms of pressure. However, the emerging discrim-
inated dimensionless group in anisotropic porous media, a ratio of permeabilities corrected by the squared value of a
domain aspect factor, does not behave as the independent group that governs the solutions for flow. During this pro-
cess, it is evidently difficult to obtain the correct dimensional equation due to the complexity of the physical mechanism
involved in this parameter (grain size, porosity, connectivity, tortuosity, etc.). Working with the energetic potential instead
of pressure, which has the same dimension as any length in the problem, also fails to provide accurate results.
Second, the problem is approached with a discriminated dimensional general basis, which specifically contains the

dimension of the quantity h ‘energetic potential of the fluid’. In this basis, although the dimensional equation for perme-
ability is not found, the equation for the permeability/viscosity ratio is obtained. This result allows deducing an accurate
and new dimensionless group: a permeability ratio corrected by the squared value of the domain aspect ratio, but this time
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ALHAMA et al. 139

the aspect ratio is the inverse of that of the first approach. The new group, also derived from the dimensionless form of
the governing equation, does behave like a monomial that rule the problem.
The proposed group has been used and verified by different authors in recent works. To reinforce the verification, a

numerical simulation in 2-D seepage anisotropic scenarios is carried out, checking that the stream function and potential
isoline patterns of flow are the same when keeping constant the values of the groups. The emergence of the new group

(𝜋 =
kx

l∗2x

l∗2y

ky
) allows obtaining universal curves which characterize anisotropic scenarios of fluid flow in porous media in

future work. This research is open to future research on the dimensional character of other physical characteristics of the
macroscopic porous medium such as tortuosity, angularity, connectivity or grain shape.

NOMENCLATURE
A cross section (m2)
a upstream horizontal length (m)
b downstream horizontal length (m)
C dimensionless constant
Co dimensional constant in Darcy’s law, equation (1), (m⋅kg1⋅s1)
d mean size of the pore or grain (m), also derivative symbol
do duct diameter (m)
ds sheet pile length (m)
e foundation length (m)
f force (N)
F arbitrary functions involving the monomials
g gravitational acceleration (m⋅s−2)
H layer thickness (m)
h hydraulic potential or head (J⋅N−1 or m)
h1 upstream hydraulic potential (m)
h2 downstream hydraulic potential (m)
i hydraulic gradient (dimensionless)
k hydraulic permeability or, simple, permeability (m2)
L dimension of the quantity length, also the length of the domain (m)

L→ spatial dimension in the direction of the fluid velocity (m)
Ln spatial dimension normal to the L→ and Lvis (m)
Lo length of the Darcy’s domain (m)
Lvis spatial dimension in a normal direction to L→ and parallel to viscous surface (m)
l* arbitrary length (m)
M dimension of the quantity mass (kg)
p pressure (Pa)
p’ dimensionless pressure
Q water flow (m3⋅s−1)
Re Reynolds number (dimensionless)
S surface (m2)
T dimension of the quantity time (s)
v Darcy-velocity (m⋅s−1)
v Darcy-velocity vector (m⋅s−1)

wd dam width (m)
x, y spatial rectangular coordinates (m)
x’,y’ dimensionless spatial rectangular coordinates
Δh difference of hydraulic potential (m), Δh = h1 – h2

Δpo reference pressure (Pa)
Δs length of the sample (m)

∂ partial derivative
𝜁 friction factor (dimensionless)
Θ dimension of the quantity gh, the energetic hydraulic potential referred to mass, (J by mass unit)
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140 ALHAMA et al.

κ hydraulic conductivity or effective permeability (m⋅s−1)
μ dynamic viscosity (kg⋅m−1⋅s−1)
ξ dimension of the quantity h, the energetic potential of the fluid, (J by weight unit)

𝜋1, 𝜋2. . .𝜋a, 𝜋b. . . 𝜋a, 𝜋b. . .dimensionless groups
ρ density (kg⋅m−3)
Φ dimension of the quantity, ρgh the energetic hydraulic potential referred to volume, (J by volume unit)
Δ finite increment
∼ denotes order of magnitude
∝ proportional to
[] used to express the dimension of a quantity
{} used to list the relevant variables of a problem
{} used to set the dimensional basis

Subscripts
ine refers to inertial effects
pre refers to pressure effects
vis refers to viscous effects

x, y, z refer to spatial rectangular direction
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