Journal of Software Engineering for Robotics

Diego ALONSO!

V’CMM: a 3-View Component Meta-Model for
Model-Driven Robotic Software Development

Cristina VICENTE-CHICOTE! Francisco ORTIZ! Juan PASTOR!

1 Divisién de Sistemas e Ingenieria Electrénica (DSIE), Universidad Politécnica de Cartagena, Cartagena 30202 (SPAIN)

Abstract—There are many voices in the robotics community demanding a qualitative improvement in the robotics software
development process and tools, in order to increase product flexibility, adaptability, and overall quality, while reducing its cost and
time-to-market. This article describes a first step towards a model-driven approach to robotics software development, based on the
definition of highly reusable and platform-independent component-based design models. The proposed approach revolves around the
V3CMM modeling language and the definition of different model transformations for deriving both special purpose models (e.g., models
suited for analysis or simulation purposes) and lower-level design models, in which platform-specific and application-dependent details
can be progressively included. The article describes the tool chain implemented to support the different stages of the proposed model-
driven process, including (1) the definition of component-based architectural models, defined using the V3CMM platform-independent
modeling language, (2) the automatic transformation of the V3CMM component-based models into equivalent object-oriented designs,
described in terms of the UML standard, and (3) the transformation of the UML models into the Ada 2005 object-oriented programming
language. In order to show the feasibility and the benefits of the proposal, a simple (yet complete) case study regarding the design of
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a Cartesian robot is presented.

Index Terms—Robotics Software, Model-Driven Engineering, Component-Based Software Development, Model Reuse.

1 INTRODUCTION AND MOTIVATION

OBOTS are software intensive systems, that is, systems
Rin which “software contributes essential influences to
the design, construction, deployment, and evolution of the
system as a whole” [1]. Nowadays, the number and complexity
of robotic systems is rapidly growing, while pressures are
mounting to increase their flexibility, adaptability, and overall
quality, and to reduce their cost and time-to-market. In
order to meet this growing demand, new robotics software
development methods and tools are needed [2]. Being aware
of this, the robotics community keeps continuous track of
the advances achieved in Software Engineering, in order to
exploit the benefits that the new trends in this field might
bring to robotic software development. In this vein, it is worth
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reminding that, in the last decade, robotics software has been
strongly influenced by both the Object-Oriented (QO) and the
Component-Based (CB) software development paradigms.
Quite recently, the Model-Driven Engineering (MDE)
paradigm [3], [4] is also starting to catch the attention of the
robotics community [5], [2], mainly due to the very promising
results it has already achieved in other application domains
(e.g., automotive, avionics, or consumer electronics, among
many others) in terms of improved levels of reuse, higher
software quality, and shorter product time-to-market [6].
MDE enables designers to focus on domain concepts,
relegating implementation details to a secondary level. In
MDE, models are the primary artifacts leading the whole
software development process [8]. Models [9] are simplified
representations of reality in which the superfluous details
are abstracted away, thus easing the understanding and
communication of the underlying reality. Models are defined
in terms of formal meta-models, which bring together the
concepts relevant to a particular application domain, and the
syntactic relationships existing among these concepts (i.e.,
each meta-model defines the abstract syntax of a modeling
language). Model transformations [10] are also key artifacts in
MDE, since they define how models shall be interpreted and
translated into other artifacts. Both model-to-model (M2M)
and model-to-text (M2T) transformations provide software
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developers with formal model compilers, which allow them to
automatically translate models from one modeling language to
another (modeling or programming) language.

It is worth noting that although MDE provides a formal
foundation for improving the whole software development
process [8], it does not prescribe how to select or design
the most appropriate modeling languages and transformation
paths. Thus, in order to exploit all the benefits that MDE
may bring to robotics, there is an urgent need to define a
MDE robotics-specific software development process, and to
build a set of reliable MDE tools (including robotics-specific
modeling languages and transformations) that fully support it.
In this vein, it is worth highlighting some initiatives, like the
one described in [7], aimed at discovering and organizing a
stable set of concepts related to robotics software design.

MDE owes a great part of its success to the Model-
Driven Architecture (MDA) [11] initiative, launched by the
Object Management Group (OMG) in 2001. As shown in
Fig. 1, models in MDA can be classified into the following
levels: Computation Independent Models (CIM), Platform-
Independent Models (PIM), and Platform-Specific Models
(PSM). CIMs (also known as domain models) specify the
high-level system requirements, without mentioning or taking
into account any design or implementation decision. The
primary users of CIM languages are domain experts (rather
than software engineers or application developers) and, as a
consequence, CIMs are commonly specified using Domain-
Specific Languages (DSL) [12]. PIMs are defined at a lower
level of abstraction than CIMs, providing a high-level system
design solution in a platform-independent way. PSMs are the
lowest level models and, thus, the closest to the final system
implementation. The concept of “platform” is quite vaguely
defined in MDA, making it difficult to draw a clear line
between PIMs and PSMs. For instance, the OMG standard
Common Object Request Broker Architecture (CORBA), is
considered both as a low-level PIM and as a high-level PSM
in different OMG specifications.

Nowadays, most robotics software is either hand-coded
(generating the glue-logic needed to bring together the
functionality provided by different robotics-specific libraries),
or developed on top of one of the existing robotic
frameworks [2]. Although frameworks are excellent examples
of code reuse and provide a higher level of abstraction than
most programming languages, they depend on an specific
platform (or middleware) [13]. This dependency makes design
reuse across different frameworks almost impossible. Besides,
current frameworks can not be considered to be model-driven,
since they have no meta-model foundation supporting them.
The work described in this article proposes a qualitative
improvement in the way robotic software is developed,
overcoming many of the current limitations of CB frameworks,
both in level of abstraction and in tool support by designing
a complete MDE solution.

Although, from the point of view of robotic software
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Figure 1. MDA in the context of robotic software

development.

developers, having a language defined at the CIM level
would be the most desirable scenario, in this article the
authors describe a PIM language, developed as a first step
towards a complete MDA process. In this vein, the authors
propose the 3-View Component Meta-Model (V3CMM),
as an expressive yet simple platform-independent modeling
language for component-based application design. As further
discussed in Section 3, the main design drivers behind
V3CMM are simplicity, economy of concepts, and component
reuse. V3CMM is aimed at allowing developers (1) to model
high-level reusable components, including both their structural
and behavioral facets (modeling for reuse), (2) to build
complex platform-independent designs up from the previous
components (modeling by reuse), and (3) to automatically
translate these high-level designs into lower level models
(e.g., into different CB or OO designs, bounded or not to a
specific development framework, or into analysis models), or
into different ad-hoc implementations, isolating functionality
from platform details. V3CMM is based on the previous
experiences [14] of the Division of Electronics Engineering
and Systems (DSIE) Research Group, and is supported by a
tool chain developed using the free and open-source Eclipse
platform. This tool chain supports the MDE process previously
outlined, allowing designers to define platform-independent
CB models (both for and by reuse), and to generate lower
level OO models and code from them (in UML and in Ada
2005, respectively).

This article is structured in seven sections. The following
section briefly reviews the state-of-the-art in robotics software
development, and explains how the proposed MDE approach
can help overcoming some of its current limitations.
Section 3 describes the main characteristics and design drivers



behind V3CMM, while Section 4 presents the two model
transformations implemented to support one of the possible
paths to generate code from V2CMM models. The approach is
illustrated in Section 5, where the proposed MDE development
approach (V3CMM and the model transformations) is applied
for generating the skeleton of the control software of a
Cartesian robot from the structural and behavioral description
of its architecture. In order to show the use of the tool chain,
this section is written from the point of view of the application
developer. Section 6 discusses the most controversial aspects
of the proposal, such as why not using the Unified Modeling
Language (UML) [15] or the System Modeling Language
(SysML) [16] or why V3CMM provides just three views,
among others. Section 7 summarizes the lessons learnt from
our experience with V3CMM and draws the conclusions and
the future research lines.

2 LIMITATIONS OF CURRENT APPROACHES

There is a well established tradition of applying Component
Based Software Development (CBSD) [17] principles in the
robotics community, which has resulted in the appearance
of several toolkits and frameworks for developing robotic
applications. Particularly, frameworks are excellent examples
of the application of good software engineering practices [18].
They are semi-complete applications that provide designers
(1) with an architecture tailored to the specific requirements
of the domain, (2) with more advanced reuse and extension
mechanisms than those provided by libraries, (3) with
a set of predefined components providing the typical
functionality of the domain, and (4) with the run-time
support for executing the resulting applications. The extension
mechanisms, which are based on inheritance or composition,
define the rules for both designing new components and for
integrating them in the framework architecture. Some of these
frameworks rely on a middleware technology for achieving
a certain degree of platform independence, for minimizing
component coupling, and for easing component distribution.
An actualized state-of-the-art with references to the most
important robotic frameworks and toolkits, like OROCOS [19],
ORCAZ2 [20], Player/Stage [21], SmartSoft [2], etc. can be
found in the RoSta project (Robot Standards and Reference
architecture) [22].

The main drawback of frameworks is that, despite being CB
in their conception, designers develop, integrate and connect
components using OO technology. That is, the problem is that
0O is used as both a design and implementation language.
There is no problem in using OO as the implementation
language as, in fact, most of the existing robotic frameworks
are implemented on top of them (e.g., C++ or Java).
The problem comes from the fact that CB designs require
more (or rather different) abstractions and tool support
than OO technology can offer. For instance, the lack of
explicit “required” interfaces makes it impossible to compilers

assure that the components are correctly composed (linked).
Also, component interaction protocols are not explicitly
defined when using an OO language. Thus, we think
that OO languages must not be used for expressing CB
concepts, although OO technology can be perfectly used for
implementing them. That is, components have to be designed
as architectural units, not as object [23].

Many frameworks enable designers to model their CB
application structure, but most of them impose the overall
internal behavior of their components (e.g. standardized
interaction and configuration ports, a common behavior that
must be followed by all components, etc.), and therefore
they lack of formal mechanisms to specify the internal
component behavior. In this way, robotic specific components
are polluted with platform-specific details, making it almost
impossible to reuse the aforementioned components among
frameworks [13]. Some frameworks rely on middleware
technologies to achieve a certain degree of platform
independence and to ease component deployment (both
for adding or removing components at run-time and for
distributing them). But this flexibility comes with the price
of a more complicated configuration process. Besides, the
middleware publish/subscribe mechanism does not assure
that the components are correctly composed or that all
required interfaces are provided by any component either,
since middleware were designed for easing the communication
among objects (and not components). And everything is
furthermore aggravated by the fact that robotics comprises
heterogeneous hardware (e.g. sensors and actuators) that need
specific software drivers, which contributes to increase the
platform-specific part added by frameworks [13]. The main
conclusion that can be drawn is that one framework does not
fit all robotics problems, and that it is mandatory to clearly
separate and isolate the functionality that is specific to the
robotics domain from the details of the execution platform
and from the application specific requirements. This separation
shall provide users with a greater control over what the system
is really doing (as frameworks suffer from the “inversion of
control” problem), as well as over important non-functional
properties (e.g. real-time issues), which are normally imposed
by the chosen framework.

In this article the authors propose the use of MDE as a
way of achieving the aforementioned separation of concerns.
Up to date, there are not many initiatives for applying MDE
principles to robotic software development. One of such
initiatives is the work related to the Sony Aibo robot presented
in [24]. In this work, the authors propose a modeling language
for expressing the behavior of the robot using a a kind of
sequential script composed of blocks of Aibo actions, which
are linked to joins and sensors of the Aibo robot model.
This model is then transformed into the Universal Real-time
Behavior Interface (URBI) language in order to finally obtain
the code for the robot. The scope of this work is limited
to the Aibo robot or, at most, to any other robot compliant



with URBI. Another initiative, described in [25], revolves
around the use of the Java Application Building Center ABC)
for developing robot control applications. This approach is
illustrated on a Lego Mindstorm robot. Although jABC
provides a number of early error detection mechanisms, such
as animation, analysis, simulation, and formal verification, it
only generates Java code and, thus, its application is very
limited.

Finally, one of the most interesting initiatives is the one
described in [2]. Although their approach is very similar to the
one described in this article, there are two main differences that
should be noted: (1) they only target the SmartSoft framework,
while V3CMM does not impose any platform nor application
specific requirements, and (2) they rely on the use of UML for
modeling SmartSoft components, while V3CMM is directly
defined using the OMG’s Meta-Object Facility (MOF) [26]. In
addition, it must be highlighted that V3CMM does not impose
any restriction on the component design, such as the kind of
ports that must appear, common interfaces and operations, or
a common behavior for all components, to mention a few.
We think that these kind of details are application specific
and, thus, they must be added by the designer. We realize that
this can result in a very tedious and error-prone work, but
which can be solved by developing a model transformations
that super-imposes the required common characteristics. The
flexibility of the MDE approach for doing this kind of things
is immense.

The current state of the application of MDE to robotic
software development contrasts with what happens in other
similar domains, where big efforts are being carried out in this
line. For instance, the ArtistDesign Network of Excellence on
Embedded Systems Design [27] and the OpenEmbeDD [28]
project address highly relevant topics regarding real-time
and embedded systems, while the automotive industry has
standardized AUTOSAR [29] for easing the development of
software for vehicles.

3 THE 3-VIEW COMPONENT META-MODEL

This section briefly describes the main characteristics and
design drivers of the 3-View Component Meta-Model
(V3CMM). V3CMM is an extended and improved version
of a previous work [30], aiming to provide designers
with an expressive yet simple CB modeling language for
general-purpose (i.e., domain-independent) and platform-
independent architectural design. In this line, it is worth
noting that V3CMM is currently being used by the DSIE
group in other domains, like Wireless Sensors and Actuators
Networks (WSAN) [31] or Home Automation Systems [32].
V3CMM provides the kind of components we need and
an absolute control over their semantics. This control is
needed in order to ease further model transformation steps
and to guarantee the properties of the final applications.
V3CMM components have very simple semantics, aimed to

ease the derivation of analyzable models and code. Simplicity,
economy of concepts and component reuse are the main design
drivers behind V3CMM.

Simplicity and economy of concepts. This first driver is
achieved by using a reduced and focused set of concepts.
V3CMM includes the minimum set of elements for modeling
highly reusable CB applications, and dispenses with all those
which our experience has shown to be unnecessary [14].
V3CMM does not “reinvent the wheel”, but instead adopts
and adapts some of the concepts included in UML, which
also contributes to ease its use by the software community.
With these objectives in mind, V3CMM comprises three
complementary views (see Fig. 2), namely: (1) a structural
view for describing the static structure of both simple and
complex components, (2) a coordination view for describing
the event-driven behavior of each component, and (3) an
algorithmic view for describing the algorithm executed by
each component depending on its current state. In addition
to the modeling concepts included in these three views,
V3CMM also contains other elements (namely, interfaces and
data types), which are simultaneously related to the three views
and, thus, have been separately defined.

The coordination view is strongly based on UML state-
machines, while the algorithmic view is based on a simplified
version of UML activity diagrams. Unlike UML, which
considers that behavior can be expressed using either state-
machines or activity diagrams (or interaction diagrams),
V3CMM considers that both views are compulsory, as they
model different aspects of component behavior. As such, state-
machines in V3CMM model the event-driven and concurrent
aspects of component behavior, while activity diagrams model
only the sequential flow of execution. This design decision
greatly simplifies the design of the algorithmic view. The
structural view, on the other hand, is the one that differs
the most from UML, and thus we will put the focus on the
characteristics of this view.

Component reuse is achieved in two aspects: by
reusing both the structural and behavioral facets (modeling
for reuse), and by building complex platform-independent
designs up from the previous components (modeling by reuse).
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Figure 2. Schematic representation of the V3CMM views
showing the kind of concepts appearing in each view and
the loosely coupled relationships existing among them.
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Modeling for reuse is achieved by loosely coupling the three
V3CMM views by means of unidirectional plain associations
(shown in Fig. 2), which allows designers (1) to separately
model and store the three views of their components, and (2) to
change any of the component views by simply updating the
association among them (provided the new selected view is
also compatible), thus reusing them as many times as needed.
This kind of loosely coupled relationship is defined between
the structural and the coordination views, the coordination
and the algorithmic views, the algorithmic and the structural
views, and between the additional concepts included in
V3CMM (e.g., interfaces and data types) and each of the three
views.

Modeling by reuse is achieved by separately modeling
definitions and instances (in a similar way as OO differentiates
classes and objects), both for the structural (components)
and the coordination (state-machines) views. Definitions are
fully reusable artifacts that model all the relevant information,
while instances are light-weight artifacts that only contain a
reference to their definition. This reuse mechanism is much
more efficient than the copy-paste reuse provided by most
repository-based CB approaches, where reusing a component
implies creating a full replica of it each time it has to be added
to a design.

The tool chain supporting V3CMM has been integrated
in Eclipse by using the following MDE-related plug-ins:
EMF (Eclipse Modeling Framework [33], which adds MOF
support to Eclipse), EMF OCL (Object Constraint Language,
OCL [34], which provides a formal language for defining con-
straints and queries on models), ATL (Atlas Transformation
Language [35], which adds a declarative M2M transformation
language), and JET (Java Emitter Templates [33], which adds
a template-based M2T transformation language).

3.1 V3CMM Structural View

An excerpt of V3CMM, focused on its structural view, can
be found in Fig. 3. As can be seen in the figure, meta-
models resemble UML class diagram. The OMG decided to
reuse the graphical notation used for depicting UML class
diagrams, which can be quite confusing at first. The concepts
highlighted in black (i.e., StateMachineDefinition
and StateMachine) belong to the coordination view,
although they have been included in the figure to illustrate
the loosely coupled relationship existing between both
views (e.g., the plain unidirectional association labeled
behavior between SimpleComponentDefinition
and StateMachineDefinition).

As said before, V2CMM differentiates definitions from
instances for reusing purposes. This fact is shown in
Fig. 3 with the ComponentDefinition and Component
concepts, respectively. Component definitions contain Ports,
which exhibit the Interfaces (which are globally defined)
provided and required by the component. Ports define

the component communication points, while interfaces define
the concrete messages they can exchange. On the other
hand, components (instances) are defined according to a
given component definition (see the association relationship
entitled type). Components have additional attributes that
widen the number of potential scenarios in which component
definitions can be reused. These attributes are later processed
by model transformations, and thus do not affect the structural
description.

V3CMM provides two types of component
definitions: SimpleComponentDefinitions and
ComplexComponentDefinitions. While simple

components are atomic architectural units with their own
behavior, complex components are composite architectural
units that encapsulate component instances (whether simple or
complex, up to any level), enabling component composition.
At the highest level of abstraction, complex components can
also be envisaged as application models, as they contain
component instances, which represent run-time entities.
For the sake of simplicity, it was decided that complex
components would not have behavior on their own, but rather
it is derived from the combined behavior of the components
(instances) they contain. This decision eliminates the risk
of creating inconsistent and contradictory models, where
the complex component behavior is not consistent with the
combined behavior of its inner components, and thus the
behavior of the complex component do not represent its real
behavior. When complex components have some behavior on
their own, the solution lies in including an additional internal
(simple) component that models this extended behavior
(e.g., an internal coordinator or synchronizer component).
Nevertheless, we realize that having a model of the complete
behavior of a complex component can be desirable for
analysis purposes, but it should be extracted by means of a
model transformation.

3.2 V3CMM Behavioral Views

As said before, V3CMM has adopted and adapted
UML state-machines and activity diagrams for its
coordination and algorithmic views, respectively. The

coordination view incorporates many of its modeling
concepts from the UML 2.0 state-machines (e.g.
state, transition, region, etc.), keeping their meaning.

However, like in the structural view, V3CMM distinguishes
between StateMachineDefinitions, which describe
the behavior of ComponentDefinitions, and
StateMachines (instances), which describe the behavior of
Components (instances). State machine definitions contain
the States and Transitions that model the event-driven
behavior of component definitions.

Unlike UML 2.0 activity diagrams, the
V3CMM algorithmic view only enables designers to
model sequential execution, as concurrent behavior is already
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modeled in the coordination view by means of orthogonal
regions. The V3CMM algorithmic view enables designers
to model both simple activities (atomic units) and complex
activities (including conditionals and loops), together with the
data-flow and object-flow links that enable to connect them.
V3CMM defines four types of simple activities, namely:
OperationCall (to request operations provided by other
components), ConstantActivity (to produce a single
predefined value), LibraryCall (to request the execution
of an algorithm already implemented in an external library),
and UserDefinedActivity.

The first three types of simple activities describe specific
behaviors for which a full implementation can be later
generated. Conversely, when a UserDefinedActivity is
included in an algorithm, only an empty skeleton of code
will be generated, so designers will need to later specify its
final implementation manually. V3CMM provides designers
with this mechanism just in case the activity they need to
describe is neither provided by other component, nor available
in a predefined library, nor can be defined as a constant
activity. However, the use of this type of activities is strongly
discouraged by the authors, since coding manually part of the
behavior may cause model erosion (i.e. design models might
not reliably represent the real implementations once they have
been manually altered) and, as a consequence, the system
might become less scalable and more difficult to maintain.
Besides, there is no way to ensure that the manually coded
behavior does not violate the overall design patterns described
in the V3CMM models.

Before concluding this section, it is worth noting that the
LibraryCall activities embody a wrapping mechanism

aimed to encapsulate heterogeneous Commercial Off-The
Shelf (COTS) library functions in order to build homogeneous
(and thus inter-connectable) implementation units.

4 MODEL TRANSFORMATIONS:
V3CMM COMPONENTS TO CODE

FROM

As said before, one of the main objectives of V3CMM is
to provide a CB modeling language that is solely focused
on those parts of a component that are independent of the
underlying platform, and thus highly reusable. The objectives
of the model transformations involved in a development
process that revolves around V3CMM are twofold. On the
one hand, they have to provide a formal mapping between the
component concepts included in V3CMM and the primitives
of the chosen platform (programming language or framework).
On the other hand, they have to add the application specific
details, thus completing the model and preparing it for the
code generation step. There are some cases, for instance when
targeting a robotic framework, where only one transformation
step is needed, since the rest of the steps are covered by the
framework tool chain.

The automation of this translation by means of formal
model transformations frees developers from the tedious
and error-prone task of manually writing and debugging
the final application code every time, and enables them to
reuse their designs when targeting different platforms. This
article is focused on one of the possible transformation
path for VACMM models, where they are translated into an
ad-hoc UML 2.0 OO model (by executing an ATL M2M



transformation) and this model, in turn, into OO Ada code
(by executing a JET M2T transformation).

4.1 From CB to OO Designs

This section describes the M2M transformation from
V3CMM components to an OO platform-independent
implementation expressed in UML, as UML provides
the required concepts for modeling OO software. This
intermediate transformation reduces the abstraction level and
eases the generation of several M2T transformations for
generating code for different programming languages. The
generated UML model can even be the input of any of the
available Computer Aided Software Engineering (CASE)
tools that can generate code from UML models.

The M2M transformation defines the correspondence be-
tween the three VBCMM views and their OO implementations,
as well as the infrastructure of the execution and run-time
support for the components. It also generates the infrastructure
for linking the code generated for each view with the generated
run-time and with the code that should be added by the user.
It is worth noting that, in fact, the part of the transformation
that defines the infrastructure represents a framework. While
the transformation of the views is rather stable and reusable,
the generation of the infrastructure is strongly determined by
the platform features and the application requirements. In this
vein, the M2M transformation completes the semantics of
V3CMM depending on the application characteristics.

The OO design resulting from the proposed M2M
transformation maintains both the encapsulation of the
component and its run-time independence. On the one
hand, component encapsulation is achieved by using the
Fagade [36] design pattern and the visibility property provided
by UML. On the other hand, run-time independence is
achieved by using the well-known and complex Active
Object [37] architectural pattern, which aims to decouple
method invocation and execution, enhance concurrency, and
simplify the synchronized access to objects running in their
own threads.

An excerpt of the ATL code of the M2M transformation is
shown in Fig. 4. The transformation starts by creating a base
UML package, where all the generated artifacts will be stored.
This package contains (1) the abstract base classes Port and
Component, which provide the common functionality needed
to support these basic concepts, (2) a set of packages that
contain the data types, the interfaces and their operations, as
they appear in the V3CMM models, (3) one auxiliary package
that contains the infrastructure needed to associate operation
calls to state-machine transitions, and (4) one package for
each component, which contains the classes that implement
its structure and behavior.

Regarding component behavior, while the structural models
are transformed into UML class diagrams, the behavioral
models are transformed into UML state-machines and activity

diagrams, respectively, making this part of the transformation
straightforward. This is particularly interesting in the case
of state-machine models, since it allows designers to delay
the selection of the particular design pattern they want to
implement in a further transformation from the UML state-
machine models into code. Finally, it is worth noting that the
M2M transformation also generates additional elements and
auxiliary operations (together with their implementations) that
do not appear in the V3CMM models, such as constructors
for all classes, methods for sending, receiving and forwarding
operation requests, etc.

4.2 Generation of Ada 2005 Code

Code for any OO programming language can be easily
generated from the UML model previously obtained, since this
is the main objective of the M2M transformation. Although
any programming language could have been used, we decided
to target the Ada language because of the robust mechanisms it
provides and for its support for concurrent programming. The
UML to Ada M2T transformation generates the skeleton of the
application, where designers must just add the Ada code for
the UserDefined activities. An excerpt of the JET code for
the M2T transformation is shown in Fig. 4. The transformation
generates a clear, structured, and easy to follow code, which
isolates the parts where designers should add their code from
the generated code they must not modify, by making extensive
use of the package primitive provided by Ada.

5 CASE STUuDY

This section illustrates the application of the proposed MDE
approach from the point of view of the tool chain user.
It comprises a simple yet complete case study regarding
a Cartesian robot developed in the context of EU 5t* FP
project EFTCoR (Growth, G3RD-CT-00794) for automating
ship hull maintenance operations [14] (see Fig. 5). The
EFTCoR addressed the development of a family of robots
for grit-blasting, whose mission is to retrieve and confine the
paint, oxide and adherences from ship hulls and recycle the
blasting material. This case study was selected because it was
previously developed using a traditional software development
process, and thus the architecture and the algorithms were
available. Also, it is simple enough so the reader can focus on
the benefits of the approach instead of on the details of the
case study.

The Cartesian robot holds a cleaning tool that consists of an
enclosed nozzle projecting grit and recovering the residues to
be recycled. This tool cleans an area previously identified by a
computer vision system. Each axis is moved by a servo-motor
and is limited by mechanical switches. The robot is controlled
by a Programmable Logic Controller (PLC) connected to a
PC running the high-level control software, which is in charge
of identifying the spots that must be blasted, planning the path
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(b) This excerpt of the JET M2T transfomation generates an Ada package body for each component. Specifically,
it creates the constructor subprogram for each component.

Figure 4. Screenshots showing an excerpt of the two model transformations implemented as part of the proposed
Eclipse-based tool chain: (a) M2M transformation from V3CMM to UML, and (b) M2T transformation from UML to Ada.

to blast them, and sequentially moving the cleaning tool to the 5.1 Modeling the Architecture of the Cartesian
identified spot positions. Robot with V3CMM

Part of the CB architecture is depicted in Fig. 6. As
V3CMM does not impose any concrete architecture, we

The case study comprises three main steps, namely
(1) modeling the CB architecture of the application using
the three views included in V3CMM , (2) executing the ATL
M2M transformation in order to generate a UML OO design
from the previous CB model, and (3) executing the JET M2T
transformation in order to generate an OO implementation
(code) from the previous UML model.

used ACRoSeT (Reference Control Architecture for Service
Robots) [38], which was developed in a previous work. The
components appearing in the figure are defined according
to the component types defined by ACRoSeT. Although
not the objective of this article, it is worth defining their
meaning: HAL (Hardware Abstraction Layer) components
model the interface with the control hardware, SC (Simple



Figure 5. Cartesian robot developed in the context of the
EU 5" FP project EFTCoR for ship hull cleaning.

Controller) components model a controller of one actuator,
MC (Mechanism Controller) components model a coordinator
of several SCs (and also MCs), and RC (Robot Controller)
component model the coordinator of a whole robot. Both
HALs and SCs are simple components, while MCs and RCs
are complex components. As complex components do not
have behavior on their own in V3CMM, both MCs and RCs
require the definition of an additional Coordinator component,
which is itself a simple component, for coordinating their inner
components.

The architecture of the Cartesian robot also comprises the
following components: a graphic user interface (Robot_Gui),
a path planer and sequencer (Robot_Planner), a computer
vision component (Computer_Vision), and a user interface
(Robot_User_Interface) that controls the commands that are
sent to the RC component. These components are all complex
components that are depicted as black-box components (on the
contrary of the RC component) for the sake of simplicity. The
definition of the architecture comprises the following steps.

Step 1) Define the common data types and interfaces
(together with their operations) of the whole application, in
one or more files. For instance, the definition of the interfaces
and data types for the SC_Axis component of the Cartesian
robot is shown in Fig. 7.

Step 2) Create the simple component definitions using
the data types and interfaces previously defined, each in
its own file. SC_Axis, HAL_Axis, MC_Axes_Coordinator,
SC_Tool, HAL_Tool and RC_Robot_Coordinator are all
simple components.

Step 3) Create the complex component definitions
using the data types, interfaces, and component definitions
previously defined. Complex components are defined in their
own files, and they contain instances of component definitions
(simple or complex) and links between the compatible ports
of these component instances. The meaning of “compatible”
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Figure 6. ACRoSeT based software architecture for the
Cartesian robot shown in Fig. 5. Grey components are
complex components shown as black-boxes.

depends on the components being connected. In case both
components are contained in the same complex component,
their ports can be connected by means of an AssemblyLink
(see Fig. 3) as long as the interfaces required by one port
are provided by the other and vice-versa. When connecting
a complex component to a component it contains, their ports
can be connected by means of a DelegationLink as long
as the interfaces required by one port are required by the other
and vice-versa.

In the case study, components MC_Axes and RC_Robot (as
well as the black-box components) are complex components.
As a sample of the reuse mechanism embedded in V3CMM, it
is worth noting that the complex component MC_Axes (shown
in Fig. 7) contains three instances of the SC_Axis simple
component definition, three instances of the HAL_Axis, and
one instance of the MC_Axes_Coordinator.
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Figure 7. Eclipse screenshots showing the definition of
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Step 4) Design the state-machines using the behavioral
view, each in its own file. For each simple component, the
designer creates a state-machine describing the component
internal behavior and its reaction to the messages it receives
from other components. Fig. 8 depicts the state-machine
model for the SC_Axis simple component. State-machines are
driven by the operation requests issued by other components.
These operation requests trigger the transitions of the state-
machine, provided the guard condition (when present) is
satisfied.

Step 5) Design the algorithms using the algorithmic view.
This view, based on the UML activity diagrams, describes
the algorithms that will be executed by the component
depending on its current state. Fig. 9 depicts the activity
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Figure 9. Activity diagram associated to one of the states
of the Computer_Vision component, aimed at identifying
visual targets for cleaning operations.
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diagram associated to one of the states of the Computer_Vision
component.

Step 6) Link activities to state-machines. Each state and
transition of the state-machine must be associated with the
corresponding activity that describes the algorithm that must
be executed whenever the component is in a given state, enters
or exits the state, or a transition is triggered. This step, as well
as the next one, illustrates the loosely coupling relationship
existing between the V3CMM views, since each is defined in
a different file.

Step 7) Link state-machines to components. Each
component definition must be associated with one of the state-
machines definitions designed in Step 4. The only constraint
is that the state-machine must conform with the interfaces
provided and required by the component. In the same way
as the component definitions of the HAL_Axis and SC_Axis
simple components have been reused three times (as described
in step 3), the state-machine definitions associated to those
simple components are also instantiated three times, since the
event-driven behavior of the three axes is identical.

Note that defining the V3CMM models in separate files is
possible thanks to the loosely coupling mechanism provided
by the meta-model, and that this enables designers to load and
reuse these models as many times as needed, either in the same
or in different designs. The description of the CB software
architecture of the Cartesian robot comprises the following
separate files: (1) one file containing the ten interfaces
appearing in the design, together with their operations and
the data types they use, (2) eight files, each one containing
a component definition, (3) eight files, each one containing
the state-machine definition describing the behavior associated
to the previous component definitions, and (4) twenty files,
each one containing a group of related activities (less than
one hundred in total).
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Figure 10. Class diagram generated by the ATL M2M transformation for the SC_Axis simple component (left).
Screenshot including an excerpt of the Ada code generated by the JET M2T transformation (right).

5.2 Execution of the Model Transformations

After the user has modeled the architecture of the Cartesian
robots, he must configure and execute the model transfor-
mations. Firstly he must execute the M2M transformation.
Fig. 10 depicts an excerpt of the generated UML model for
the SC_Axis simple component after the execution of the
ATL M2M transformation. The Component_Facade_SC_Axis
class provides the public interface of the SC_Axis component,
which comprises a constructor (not shown in the figure) and
four methods for obtaining a reference to each of its ports.
These references will be later used for connecting the ports
to other components, as the architecture of the application
models. The component functionality is implemented by the
SC_Axis_Core class. Each port is translated into a class,
which provides and requires interfaces as stated in the
V3CMM model. Only the facade has *public’ visibility, while
the rest of the classes implementing the component are kept
safe from external access by giving them ’package’ visibility.
After the UML model has been generated, the user must
execute the M2T transformation. Fig. 10 depicts a screenshot
of the Ada code generated after the execution of the JET M2T
transformation.

5.3 Result Analysis and Comparison

The two-stage transformation, from the Cartesian robot
architectural design into Ada code, resulted into fifty seven
packages, which contain a total of sixty five classes. The whole
application contains 4800 Lines Of Code (LOC), from which
more than 3500 (nearly a seventy five percent) have been
automatically generated. Although the number of generated
packages and classes may seem too high, it is worth noting that
this is the result of applying the selected design patterns, aimed
to produce a well structured and readable code. It took the

authors one month to obtain the final application code, namely:
one week for formally defining and validating the initial
V3CMM architectural model, and three weeks for manually
completing the automatically generated Ada skeleton. It is
worth noting that the development time and effort would
have sensibly decreased if the authors would have counted
on a set of Ada libraries, which functionality could have
been readily reused by including LibraryCall (instead of
UserDefined) activities in the VECMM design. Besides,
the need for manually completing the generated application
may lead to the problems already described in Section 3.2.

As formerly stated, the authors have a previous implemen-
tation of the system available, which is currently being used
is several shipyards. This implementation, developed in C++,
contains around 4500 LOC, grouped into seventeen classes.
The time needed to manually implement this application was
of eight months. It is worth noting that, in spite of the efforts
for defining the CB software architecture of the Cartesian
robot using ACRoSeT, the lack of tools supporting both
the formal definition and validation of the models and their
translation into code, ended up with a quite error-prone manual
implementation of the design. As a consequence, a lot of time
was expended manually testing and patching the successive
versions.

6 DISCUSSION

The MDE approach provides the theoretical support for
creating, manipulating and transforming models (sets of
concepts), but it provides no guidelines for selecting
these concepts or for organizing a complete MDE-based
development process. In order to leverage all the potential of
MBDE in robotics software development, a significant research
effort needs to be done in order to discover, organize, and



precisely define the set of concepts needed to model robotics
software requirements at the highest level of abstraction [7]
(see Fig. 1). Additionally, it is also needed to implement
automated model transformations enabling designers to refine
their high-level models into lower level representations (until
generating the final application code or a part of it).

Up to date, the definition of such core concepts has proved
elusive, and, even provided with such a CIM language, one
or more intermediate PIM levels will be required in order
to progressively reduce the semantic gap existing between
the high-level concepts and the platform details. For these
reasons the authors decided to develop a PIM language as
a first step towards a complete MDA process. The level of
abstraction provided by components and CBSD was selected
since (1) CBSD is a very mature approach with a broad
tradition in the community, (2) CBSD enables describing
(and checking) the software architecture of the applications,
(3) CBSD is aimed to reuse by its very nature, and (4) because
CBSD provides many advantages over OO, particularly a
higher abstraction level as stated in Section 2.

Once components and CBSD were selected for the PIM
language, the next step is to precisely define, by means of a
meta-model, what components are, how they can be composed,
and how they interact. At this point we considered two options:
use or profile a general purpose modeling language like
UML/SysML, or develop a new one. This last option was not
available until recently, and thus UML profiles were the only
solution for generating graphical tools and for manipulating
models. But with the standardization of the MOF and the
support provided by Eclipse, designers no longer have to rely
on UML for generating such tools.

The adoption of UML or SysML (for instance, UML
«component» or SysML «block» concepts) seems the most
immediate and correct option. However, the generality of these
languages brings, in our opinion, an important problem: they
provide many and very generally defined concepts, which
semantics must be completed by users at some points (the
so-called “semantic variation points” in UML). Besides, such
general concepts must be sometimes combined in order to
make more concrete definitions. This in turn makes developing
model transformations a more difficult task, since in this
case it is necessary to check that all elements are correctly
combined to express a given concept. As an alternative,
the UML profiling mechanism can be used to specialize
the semantics of some of its concepts. Profiles provide a
straightforward mechanism for adapting an existing meta-
model with constructs that are specific to a particular domain,
platform, or method. However, profiling does not reduce the
number of concepts, and making a profile of such a big meta-
model as UML is neither easy nor efficient. In addition, models
built from this profile would be rambling (plenty of tags and
stereotypes) and difficult to inspect and debug.

It is worth highlighting that we do not encourage to give
up using UML. It is an excellent and very complete modeling

language when dealing with the whole development life-cycle
of OO applications, but it has several limitations when applied
to other domains that have been already pointed out by other
authors [39], [8], [30], [40].

Nevertheless, since V3CMM adopts and adapts many UML
concepts, it is possible to design model transformations in
order to convert V3CMM components into UML components,
but the opposite way is not always possible, as UML provides
many ways of modeling a component that are not always
compliant with V3CMM components. This discussion about
the differences between UML and V3CMM resembles the
differences between English and the mathematical notation:
3+ 4 = 7 and “three plus four equals seven” have the
same meaning, although not both notations are equally useful
to express it. At the end, it is a matter of economy of
symbols and formality of the underlying language. Besides,
since V2CMM is based on UML, it is easy to use, and because
it comprises few concepts, it is easy to understand.

Finally, Section 2 described the three views that comprise
V3CMM. Defining just three views may seem insufficient
for modeling CB applications, specially when languages like
UML or SysML provide many more diagrams that target the
whole development life-cycle (e.g., requirement specification,
deployment, etc.). V3CMM comprises what we think is the
minimum set of concepts needed to model the platform
independent aspects of CB applications. Higher level concepts
(like requirements for robotic applications) must be modeled
by a “stable” CIM language as proposed in [7], and afterward
transformed into V3CMM (or any other modeling language).
Platform and application specific details (like deployment) or
implementation concepts (like classes and objects) must be
added in subsequent transformation steps in order to keep
the original V3CMM models as much platform independent
as possible.

We considered other alternative artifacts for behavior
modeling, like Petri Nets [41] or Communicating Sequential
Processes (CSP) [42], but they were discarded because they
are not as widely known and easy to use as state-machines.
Furthermore, interaction diagrams were also discarded because
they do not model the behavior of a single component
but rather the exchange of messages among components.
From our point of view, interaction diagrams can be derived
from V3CMM behavioral models through an appropriate
model transformation, and thus they should not be part of
V3CMM, since having redundant views makes maintaining
model consistency extremely difficult. A very important
view, specially when designing concurrent applications, is
the tasks view. But this view strongly depends on the
platform features (operating system, scheduling policies, and
inter-process communication mechanisms) and on the timing
requirements of the application (hard and soft deadlines, event
arrival rates, etc.), and thus these characteristics must be added
by the transformations according to the characteristics of the
execution platform and the application requirements.



7 CONCLUSIONS, LESSONS LEARNT, AND
FUTURE RESEARCH LINES

This article proposes a new reuse-centric, platform inde-
pendent and model-driven approach to CB robotic system
design and implementation. The proposed approach clearly
separates the reusable platform independent aspects from
the platform dependent details and from the application
specific requirements. In this vein, the work described in this
article comprises (1) a meta-model that precisely defines and
formalizes the basic architectural units of design (V2CMM),
(2) a M2M transformation from V3CMM to OO concepts
expressed in UML, and (3) a M2T transformation from
the mentioned UML model to the Ada 2005 programming
language. These facilities constitute a small, but yet operative,
development framework for generating well structured Ada
applications from CB designs. A simple yet complete case
study in robotics has been presented to illustrate both the
modeling capabilities and the reuse benefits of V3CMM, as
well as the final results obtained by the two-stage model
transformation.

The small and simple components considered in the case
study provide less reuse benefits than large and complex
examples. However, even for these components, the MDE
approach proposed in the article can be considered beneficial,
since: (1) designers are provided with an expressive yet simple
to use modeling language that enables them to formally define
their components and CB designs at a high level of abstraction,
(2) they can effortlessly obtain different implementations
from their designs (either for a single or for different
platforms), provided the corresponding model transformations
are available, and (3) the formal foundations on which both
models and model transformations are defined allow them
to formally validate all the artifacts involved in the process,
achieving more dependable and less error prone solutions in
a shorter time. As an example of these benefits, consider that
the manual implementation of state-machines, even when they
are relatively simple, is an intensive, tedious, and error-prone
work.

The adoption of a new paradigm always involves facing
many challenging issues regarding its application. MDE
technologies eases the way in which applications can be
designed, implemented and tested, but it does not provide
any criteria for developing a complete MDE solution. From
our experience, the two most challenging issues we faced
were the selection of the concepts for V2CMM (and its
definition directly from MOF) and the definition of the run-
time support according to the application specific details by
means of different model transformations. Moreover, while
V3CMM can be used in multiple types of applications,
not only in the robotics domain, transformations have a
more limited scope and are very sensitive to changes in
the meta-model. In this last case, it is very likely that all
the transformations have to be redefined, and, unfortunately,

during research such changes are almost inevitable. This fact
enforces our idea that meta-models should be as simple and
stable as possible.

Developing model transformations requires a deep knowl-
edge of both the source and the target languages (including
both their syntax and precise semantics), and the selection
of the most appropriate transformation patterns. As a result,
model transformation design and implementation are quite
time consuming tasks, which require highly skilled people.
It is also worth noting that the learning curve associated to
the use of model transformation tools increases development
time. Nevertheless, model transformations provide the required
flexibility to target any platform and programming language.
As an example, the V3CMM-to-UML ATL transformation
took about four man—month, while the UML-to-Ada JET
transformation required just one man—month.

Another challenge is the integration of the existing robotics
frameworks and libraries in the proposed MDE development
process. In this line, three complementary approaches can
be considered. The first one relies on a direct model
transformation from V3CMM to the chosen framework. In this
case the difficulties lie in finding the correct correspondences
between the behavioral V3CMM views and the way in which
behavior is defined in the chosen framework, since the
structural part uses to be similar in all CB frameworks. The
second approach relies on the application of the recent OMG’s
Architecture-Driven Modernization (ADM) [43] initiative,
aimed at generating models directly from source code. In
this way, ADM is a very promising way to integrate the
existing legacy code into a MDE process. Finally, the third
approach relies on the integration of the libraries that provide
the functionality of the domain without using the framework
run-time support. In order to reuse these libraries, the less
dependencies they have, the easier their integration will
be [13]. The existence of standards, at least for some of the
data usually managed by robotics applications, will be also
very valuable [44].

Regarding future research lines, we plan to turn
V3CMM and the developed tools into a more robust,
general-purpose and open source environment. In the short-
term we will develop a graphical editor for V2GCMM models,
and provide two M2T transformations: one that targets
C/C++ and another tailored to systems with hard real-
time requirements. In the mid-term we will (1) develop a
mapping from V3CMM to one robotic framework, being the
candidates those closer to the CBSD paradigm, (2) develop
a transformation from V3CMM models to one analysis
tool, such as the Architecture Analysis & Design Language
(AADL) [45], the Kernel LAnguage for PErformance and
Reliability (KLAPER) [46], or Palladio [40], and (3) extend
the transformations to consider component distribution using
middleware technologies. In the long-term we plan to create
several component and model transformation catalogs and
integrate V3CMM in a Software Product Line [47] approach



in order to define common architectures for different families
of products. It will then be possible to derive a concrete
architecture for one product by selecting components (in the
form of V3CMM models) and transformations from their
repositories.
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