Design of
Service Robots

Experiences Using Software Engineering

Software
Engineering
for Robotics

In the course of the research

ccording to the Interna-
tional Federation of Ro-
botics (IFR), “a service
robot is a robot which
operates semi Or
fully autonomously to perform
services useful to the well being
of human and equipment, ex-
cluding manufacturing opera-
tions” [1]. These devices are
typically complex systems requir-
ing the input of knowledge from
numerous disciplines. The authors
have been using different software
engineering techniques for the last
15 years, integrating new paradigms
in the service robot development
process as they emerged. This has
made it possible to achieve rapid devel-
opment of applications and subsequent
maintenance. During the early years
(1993-1998), our efforts were directed at the
development of software for various kinds of
teleoperated robots to perform maintenance tasks in
nuclear power plants [2]; during a second phase (1999—
2006), we built applications for ship-hull cleaning robots [3]. All this
time, we have been applying all the possibilities of software engi-
neering, from the use of paradigms for structured and object-based
programming in early developments to the adoption of the current
model-driven approach [model-driven engineering (MDE)] [4].

Digital Object Identifier 10.1109/MRA.2008.931635

conducted by the Division of
Electronics Engineering and Sys-
tems (DSIE) Research Group, we
can see a parallelism between
each new need and the software
development paradigm that has
been applied to meet that need.
The first applications
intended for teleoperated sys-

were

tems, each specializing in a
highly specific maintenance task
within a fully structured opera-
tional environment. The chal-

© PHOTODISC, DIGITAL STOCK, & JOHN FOXX

lenge lays in how to reuse as
much as possible the code of one
application in another application.
To that end, we developed an
architecture founded on the use
of object-based programming and
the development of generic control
modules. With the Ada95 language, it
was possible to put these ideas directly into
practice, and therefore, it was used as the imple-
menting language. However, when at a later stage it
was decided to develop robots to clean ship hulls, the architec-
ture was no longer useful because the new field entailed not fully
structured environments, only partly defined tasks, semiauto-
mated systems, already developed industrial systems, and so
forth. Moreover, when developing the new robotic applications
for these new systems, it proved impossible to define a single
common architecture for them all. As the software components

BY ANDRES IBORRA, DIEGO ALONSO CACERES, FRANCISCO J. ORTIZ,
JUAN PASTOR FRANCO, PEDRO SANCHEZ PALMA, AND BARBARA ALVAREZ

1070-9932/09/$25.00©2009 IEEE MARCH 2009

b2y IEEE Robotics & Automation Magazine

(in this case, generic Ada packages) were designed to be used in
a software architecture that imposed strong dependences among
them in the absence of such an architecture, we lacked the
framework that would allow the components to be reused.

The challenge was then to find an approach whereby the code
could be reused in applications with difterent architectures. The
solution arrived at was to adopt the component-based develop-
ment (CBD) paradigm [5]. CBD is conceived for the purpose of
speeding up the software development process. It states that such
development would be achieved by linking independent parts,
the components, in the same way as in mechanics and electronics.

Following in this line, the DSIE Research Group developed
an abstract framework called ACRoSeT (reference architecture
for teleoperated service robots) [6], in which it is possible to
define software components for robotic applications independ-
ent of the architecture and of the ultimate implementing
technology. Despite the benefits it brought, the use of ACRo-
SeT posed new challenges arising out of the conceptual leap
from the predominant object-based technology to compo-
nent-based design concepts. Each of the components defined
in ACRoSeT had to be encoded manually in the chosen
programming language. There was therefore a need for an
approach that came with a set of tools to facilitate automatic or
semiautomatic generation of applications. These needs can be
satisfied by adopting a model-driven development approach.

Table 1 summarizes the ideas presented in the foregoing para-
graphs and some of the chief characteristics of the robotic systems
that have been developed. As shown in the table, three major
software engineering paradigms were adopted successively:
reference architecture, component-orientation, and model-
driven development. The following sections deal with all these
issues in detail, describing our own experience since 1993 in the
use of the fundamental concepts of software engineering,.

Specialized Teleoperation Systems:
Reference Architecture
The first applications for which software engineering was used
systematically were for the maintenance work in nuclear power
plants. These applications [2] may be classified into two broad
groups: those intended to furnish new control software for the
Westinghouse ROSA 1III robot and those intended for new
robotic systems being developed by us. The methodology used to
develop all these applications was based on the domain-engineer-
ing process to develop a common reference architecture for all
these systems. This methodology consists of three stages, namely,
domain analysis, domain design, and domain implementation.
The principal functional features that were identified as a
result of domain analysis are the following: 1) the operating envi-
ronments are thoroughly understood and structured; 2) the
robot’s movements are directed by the operator at all times (no
autonomy); 3) a user-graphic interface is needed to display the
robot’s status and how it is interacting with its surroundings in
real-time and three-dimensional (3-D) display; and 4) the system
should be fault-tolerant. The nonfunctional features include the
possibility of adapting applications to new tools, operating envi-
ronments and user interfaces, and portability with respect to the
operating system and communications links.

MARCH 2009

The challenge lays in how to reuse as
much as possible the code of one
application in another application.

With all these requirements in mind, we defined a reference
architecture in which we can distinguish the graphical display
subsystem (3-D display of the robot and its environment),
kinematics subsystem (movement simulation and collision
detection), user interface, communications subsystem, and
robot controller (assures the feasibility of the operator’s com-
mands and controls their execution).

The architecture was implemented using the Ada95
programming language (high-level tasks running on the tele-
operation platform), C language (low-level control tasks run-
ning on onboard robot processors), Motif and X-Windows
libraries (user interface), and the ROBCAD commercial tool
(3-D graphic display of the robot and its environment, cine-
matic calculations, and collision detection). The programming
paradigms used were the ones available at the time: object ori-
entation, abstract data types, and generic units.

One of the major advantages of this approach is the ease
with which subsystems from one application can be used in
another, simply by appropriate instantiation of the generic
parameters. To give a more precise idea of how the different
models are reused or configured, Table 2 shows some scenarios
entailing modification and extension of applications. When
something new is to be added to an existing application (e.g.,
an environment, a model, a robot tool), all that is needed is to
define the new elements and incorporate them in the applica-
tions. Moreover, such additions are carried out systematically
following a set of rules defined in the architecture. If it is wished
to develop an application for a new device (as in the last of the
scenarios), generic modules have to be defined and specific
algorithms programmed, but all the code for the interactions
between subsystems can be reused. Despite the aforementioned
advantages, the architecture cannot be adapted to any require-
ments other than those described in this section.

These drawbacks became apparent with the development
of robots for ship-hull maintenance, where in addition it
proved impossible to define a generic reference architecture
for that domain. A different approach had to be found neces-
sarily because the challenge was different. The problem now
was to come up with a means of reusing code with difterent
architectures. To do that, we adopted the paradigm of CBD.

Robot Control Architectures

and Frameworks: ACRoSeT

The development of various service robots to perform
maintenance tasks in the shipping sector (hull cleaning) was
addressed in the context of the European project environmen-
tal friendly and cost-effective technology for coating removal
(EFTCoR), under the European Union’s fifth framework
programme (EU 5th FP) (GROWTH, G3RD-CT-00794).
The various robots that were considered in this project would

IEEE Robotics & Automation Magazine (@4}

Table 1. Robotic systems developed and software engineering paradigms used.

Robot/

. ication | Software Engineering Strategy/ i
Project/ |APPlication g 9 gy/| Examples of Robotic T Scheme of the
Domain Purpose Devices Controlled Proposal
Year
Software engineering strategy: 1 All systems share the
Reference architecture same structure.
Purposes: T Gene?ric components
¢ Define a common architecture for readily reused in
all systems for a given domain (in different applications.)
ROSA 1lI Nuclear our case pure te|eoperation’ ‘L The architecture cannot Refgrence architecture o
EUREKA | power structured environments, and be used in other (which preserves the original
1993-1998 | plants specialized tools). Vehicle for retrieving foreign | domains (autonomous | Notation) where we can
* Reuse of code. objects from the nozzles of systems or nonstructured distinguish the different
primary circuits of PWR environments). subsystems or components.
nuclear plants.
Related approaches: o
e Hierarchical-deliberative 1 Components cannot be | =0 oo E==
architectures reused in other e
e Reactive architectures architectures. —
2 [RJETis ETRe s . . { Itis very difficult to =
e See [11] for a complete discussion s & el B .
bout software architectures for 9 g T -
about architecture flexible — ¥
robotics systems. enough to deal with 1 = : "
GOYA the heterogeneity of B o
ERDF requirements of robotic S s
Graphic subsystem of applications.
1999-2001 . o
teleoperation applications
(implemented with ROBCAD).
Software engineering strategy: 4 Includes the reference
Architectural frameworks archltgct.ure Hpre)
Component-based development but within a broader
framework.
Purposes: . | 1 Possibility of defining
¢ To provide an architectural and reusing specific
umbrella _for defining components architectures. -
and architectures. 4
o To define abstract components | XYZ table mounted on tower | T Components are
and integration strategies. during functional tests. independent of both f t
EFTCoR * Reuse of components regardless system architecture and i -
VFP Shiovard of architecture. |n|1p|fementat|on]
2002-2006 bya Pl
[RSRET | Components cannot : :
industry | Related approaches: readily be implemented .
¢ Robotic development frameworks: with object-oriented l:-:
OROCOS([7], ORCA[8] technology.
| Manual encoding is
highly laborious and
error-prone.
Jointed tower for cleaning
large surfaces.
Software engineering strategy: 1 Includes the CBD
A : A approach, but within a
Model-driven engineering broader framework.
Purposes: 1 Automatic translation
o Architectures as models. _Of abstract components
e Models conform to metamodels. into conc.rete on(-.:s.
EFTCoR v2 and transformations between them. . 1 The architecture is
2007-Today Lazaro climbing vehicle for | designed at a high level

Related approaches:

¢ Not used extensively in robotics
nor in reactive systems (as far as
we know), but several proposals
exist [10].

cleaning shaped surfaces of
bow and stern.

of abstraction in a
platform-independent
way and models are
translated
semiautomatically
into code.

1 Lack of maturity.

d Lack of tools.

P13 IEEE Robotics & Automation Magazine

MARCH 2009

have to perform cleaning operations on ships’ hulls at shipyards
with heterogeneous facilities for vessels of different types. In
view of the difficulty of designing a single robot that would meet
all the requirements, we opted to design a family of robots. All
these robots consist of a primary positioning system, which can
be a vertical tower with up to five degrees of freedom, a climb-
ing vehicle, or an elevator table. The cleaning head can be a
turbine or several blasting nozzles with a confining hood.
Some of the systems also have a secondary element (XYZ
table), which augments the number of degrees of freedom of
the primary element and improves operating times, especially
when cleaning small areas or spots. The difterent applications
and the devices that perform them are summarized in Table 3.
Table 1 shows various images of’
the EFTCoR systems.

Architectural Framework for
Control Units (ACRoSeT)

Change Scenario

components, which can be roughly classified into two catego-
ries: 1) component models where components are classes or
objects (e.g., JavaBeans, .NET, Corba Component Model)
and 2) component models where components are architectural
units (e.g., UML 2.0, Koala, KobrA). The first category is sup-
ported by the current technologies, and the components are
directly executable in their respective programming languages;
the second compels to implement the components manually
or develop tools that generate the code that implements the
component (see [5] for a complete and very understandable
discussion). Because composition is the central issue in CBD,
the selection of an approach will depend on the compositional-
ity of the resulting components, and in this sense, the second

Table 2. First stage (1993—1998): Change scenarios for nuclear power

plants maintenance applications.

Changes to be Made

When it came to tackling the prob-
lem of designing the software archi-
tecture for the family of robots, we
encountered the following difficul-
ties: 1) the reference architecture
used for the robots in the nuclear
environment could not be used; 2)
the functional requirements varied
very much from one system to
another; 3) programming languages
and platforms had to be different for

each device; and 4) it was necessary

added axis).

to use commercial components
(motor controllers, programmable bottom (TRON)].
logic controllers, frequency varia-
tors, etc.).

In view of these problems, it was

clearly necessary to define an archi-

New steam generator maintenance
operation (i.e., make a new applica-
tion for welding plugs).

Change of operating environment (i.e.,
updating of a new water box model).

Change of robot model (i.e., updating
of a new water robot model with an

Define a new robot [i.e., A new robot
to retrieve objects in the vessel

Graphical modeling of tool (ROBCAD).

Instantiation of generic tool controller with
features specific to the new tool.

Tool controller included in application.

No need to modify any additional software
subsystem.

Graphical modeling of the new environment
(ROBCAD).

Graphical modeling of the new robot
(ROBCAD).

Change corresponding characteristics in
robot controller (generic Ada95 modules).

Graphical modeling of the new environment
(ROBCAD).

Graphical modeling of the new robot and
tools (ROBCAD).

Instantiation of generic robot and tool con-
troller modules with the features of the
new devices.

tectural framework that would
1) impose no particular architecture,
but would permit the definition of
different architectures to fit the par-
ticular restrictions of each applica-
tion; 2) facilitate the reuse of code;

and 3) allow for highly diversified Cleaning Operation

Table 3. Second stage (1999-2006): Maintenance operations and

devices developed in the context of the EFTCoR project.

Hull Area Considered

Vertical Surfaces Fines Bottoms

final implementation of compo- Full blasting
nents, both software and hardware,
and including commercial off-the-
shelf (COTS) components.

The solution arrived at was to
adopt the CBD paradigm. It states
that application development
should be achieved by linking inde-

pendent parts, the components.

Large surfaces

Spotting

Small multiple surfaces
scattered over the

There is a great confusion about
underwater body.

the meaning of software compo-
nent. Such meaning depends on
the underlying component model
that describes the semantics of

Primary system:
Vertical towers
Head: Turbines

Primary system:
Vertical towers
Head: Nozzle
Primary system:
Climbing vehicle
Head: Nozzle

Primary system.:
Elevator table
Head: Turbine
Primary system:
Climbing vehicle
Head: Nozzle

Primary system: Primary system: Primary system:
Vertical towers Vertical towers Elevator table
Secondary system: Secondary system: Secondary system:

XYZ table XYZ table XYZ table
Head: Nozzle Head: Nozzle Head: Nozzle
Primary system: Primary system: Primary system:

Climbing vehicle
Head: Nozzle

Climbing vehicle
Head: Nozzle

Climbing vehicle
Head: Nozzle

MARCH 2009

IEEE Robotics & Automation Magazine @44

approach is clearly better. Components such as architectural
units allow 1) specifying very precisely, using the concept of
port, both the services provided and the services required by
a given component and 2) defining a composition theory
based on the notion of a connector. None of these features
can be directly achieved using objects because classes only
publish the provided services, and the unique way of interac-
tion among objects is method invocation. Anyway, compo-
nents can be implemented using objects and design patterns
as long as the resulting code implements the semantics associated
to the components and their interactions.

The CBD paradigm has been adopted by several existing
frameworks for robot development (e.g., Orocos [7], ORCA
[8], etc.), of which some use objects and others use architec-
tural units as components. Frameworks offer high rates of
reusability and ease of use, but little flexibility with regard to
the implementation platform: most of them are linked to C/
C++ and Linux, although some achieve more independence,
thanks to the use of some middleware. For industrial pur-
poses, the EFTCoR project required the use of commercial
devices and programming languages for programmable logic
controllers (PLCs) not catered for by the available frameworks.
Moreover, the frameworks usually have an implicit architecture
and offer the principal control loop for the application. Since
one of the objectives pursued is the ability to define different
architectures, the use of a commercial framework posed addi-
tional problems.

With these ideas in mind, ACRoSeT was designed as a
component-based architectural framework to guide the design
of control software for teleoperated service robots. ACRoSeT
provides a framework of abstract components, the architectural
units mentioned earlier, which can be implemented in various
different ways (by integrating different software or hardware
solutions, or even COTS components).

We needed a way to define interfaces and behavior at a
higher level of abstraction so that they could be used in systems
with different platforms. This is what prompted the idea of
abstract components, which would be independent of the
implementation platform but could be translated into an exe-
cutable software or hardware component. In opting for these
abstract components, we were trusting that the tools associated
with the unified modeling language (UML) for generating
code would evolve favorably, and this would make it possible
to generate the code automatically from ACRoSeT diagrams.

Instantiation of ACRoSeT in the EFTCoR Project
By way of example we shall present two architectures that have
been defined with ACR0SeT, one for the XYZ table controller
and the other for the climbing vehicle. Note in Figures 1 and 2
how both the components and their interactions and connections
become explicit, following the CBD approach mentioned earlier.
The fundamental components we can see in the figures represent
physical device controllers (which control one or more axes, a
tool, etc.). When a controller refers to a single actuator it is called
a simple controller (SC); when it coordinates several SCs it is
called a mechanism controller (MC). The aggregate of SCs and
MC:s following a given architecture is the robot controller (called
RC in ACRoSeT terminology). Sometimes, these controllers
only encapsulate access to a real physical device, for instance the
MC component of the XYZ table (Figure 1), which corresponds
to the access interface of a SIEMENS commercial controller for a
315-2DP programmable logic controller. In the case of the Laz-
aro climbing vehicle (Figure 2), the MC is composed of software
modules written in Ada95 and is executed on an embedded PC.
The control software for the XYZ towers (Table 1) has
been implemented on a development infrastructure supplied
by SIEMENS, using a PLC 315-2DP and the STEP7 develop-
ment environment. In this case, ACRoSeT components have

RC_DataOut RC_Control~

—

XYZ TableR:RC

rcCoord:Coordinator

=

] strConfig

1
@[

il

MC_DataOut I MC_Control

XYZ TableM:MC] u <<Data>>| <<Controls>>
7
mcCoord:Coordinator Strategy +_L
SC_DataOut SC_Control~
! 1 1 .
xAxis:SC 4 yAxis:SC zAxis:SC blastTool:SC |
SensorDataln~ | ActuatorControl
<<Data>> <<Data>> <<Data>> <<Data>> <<Controls>>
3 3 3 : 2 — 1]
Switch Switch Switch Switch eValve

Figure 1. Second stage (1999-2006): ACRoSeT component-based architecture for the XYZ table control unit.

P13 IEEE Robotics & Automation Magazine

MARCH 2009

been translated into KOP programming language function
blocks. On the other hand, the Lazaro climbing vehicle (Table 1)
has been implemented on an embedded PC using the Ada95
language. In this case, the implementation of the components
was much simpler, thanks to 1) the level of abstraction this
language provides and 2) the use of the Active Object [9] archi-
tectural design pattern, which has guided the translation of the
ACRo0SeT components to object-oriented technology.

Using ACRoSeT has enabled us to significantly reduce the
time devoted to system analysis and architectural design by
making it possible to 1) design controllers and their interactions
at a level of abstraction independent of the platform; 2) reuse
the abstract components defined by ACRoSeT in systems that
use different implementation platforms; 3) reuse the same par-
ticular components in systems with different architectures that
share the same implementation platform; and 4) facilitate the
extension of systems with additional functionality by consider-
ably simplifying the addition and substitution of components.

Nevertheless, although the ACRoSeT’s capacity to
describe the architecture of different robotic systems has
brought an improvement in the designs executed by the DSIE,
manual translation of abstract ACRoSeT components into
particular platform-specific components is a difficult and
error-prone task. To give an idea of the size and complexity of
this process, a simple design with only two components offer-
ing two services (e.g., move and stop) is translated to 16

The architecture was implemented
using the Ada95 programming
language.

collaborating objects using the Active Object pattern. In the
case of the mentioned Lazaro vehicle, the implementation of
the ACRoSeT architecture (Figure 2) in Ada would result in
about 50 classes. Therefore, ACRoSeT will only display its full
potential if it is possible to automatically translate abstract com-
ponents into executable code. In our opinion, which is shared
by other members of the scientific community [10], the solu-
tion may be to adopt the MDE approach.

A Metamodel for Components: V3Studio
In light of the situation described earlier, we adopted the
MDE approach to deal with the limitations detected in
ACRo0SeT. This approach is consistent with the model-driven
architecture (MDA) of the Object Management Group
(OMG) and is a highly promising alternative to the traditional
software development process.

MDE proposes the use of models as the principal artifact for
software development, a model being a simplified depiction of
reality that shows only the aspects that are of interest. In this

RC_DataOut RC_Control~
—
A jJ
{1 7
Coordinator]
Strategy J‘:' strConfig
Ot # T ot L ot
] j_] N
- 1 - 1 A A
Vehicle:MC I Manipul:MC I § e
o o IS
. . 8 g
Coordinator | Coordinator | v 3 SC_Control+
v
| |
Wheel:SC _ Axis:SC _
blastTool:SC
\y
I<<Data>> <<Control>> <<Datas>> <<Controls>> <<Datas>> <<Controls>>
|£ L 2| L . L
Encoder eMotor Encoder eMotor Switch eValve
]]]

Figure 2. Second stage (1999-2006): ACRoSeT component-based architecture for the Lazaro Il climbing robot.

MARCH 2009

IEEE Robotics & Automation Magazine (@&}

Software
Architecture, ADLs

CBSE, Frameworks,
Design Patterns

f)
Robotic Framework

UNIFIED
IMODELING
ILANGUAGE

N

OO Language

describing the algorithms executed in states
and transitions). This fact also makes V>Stu-
dio to be easier to use for designers who lack
a thorough knowledge of UML, as it defines
a total of 51 concepts when compared with
more than 200 in UML.

Figure 3 provides a schematic of the
process of developing robotic applications
using V Studio. Each level of the pyramids
represents a model that conforms to the

\ .
M2T metamodel located on the level mentioned
/ earlier; the cycle is closed in the Meta

Object Facility (MOF defined by OMG)

metamodel, which conforms to itself. As

we can see in the left-hand pyramid,

Figure 3. Third stage (2007—-2008): Overview of the \/°Studio development process.

approach, a model is defined in accordance with a metamodel,
which defines the abstract syntax of a modeling language and
establishes the concepts and relationships between them,
including the rules that determine when a model is properly
formed. As a given system can be described by different mod-
els at different levels of abstraction, model transformations are
one of the key issues of this approach.

The use of the MDE approach and its supporting tools and
technologies will allow us to

1) define a metamodel for ACRoSeT that will enable us

to formally define the concepts that are important for
the designer and their relationships. Tools linked to
MDE supply the necessary supporting infrastructure to
create and manipulate models of robotic systems on
the basis of these elements

2) semiautomate the entire development process, from
specification of the architecture to the final generation
of code, thanks to the various model-to-model transfor-
mation (M2M) and model-to-text (M2T) tools. The
highly abstract models can later be specialized by exe-
cuting various different model transformations, until

finally there is a model close enough to the platform to
generate the associated code.

After weighing the advantages and disadvantages of abandon-
ing UML as the principal notation vehicle, it was eventually
decided to 1) define a metamodel for components, called V3Stu-
dio, adapted to the modeling needs imposed by ACR 0SeT rather
than using UML directly and 2) design a development process
that would make it possible to semiautomate the generation of
code associated with the ACR0SeT model. With V>Studio, it is
possible to describe an application’s architecture on the basis of its
components and also the behavior and algorithms that are imple-
mented by these components. V>Studio defines the minimum set
of elements necessary to describe the architecture of applications
and dispenses with all those which experience shows to be
unnecessary. The V’Studio metamodel is divided into three
interrelated views that describe each of the aspects of the applica-
tion listed earlier: one view for the system’s architecture and two
views for the behavior of its components (state machines for
describing component behavior and activity diagrams for

\30 IEEE Robotics & Automation Magazine

V’Studio is the metamodel in which the
building elements of ACRoSeT are
defined. Once the V>Studio model is generated, it can be
directly translated into code (M2T transformation in the left-
hand pyramid), or it can be translated into an object-oriented
model expressed with UML (M2M transformation). Both
transformations can be defined and executed inside the Eclipse
development environment by using the following plug-ins: 1)
the Atlas Transformation Language (ATL) for M2M transfor-
mations and 2) Java Emitter Templates (JET) for M2T
transformations.

The object-oriented model is then automatically trans-
formed into code (M2T transformation in the right-hand
pyramid). The explanation for this last route, which requires
an intermediate transformation step expressed in UML, is that
it is simpler and more convenient to arrive at the final code by
way of such an intermediate transformation than directly. It is
simpler to perform two transformations that gradually lower
the level of abstraction than to perform a single more complex
one. We should stress that, in this development scheme, UML
is not used as a design language; the M2M transformation is
automatic and can be concealed from the end user.

There are other situations in which the direct M2T
transformation (left-hand pyramid) is suitable. These are situa-
tions where the application to be developed allows the use of
any of the existing frameworks (OROCOS, ORCA, etc.),
which are component-oriented in any case. No intermediate
transformation is advisable in these cases.

Figure 4 shows a schematic of the complete process of
developing an application with V>Studio for the XYZ table.
As the figure shows, the development steps are as follows:

Step 1) Design of the application architecture using the architec-
tural view: 1) Define the components’ interfaces
and the services contained in these interfaces; 2)
define the components by assigning interfaces to
the component ports, in the form of offered and
requested interfaces; and 3) proceeds to link up the
components’ compatible ports. The components

may in turn contain other components.
Step 2) Design of the component state machines using the behav-
ior view: For each component, the designer creates
a state machine the

describing component’s

MARCH 2009

(3

Fle Edit Navigate Search Project ATLEditor Run ComponentEditor Disgram Services Samples Window Help
B (& 3ava |

s
= 4 Simple Companent Definition 5C
< PortSC_Sensor

4 Port SC_Motor
< PortSC_State
4 PortSC_Contral
44 platform: fresource MetaV 35tudio/scrModels mesad |
€1 i | 3
'*ET'““"‘F“"“'_J 4 State Machine SC_FSM
N = q) [< Companent AxisY
1 & 4+ Component AxisZ
|CaResopceBet. . ‘ B4 Assembly Link SC_HAL_X_SensorData
= 44 platform: resourceMeta¥ 35tudio jscrModels; @ 4 Assembly Link SC_HAL_X_MatorControl
= 4 Architecture XYZ_Robot &/ < Delegation Link XYZ_SC_State =
= 4 Interface I_Motor_Contral [4 Delegation Link ¥YZ_SC_Contral
4 Service stop_M # 4 Assembly Link SC_HAL_Y_SensorData
4 Service jogh_M - 4 Assembly Link SC_HAL_Y_MotorControl
4 Service jogP_M & 4 Assembly Link SC_HAL_Z_SensorData
= 4 Service moveTo_M i 4 Assembly Link SC_HAL_Z_MotarControl
<+ Service Parameter position #- 4 Assembly Link MC_SC_X
= 4 Interface I_Sensor_Data & 4 Assembly Link MC_SC_Y
= 4 Service getStatus | 4 Assembly Link MC_SC_Z
4 Service Parameter status L platform: i
= 4 Service getSensor L4 platform:
4+ Service Parameter reading)
= 4 Interface I_SC_Data ™
= 4 Service getState e
4 Service Parameter state | ™
4 Interface I_SC_Control [l | @ [
I |ll |
Parent List| Tree | Table Tree with Coumns| | Selection Parent| List | Tree | Table |
Selacted Object: State Machine HAL_FSM - Selected Object: Obj

SC_FSM_Def FSM

Disabled

|

| enable
|

|

| rese

|

|

|

‘component

changeMoveParam

|

conjugate

conjug 1_Sensor_Data

t

conjugate

conjugate

v conjugate

COpA :: moveTo_M

component

conjugate
Hal Real

position

component

XYZ Robot Real

moveTo M _ImplProvCmdSrv

Automaton

Component Def Hal

L] operations
getPort_ Hal Sensor() : Port_|_Sensor_Data

getPort_Hal_Motor() : Port_|_Motor_Control

real

= | Application # hal_component-port_def_hal_motor.adb = | Application'ports_package
| application.ach # " hal_companent-port_def hal_motor.ads # " ports_package.ads
| framewark, ads # " hal_component-port_def_hal_sensor adb. = | Applcationtsc_component

" hal_component-port_def_hal_sensor .ads

_ hal_component.adb
& hal_component.ads

=1 | Applicationlinterfaces_padage
interfaces_package.ads

@ sc_component-part_def sc_c
[| sc_companent-part_def_sc_mator.adb
@ sc_component-port_def sc_motor.ads

Figure 4. Third stage (2007-2008): Example of the \/>Studio development process for the XYZ table. Numbers refer to the
steps of the proposed MDE development process.

MARCH 2009

Magazine

CBD is conceived for the purpose
of speeding up the software
development process.

internal behavior and its reaction to the messages it
receives from other components.

Design of algorithms using the algorithmic view: This
view, based on the UML activity diagrams, de-

Step 3)

scribes the algorithms that will be implemented by
the component depending on its current status.
Step 4) Association of activities and state machines: Once each
of the application’s three views has been separately
defined, it only remains to run the process back-
ward to complete the model. Each state and transi-
tion of the state machines must be associated with
the corresponding activity that describes the algo-
rithm that is implemented whenever the compo-
nent is in that state or triggers that transition.
Step 5) Association of state machines and components: Each
component must be associated with whichever of
the state machines designed in Step 4 defining its
behavior.
Transformation of the V° Studio model to a UML model:
The translation is based into concepts handled by

Step 6a)

object-oriented languages. A set of classes and
additional operations is generated, derived from
the different design patterns that have been used to
perform this translation (mainly Active Object, but
also Composite, Command, Proxy, and others).

Transformation of the V> Studio model to a robotic fiamework:
Alternatively, it would be possible to design transfor-

Step 6b)

mations that generate code for any robotic framework
on the basis of the V°Studio model, since both use
similar concepts (for example, component and con-
nector). This step has not yet been implemented.
Step 7) Tiansformation of a UML model to a programming
language: From the UML model generated in Step 6,
we can directly generate code for any object-oriented
programming language, since that model contains
only concepts used by languages of this type.

One of the requirements imposed on the V’Studio design
was that it facilitates and allows the reuse of models designed in
as many scenarios as possible. Components can therefore be
reused as models in different architectures; state machines can
be reused in different components; and finally, activities can be
reused in different state machines. Moreover, the way in which
a component requests services from other components has
been parameterized. In this connection, the V’Studio caters
for two types of services (synchronous and asynchronous) and
two communication patterns for every case (polling or sub-
scription). In V7Studio, it is also possible to specify concur-
rency policies for the components, indicating whether the
component will have its own implementation thread or, on
the contrary, will it be implemented on its container’s thread.

73 |EEE Robotics & Automation Magazine

This process has been applied to generate code previously
obtained manually. To give the reader an idea of the time sav-
ings, the Ada code corresponding to the ACRoSeT design of
Figure 2 took about a week to one full-time programmer.
With the V’Studio tools, it is simply a process of compilation
that only takes several seconds. Other issue is that the develop-
ment of V Studio has taken several months.

Finally, it should be stressed that designing the software of any
system is a complex task that involves more steps rather than just
the design phase we have described. There are other very impor-
tant phases such as verification and validation of both models and
code, which have not been described because they are outside the
scope of this article. MDE is a relatively new approach that still
has not reached a mature status, and, as such, there are still many
areas that are subject to intense research, such as 1) model verifica-
tion and validation, i.e., how it can be assured that model transfor-
mations produce the correct result and 2) model testing, i.e., how
it can be assured that generated models still conform to applica-
tion requirements, to mention a few. As far as we know, the
MDE approach has not been applied to the field of robotics,
except in small case studies like the one shown here. Nevertheless,
there are important initiatives that are promoting its use [10].

Conclusions

This article relates our experiences over the last 15 years in the
development of robotic applications within the field of service
robotics, using the techniques proposed by software engineer-
ing. The process began with domain engineering and reference
architectures, moved on to component-oriented development,
and currently centered on model-driven design. Table 1 sum-
marizes the ideas and characteristics of the developed robotic
systems as well as the software engineering paradigms that have
been used and described here.

One of the key problems in software development for robotic
systems is that the possibilities of reusing software in new applica-
tions are frequently limited. This means that we are forced over and
over to solve the same problems starting practically from zero every
time. The possible causes of this include the following: 1) robotics
specialists normally concentrate more on developing algorithms
and the way to solve concrete problems than on organizing the
software; 2) lack of good standards for the development of robotic
software and implementations of these standards; 3) the case studies
conducted to demonstrate the viability of software engineering
techniques traditionally deal with information management sys-
tems; and 4) the robotics community see software engineering not
as a solution but as another problem that adds complexity to
already-complex problems.

This research has helped to demonstrate the viability of using
software engineering techniques in real industrial applications,
albeit using academic tools that cannot readily be accepted by
industry. There is a need for the development of commercial tools
incorporating these ideas, particularly CBD and MDE, designed
for the development of robotic applications. Our experience tells
us that software engineering has made a decisive contribution to
improving the quality of our applications and to reducing the
effort entailed in development. Our hopes for the future are basi-
cally pinned on the MDE approach and the development of tools

MARCH 2009

to provide automated support for code generation. One of the
challenges we are facing in the short term is to turn V>Studio into
a robust tool that can be offered to other research groups and is of
more than strictly academic use. In the long term, we plan to
integrate V>Studio with a Software Product Line approach to
define a common architecture for a given family of products. It
will be then possible to derive a concrete architecture for one
product by selecting components (in the form of VStudio mod-
els) from a component repository. After this step, the developer
can use the process described in “A Metamodel for Components:
V’Studio” section to generate the application code.

Acknowledgments

This work has been supported by EU and Spanish Government
research programmes: 5th FP (GROWTH G3RD-CT-00794),
CICYT-FEDER Program (MEDWSA, TIN2006-15175-C05-
02). Additional funds have been supplied by the Government of
Murcia (Fundacion Séneca) and the Spanish Ministry of Industry
(PROFIT programs).

Keywords
Service robots, software engineering, software architectures,
frameworks, model-driven engineering.

References

[1] J. Karlsson, “UN world robotics statistics 1999,” Ind. Robot., vol. 27,
no. 1, pp. 14-18, 2000.

[2] A. Iborra, J. A. Pastor, B. Alvarez, C. Fernandez, and J. M. Fernindez,
“Robots in radioactive environments,” IEEE Robot. Automat. Mag.,
vol. 10, no. 4, pp. 12-22, 2003.

[3] C. Fernidndez, A. Iborra, B. Alvarez, J. Pastor, P Sinchez, J. M. Ferndndez,
and N. Ortega, “Ship shape in Europe: Co-operative robots in the ship
repair industry,” IEEE Robot. Automat. Mag., vol. 12, no. 3, pp. 65-77, 2005.

[4] T. Stahl and M. Véelter, Model-Driven Software Development: Téchnology,
Engineering, Management, 1st ed. New York: Wiley, 2006.

[5] K. Lau and Z. Wang, “Software component models,” IEEE Trans. Soft-
ware Eng., vol. 33, no. 10, pp. 709-724, 2007.

[6] B. Alvarez, P. Sanchez, J. A. Pastor, and E Ortiz, “An architectural
framework for modelling teleoperated service robots,” ROBOTICA Int.
J. Inf- Educ. Res. Robot. Artif. Intell., vol. 24, no. 4, pp. 411-418, 2006.

|7] H. Bruyninckx, “Open robot control software: The OROCOS project,”
in Proc. IEEE Int. Conf. Robotics Automation, 2001, vol. 3, pp. 2523-2528.

[8] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback,
“Towards component-based robotics,” in Proc. IEEE/RS] Int. Conf.
Intelligent Robots and Systems, 2005, vol. 1, pp. 163—168.

[9] D. Schmidt, M. Stal, H. Rohnert, and E Buschmann, Pattern-Oriented
Software Architecture, Patterns for Concurrent and Networked Objects, vol. 2.
New York, Wiley, 2000.

[10] H. Bruyninckx, “Robotics software: The future should be open,”
IEEE Robot. Automat. Mag., vol. 15, no. 1, pp. 9-11, 2008.

[11] E. Coste-Maniere and R. Simmons, “Architecture, the backbone of
robotic systems,” in Proc. 2000 IEEE Int. Conf. Robotics and Automation,
pp. 67-72.

Andrés Iborra received a Ph.D. degree in 1993 and an
M.S. degree in 1989 in industrial engineering from the
Technical University of Madrid. He has worked as a research
engineer in robotics for nuclear power plants during 1993—
1998. In 1998, he joined the DSIE. He is full professor and
the head of the Electronics Technology Department at the
Technical University of Cartagena, where he has been since

MARCH 2009

1998. His current research interests include mechatronic sys-
tems design and analysis, computer vision, robotics, and
engineering education.

Diego Alonso Caceres received an M.S. degree in electri-
cal engineering from the Universidad Politécnica de Valencia
in 2001 and a Ph.D. degree from the Universidad Politécn-
ica de Cartagena in 2008, where he is currently a lecturer.
He joined the DSIE in 2004. His research interests focus on
the application of the model-driven engineering approach
and to the development of component-based reactive sys-
tems with real-time constraints.

Francisco J. Ortiz received his Ph.D. degree in industrial
engineering from the Technical University of Cartagena,
Spain, in 2005. Since 1999, he has participated in different
projects focused in computer-assisted surgery, service robotics,
and software engineering in the DSIE. He is currently an
associate professor at the Electronics Technology Department
of the Technical University of Cartagena. His research inter-
ests include mechatronic systems design, software architectures
for robotics, and model-driven engineering,.

Juan Pastor Franco received his Ph.D. degree in telecom-
munication engineering from the Technical University of
Cartagena, Spain, in 2002. He is currently an associate
professor at the Technical University of Cartagena in the
field of computer science. He has worked as a research engi-
neer in robotics for nuclear power plants from 1995-2000.
In 2000, he joined the DSIE. His research interests include
mechatronic systems design and analysis, robotics, design
patterns, and model-driven development.

Pedro Sanchez Palma received his Ph.D. degree in
computer science from the Technical University of Valencia,
Spain, in 2000. Since 1996, he has participated in different
projects focused on software engineering and conceptual
modeling. In 2000, he joined the DSIE. He is currently an
associate professor at the Technical University of Cartagena
in the field of computer science. His current research inter-
ests include model-driven engineering, real-time systems,
and conceptual modeling.

Barbara Alvarez received his Ph.D. degree in telecommu-
nication engineering from the Technical University of
Madrid, Spain, in 1997. Since 1995, she has participated in
different projects focused in robotics applications for the
industry. In 1998, she joined the DSIE. She is currently an
associate professor at the Technical University of Cartagena
in the field of computer science. Her research interests
include real-time systems and software architectures for tele-
operation and computer vision systems.

Address for Correspondence: Andrés Iborra, Universidad
Politécnica de Cartagena, Division de Sistemas e Ingenieria
Electrénica (DSIE), Campus Muralla del Mar, s/n. Cartagena
E-30202, Spain. E-mail: andres.iborra@upct.es.

IEEE Robotics & Automation Magazine (E¥j

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

