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Introduction

Health economists have adopted the Gini coefficient and concentration indices to

provide summary measures of inequalities of health within populations (see e.g.

Wagstaff et al, 1989, 1991, 1994, and van Doorslaer et al. 1997). A recent contribution

by Wagstaff et al. (2002) has shown how a linear regression approach can be used to

decompose these indices into the contributions of different explanatory variables. The

decomposition treats individual responses to these explanatory variables (the slope

coefficients) as homogeneous across individuals. In this paper we show how the

decomposition can be expanded to allow for individual heterogeneity and we illustrate

the method with an application to the measurement of health inequality using the

Canadian National Population Survey of 1994. This survey has been used recently by

van Doorslaer and Jones (2002) for research that requires the application of Wagstaff et

al. (2002) methodology and therefore provides a benchmark for our results. We find that

the heterogeneity of individual responses accounts for 51% of the observed Gini

coefficient and 18% of the observed concentration for health.

We allow for heterogeneity in individual responses by means of a method based on

quantile regression. This technique is gradually becoming a standard econometric

procedure in situations where estimation of the conditional mean function is not enough

to capture the full pattern of associations between the dependent variable and the

covariates over the distribution of the former (see e.g. Koenker and Basset, 1978 and

Buchinsky, 1994). Recent work has used quantile regression in order to estimate a

model of heterogeneous returns to schooling. Arias et al. (2001) argue that quantile

regression allows more flexibility than a random coefficients model in these

circumstances. The technique can also retrieve causal effects, as shown in the work of

Abadie et al. (2002), who use quantile regression to capture the heterogeneous pattern

of treatment effects of a youth training program. Despite its attractions, however, there

are not many applications of quantile regression in health economics with the exception

of Manning et al. (1995) and Abrevaya (2001). The latter provides evidence that

illustrates the relevance of quantile regression in the context of our analysis of health

inequality. Its object of study is the relationship of a health outcome (birthweight) with
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a series of demographic variables. As in Abrevaya’s work, we find that the effect of

explanatory variables varies systematically over the distribution of health. In particular,

our analysis shows that income has a positive and significant marginal effect for

individuals in the bottom of the health distribution and a zero marginal effect on healthy

individuals.

The structure of the paper is the following. In section 2 we show how the decomposition

of the Gini index and the concentration indices into the contributions of different

explanatory variables in a regression model can be modified to incorporate individual

heterogeneity in all the coefficients. In section 3 we illustrate how the quantile

regression model allows the estimation of heterogeneous responses. Section 4 discusses

the main features of the data set used in this study. Section 5 presents and discusses the

estimates from the quantile regression model and section 6 reports the decomposition of

the inequality measures using these estimates. Section 7 concludes.

2.   Regression based decompositions of inequality

The departure point for our methodology is the decomposition of inequality measures

into the contributions of different explanatory variables by means of a linear regression

model (see e.g., Wagstaff et al., 2002). Suppose we are interested in calculating the Gini

coefficient for a measure of health using individual data in a sample from the population

of interest. Let yi denote a measure of health for the ith individual and Ri denote the

cumulative proportion of the population ranked by yi up to the ith individual (the

‘relative rank’). Ignoring, for expositional purposes, the fact that in general sampling

weights will be necessary, the Gini coefficient, G, for health is given by (see e.g.,

Lambert, 1994 p.43, van Doorslaer and Koolman, 2000),
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(1)

Now let yi be given by the following linear regression model

(2)

By substituting this for yi, the Gini index of y can be written as (see Wagstaff et al.,

2002),

(3)

where the first term in brackets is the elasticity of y with respect to xk evaluated at the

mean of the sample, and Ck is the concentration index of xk on y. The latter expression

can be easily modified to obtain the concentration index of y against another variable of

interest. For instance, the concentration index, CI, of health against income would be

computed according to

(4)

where C’k denotes the concentration index of xk against income and R’i is the

cumulative proportion of the population ranked by income up to the ith individual.

Thus these inequality measures can be decomposed into an “explained part” and an

“unexplained part” (see Wagstaff et al., 2002). The “explained” part can be usefully

broken down into the contributions of individual explanatory variables. As for the

“unexplained” part, it is a scaled measure of the covariance of the residuals in the
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regression model with the position of the individual in the distribution of the variable of

interest. As such, the unexplained part should be zero if the regression model for the

measure of health is specified in a way such that there is no systematic variation in

unobserved heterogeneity in health according to the position of the individual in the

distribution of the relevant variable.

However, the pervasive presence of unobserved heterogeneity in econometric models

for cross sectional data, as reflected by low coefficients of determination, would lead to

the suspicion that the unexplained part in these regression based inequality measures

might be non-trivial. For example, Heckman (2001) argues that;

“..the most important discovery was the evidence on the pervasiveness of heterogeneity

and diversity in economic behaviour…not only were intercepts variable but so were

slopes..”

Indeed, recent work by Van Doorslaer and Jones (2002), using the Canadian National

Population Health Survey of 1994, shows that while a regression model for health

explains up to a 96% of the concentration index, only 48% of total inequality in health,

as measured by the Gini index, can be explained by the same model.

We now propose a method that deals with unobserved heterogeneity, while retaining the

useful summary information provided by the regression approach. A very general way

to allow for individual heterogeneity is by means of a regression model for the health

variable with heterogeneous parameters. Thus, the regression model can be modified to

yield,

(5)

where all the parameters in the model are individual specific. Note in particular that the

intercepts in this model, βi1, comprise both unobserved systematic individual effects and

unsystematic pure random errors. If we substitute equation (5) into (1) we obtain the

following expression for the Gini index (see the Appendix for a full derivation),
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(6)

The first term of this equation is exactly the same as the first term in equation (3) when

model (2) is estimated by OLS. The residual term in equation (3) is now split into two

components given by the second and third terms in equation (6). The second term is the

contribution to overall inequality of the covariance (weighted by the values of xk) of the

slope parameters with the health rank. The third term is simply the covariance of the

intercepts (centered at the OLS intercept coefficient) with the health rank.

Similarly, the concentration index for health can be written as,

(7)

Each component has a similar interpretation to the Gini coefficient, with health rank, R,

replaced by income rank, R’. The first term is identical to the first term in (4) and the

second two terms decompose the generalised concentration index of the residual,

allowing for heterogeneity.

3.   Identification and quantile regression

The decompositions introduced in the previous section rely on individual specific βi’s.

To apply these in practice requires an estimator that allows for heterogeneous response.

The approach we use is based on quantile regression.

Let θi denote the position that the ith individual occupies in the distribution of health

conditional on Xi. That is, if F(Y|X) is the CDF of the distribution of health conditional

on observed characteristics,
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(8)

It follows that,

(9)

Where Qθ(Y|X) denotes the θth quantile of Y conditional on X. We now make the

following identifying assumption,

(10)

In particular, if we assume the conditional quantile functions to be a linear combination

of the regressors, the vector βi is identified by the coefficients of the θi
th conditional

quantile of function. That is,

(11)

It is important to note that, when making this assumption, we are interpreting the

intercept terms as systematic unobserved heterogeneity. This could be problematic in

the presence of pure random noise but in a cross section it is not possible to separate one

from the other. Our approach is the polar case with respect to OLS, where the totality of

the error term is assumed to be unsystematic.
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In order to estimate the conditional quantile functions, note that for any θ we may

define the θth quantile residual for the ith individual as,

iii Xy θ
θ ωβ =− '

(12)

and search for the values of βθ that minimise some criterion function of these residuals.

In particular Koenker and Basset (1978) show that βθ can be estimated consistently by

the following algorithm based on the Least Absolute Deviation criterion,

(13)

Thus in theory we could estimate our model of heterogeneous parameters by first

computing θi for each individual and subsequently estimate the conditional quantile

function for each one of the different values of θ obtained in the first step. As this would

require constructing cells for each set of unique values of the conditioning variables and

choosing an arbitrary level of accuracy for θ, our practical strategy consists in first

choosing randomly a large number of values for θ from the (0,1) interval. For each of

these values we estimate the parameters of the conditional quantile function and assign

to each individual the coefficients of the quantile function that, given his or her

characteristics, minimises the absolute difference between the observed value of health

and the predicted value of health. This criterion can be stated formally as,

(14)

Therefore our estimated model of heterogeneous parameters can be written as,

(15)

where ξi is an estimation residual.
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4. Data

The data used in this paper are taken from the first wave (in 1994-1995) of the Canadian

National Population Health Survey (NPHS).  The target population of the NPHS

includes household residents in all provinces, with the exclusion of populations on

Indian Reserves, Canadian Forces Bases and some remote areas of Ontario and Quebec.

A total of 26,430 households were selected for the survey. In each household, a

randomly selected household member, aged 12 years or older, was selected for a more

in-depth interview.  This interview included questions on health status, risk factors, and

demographic and socio-economic information. The data were weighted using the survey

weights to adjust for the complex multi-cluster sample design of the NPHS.  Detailed

information about the NPHS content and sample design has been published elsewhere

(e.g. Tambay and Catlin, 1995) and the sample has been used in previous analyses of

inequality in health by Humphries and van Doorslaer (2000) and van Doorslaer and

Jones (2002).

A particular attraction of the NPHS is that it contains a continuous measure of health

status that is suitable for regression and decomposition analysis. This is the McMaster

Health Utility Index (HUI). Each respondent was assigned a HUI score based on their

response to the questions of the eight-attribute Health Utility Index Mark III health

status classification system. The HUI is a generic health status index, developed at

McMaster University, that measures both quantitative and qualitative aspects of health

(Feeny et al. 1995; Torrance et al. 1995, 1996). It provides a description of an

individual’s overall functional health, based on eight attributes: vision, hearing, speech,

ambulation, dexterity, emotion, cognition, and pain. The HUI assigns a single numerical

value, between zero and one, for all possible combinations of levels of these eight self-

reported health attributes.  A score of one indicates perfect health.

Total income before taxes and deductions is measured in the NPHS as a categorical

variable with 11 response categories. The two lowest income groups- no income and

less than $5,000- were combined into one group, thus reducing the number of income

categories from 11 to 10.  The midpoint of each income category was then attributed to

all households in that category and subsequently divided by an equivalence factor equal
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to (number of household members)0.5, to adjust for differences in household size. The

income values assigned for the top and bottom groups were Can$2,500 and

Can$87,500.00 respectively.

Other health determinants included in the analysis are the following. (i) Education level,

the highest level of general or higher education completed is available at three levels:

recognised third level education (ISCED 5-7), second stage of secondary level of

education (ISCED 3) and less than second stage of secondary education (ISCED 0-2));

(ii) Marital status distinguishes between married, separated/divorced, widowed and

unmarried (including co-habiting); (iii) Activity status includes employed, self-

employed, student, unemployed, retired, housework and ‘other economically inactive’.

The NPHS has a complex multi-stage stratified sampling design. In order to keep the

sample representative of the Canadian adult population, sampling weights are used in all

analyses.

 5.  Regression results

We estimate the conditional quantile functions at 75 different quantiles, chosen

randomly over the interval (0,1), and also the conditional mean function by OLS. A

convenient way to summarise the information provided by such a large set of

parameters is by means of graphical display. Figure 1 shows the quantile regression and

the OLS estimates for a selection of 16 variables from the right hand side in the HUI

equation. For each of the selected variables we plot the values of the quantile regression

coefficient, together with the upper and lower bounds of its 95% confidence interval,

over the (0,1) range. The three horizontal lines in the graphs represent the OLS

coefficient and the upper and lower bounds of its 95% confidence interval.

The graph for the intercept term (which estimates the quantiles of the distribution of

health conditional on the characteristics of the reference individual) is in the top left

panel of Figure 1. This shows that the quantile regression point estimates increase over
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the HUI distribution and reach the value of 1 (maximum health) at approximately

θ=0.7. Note also that for θ<0.25 and θ>0.5 the confidence interval for the quantile

regression estimate does not overlap with that of the OLS estimate.

Focus now on the graph for the coefficient on the logarithm of equivalised household

income. Here we find that the point estimate decreases over the distribution of health

and reaches a zero effect at approximately θ=0.5. This suggests that, for the healthiest

half of the population, increases in household income are not associated to increases in

health. Conversely, for θ<0.25 the quantile regression point estimate lies above the

confidence interval for the OLS estimate (although the confidence intervals overlap)

suggesting that the OLS estimate understates the effect of income on less healthy

individuals. These features of the data are also represented in Figure 2, which plots the

predicted relationship between health and equivalised household income for different

parts of the health distribution. Note that the predicted schedule for θ=0.05 is steeper

than the rest of the plotted schedules. In fact, the relationship implied by the OLS

estimate becomes practically flat at a relatively low level of income. The horizontal line

at the top of the graph corresponds to the predicted schedule for θ=0.75, again

suggesting that for healthy individuals the marginal effect of income on health is zero.

Look now at the coefficients for the education dummy variables. The specification

omits the highest educational category and the OLS coefficients are all negative and

significantly different from zero (except educ3, whose confidence interval includes 0).

This conforms with the intuitive idea that more educated individuals will have better

health. The quantile regression coefficients are consistent with this idea only to a

limited extent; they are zero for values of θ above 0.5 (educ2 and educ4) or 0.7 (educ1).

Furthermore, the OLS coefficient understates the association of education and health at

low levels of health.

The coefficient on the dummy for disability provides perhaps the best example of the

limited ability of OLS on the level of HUI to capture the heterogeneous pattern of

effects over the health distribution. Again, the OLS coefficient underestimates the

(negative) effect of disability on the health measure in the bottom part of the
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distribution while it overestimates the effects at the top part of the distribution. In this

case the confidence intervals only overlap for values of θ between 0.35 and 0.55.

Figure 1 contains graphs for other variables whose association with health varies over

the distribution such as the dummy controlling retirement or the dummy controlling

marital status, for which the plot suggests a positive association with health in the low

part of the health distribution. In other cases, such as the dummy controlling the female

75 to 79 age group, the confidence interval for the OLS includes almost the whole series

of quantile regression estimates. The overall conclusion to be drawn from Figure 1 is

that a model that imposes homogeneous coefficients does not capture many important

features of the data. Moreover, there seems to be a systematic relationship between the

coefficients and the health rank, which suggests that parameter heterogeneity has a role

in the explanation of health inequality.

Recall that, before proceeding to compute and decompose inequality measures, we need

to assign a particular conditional quantile function to each individual according to

expression (14). It is useful then at this stage to evaluate the “goodness of fit” of this

procedure against the benchmark provided by the OLS predictions. Figures 3 and 4

present the model predictions against the actual values of HUI using the OLS estimates

and the quantile regression estimates respectively. The 45o line traces the actual values

of HUI and the scatter of points around it correspond to predicted values. The

comparison is, not surprisingly, favourable to the model with heterogeneous parameters.

Indeed, the unadjusted R-squared from the OLS predictions is 22% while that derived

from the quantile regression model predictions is 95.3%.

6.  Decomposition analysis

We now use the parameter estimates discussed in the previous section in order to

calculate and decompose the Gini coefficient and concentration indices for HUI. Table

1 presents the results for the decomposition of the two measures of inequality into:
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i) the contribution of the product of the OLS elasticities and the concentration

indices of the regressors on health rank (or income rank in the case of the CI),

ii) the contribution of the covariance of the slope parameters with the health rank

(or income rank in the case of the CI),

iii) the contribution of the covariance of the intercept parameters with the health

rank (or income rank in the case of the CI) and

iv) a residual corresponding to the covariance of the approximation errors in the

heterogeneous parameters model with the health  rank (or income rank in the

case of the CI).

Table 1. Summary of decomposition analysis of Gini and concentration indices

Actual OLS Heterogeneous Slopes Heterogeneous
Intercepts

Residual

Contrib. % Contrib. Contrib. % Contrib. Contrib. % Contrib. Contrib. % Contrib.
G=0.0678 0.0151 22.26% -0.0347 -51.19% 0.0830 122.44% 0.0044 6.48%
CI=0.0141 0.0135 95.83% -0.0026 -18.47% 0.0033 23.44% -0.0002 -1.15%

In Tables 2 and 3 we present the contribution of each explanatory variable to the

inequality measures.
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Table 2. Contribution of explanatory variables to Gini index.

Regressor OLS Heter. Parameters Total for regressor
Contrib %Contrib Contrib. %Contrib Contrib. %Contrib

Lincome 0.0005 0.77% -0.0540 -79.68% -0.0535 -78.91%
Educ1 0.0015 2.23% 0.0009 1.28% 0.0024 3.51%
Educ2 0.0003 0.47% 0.0013 1.97% 0.0017 2.44%
Educ3 0.0000 -0.07% 0.0004 0.65% 0.0004 0.58%
Educ4 -0.0001 -0.16% 0.0020 2.97% 0.0019 2.81%
Househ 0.0002 0.28% 0.0024 3.58% 0.0026 3.86%
Student 0.0000 -0.03% 0.0000 0.04% 0.0000 0.01%
disabled 0.0062 9.11% 0.0019 2.78% 0.0081 11.89%
unemploy 0.0000 0.01% 0.0003 0.37% 0.0003 0.38%
Retired 0.0016 2.43% 0.0041 6.00% 0.0057 8.43%
Other 0.0000 0.05% 0.0003 0.43% 0.0003 0.47%
Married 0.0001 0.21% -0.0032 -4.66% -0.0030 -4.45%
Div_wid 0.0002 0.31% 0.0004 0.66% 0.0007 0.97%
m20_24 0.0001 0.13% 0.0000 -0.05% 0.0001 0.08%
m25_29 0.0000 -0.03% 0.0001 0.20% 0.0001 0.17%
m30_34 -0.0001 -0.17% 0.0005 0.79% 0.0004 0.62%
m35_39 -0.0001 -0.09% 0.0004 0.59% 0.0003 0.50%
m40_44 -0.0001 -0.11% 0.0004 0.66% 0.0004 0.55%
m45_49 0.0000 0.02% 0.0006 0.82% 0.0006 0.85%
m50_54 0.0001 0.15% 0.0003 0.46% 0.0004 0.61%
m55_59 0.0002 0.23% 0.0001 0.18% 0.0003 0.41%
m60_64 0.0001 0.20% 0.0002 0.34% 0.0004 0.54%
m65_69 0.0001 0.21% 0.0001 0.17% 0.0003 0.39%
m70_74 0.0003 0.41% 0.0002 0.36% 0.0005 0.76%
m75_79 0.0002 0.25% 0.0001 0.20% 0.0003 0.45%
m80_ 0.0006 0.92% 0.0003 0.47% 0.0009 1.39%
f15_19 0.0000 0.00% 0.0001 0.09% 0.0001 0.09%
f20_24 0.0000 -0.07% 0.0002 0.36% 0.0002 0.29%
f25_29 -0.0001 -0.08% 0.0002 0.36% 0.0002 0.29%
f30_34 -0.0001 -0.11% 0.0005 0.80% 0.0005 0.69%
f35_39 -0.0001 -0.13% 0.0006 0.96% 0.0006 0.83%
f40_44 -0.0001 -0.14% 0.0008 1.21% 0.0007 1.07%
f45_49 0.0003 0.45% 0.0007 1.00% 0.0010 1.45%
f50_54 0.0002 0.32% 0.0004 0.64% 0.0007 0.96%
f55_59 0.0003 0.40% 0.0003 0.42% 0.0006 0.83%
f60_64 0.0002 0.32% 0.0001 0.10% 0.0003 0.42%
f65_69 0.0004 0.64% 0.0001 0.16% 0.0005 0.80%
f70_74 0.0004 0.63% 0.0001 0.22% 0.0006 0.85%
f75_79 0.0005 0.67% 0.0003 0.44% 0.0007 1.10%
f80_ 0.0011 1.62% 0.0003 0.48% 0.0014 2.10%
Total slopes 0.0151 22.26% -0.0347 -51.19% -0.0196 -28.93%
Intercept 0.0830 122.44% 0.0830 122.44%
Total Parameters 0.0634 93.51%
Residual 0.0044 6.48%
Actual 0.0678 100.00%
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Table 3. Contribution of explanatory variables to Concentration  Index.

Regressor OLS Heter. Parameters Total for regressor
Contrib %Contrib Contrib. %Contrib Contrib. %Contrib

Lincome 0.0040 28.55% -0.0033 -23.13% 0.0008 5.42%
educ1 0.0017 12.20% -0.0004 -2.58% 0.0014 9.62%
educ2 0.0008 5.58% -0.0002 -1.68% 0.0005 3.90%
educ3 0.0000 0.10% 0.0000 -0.01% 0.0000 0.09%
educ4 -0.0001 -0.88% 0.0001 0.74% 0.0000 -0.15%
Househ 0.0007 5.29% 0.0002 1.57% 0.0010 6.86%
Student 0.0000 0.14% 0.0000 -0.13% 0.0000 0.00%
Disabled 0.0029 20.46% 0.0002 1.37% 0.0031 21.83%
Unemploy 0.0002 1.10% 0.0000 0.12% 0.0002 1.22%
Retired 0.0012 8.62% 0.0005 3.88% 0.0018 12.50%
Other 0.0001 0.66% 0.0001 0.61% 0.0002 1.27%
Married 0.0004 2.93% -0.0002 -1.22% 0.0002 1.72%
div_wid 0.0002 1.74% 0.0000 0.06% 0.0003 1.80%
m20_24 0.0000 0.02% 0.0000 0.06% 0.0000 0.08%
m25_29 0.0000 -0.05% 0.0000 0.05% 0.0000 0.00%
m30_34 -0.0001 -0.40% 0.0001 0.36% 0.0000 -0.03%
m35_39 0.0000 -0.09% 0.0000 0.07% 0.0000 -0.03%
m40_44 -0.0001 -0.60% 0.0000 0.11% -0.0001 -0.48%
m45_49 -0.0003 -2.14% 0.0001 0.59% -0.0002 -1.55%
m50_54 -0.0002 -1.75% 0.0000 -0.13% -0.0003 -1.88%
m55_59 -0.0002 -1.14% 0.0000 -0.25% -0.0002 -1.40%
m60_64 0.0000 0.29% 0.0000 0.05% 0.0000 0.34%
m65_69 0.0001 0.74% 0.0000 -0.33% 0.0001 0.41%
m70_74 0.0001 0.87% 0.0000 -0.04% 0.0001 0.83%
m75_79 0.0002 1.28% 0.0001 0.36% 0.0002 1.64%
m80_ 0.0003 2.43% 0.0000 0.34% 0.0004 2.77%
f15_19 0.0000 0.02% 0.0000 0.08% 0.0000 0.10%
f20_24 0.0001 0.52% 0.0000 0.03% 0.0001 0.55%
f25_29 0.0000 0.10% 0.0000 0.05% 0.0000 0.15%
f30_34 0.0000 0.15% 0.0000 -0.08% 0.0000 0.07%
f35_39 0.0000 0.09% 0.0000 0.20% 0.0000 0.28%
f40_44 -0.0001 -0.77% 0.0001 0.54% 0.0000 -0.23%
f45_49 -0.0003 -2.33% 0.0001 0.95% -0.0002 -1.38%
f50_54 -0.0002 -1.60% 0.0001 0.71% -0.0001 -0.89%
f55_59 -0.0001 -0.59% 0.0000 -0.07% -0.0001 -0.66%
f60_64 0.0002 1.24% 0.0000 0.03% 0.0002 1.26%
f65_69 0.0003 2.28% -0.0001 -0.60% 0.0002 1.68%
f70_74 0.0003 2.47% 0.0000 -0.32% 0.0003 2.15%
f75_79 0.0004 2.56% 0.0000 -0.25% 0.0003 2.32%
f80_ 0.0008 5.75% -0.0001 -0.42% 0.0008 5.33%
Total slopes 0.0135 95.83% -0.0026 -18.30% 0.0109 77.53%
Intercept 0.0033 23.44% 0.0033 23.44%
Total Parameters 0.0142 100.97%
Residual -0.0002 -1.15%
Actual 0.0141 100.00%
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Recall the expressions for the decompositions of the Gini coefficient and the

concentration index in (6) and (7). As demonstrated by Wagstaff et al. (2002), the

contributions to the “OLS decomposition” depend on the product of the elasticity of

health with respect to each explanatory variable and the concentration index for each

variable, which in turn depend on the scaled covariance between the variable and the

relative rank of health or income. The OLS decomposition treats the elasticity as

homogeneous across individuals as it is evaluated at the OLS estimation of βk and the

mean of y and xk. In table 1 the OLS components account for 26% of the observed Gini

coefficient and 96% of the concentration index of health on income. These contributions

show how the variation in the explanatory variables influences the Gini coefficient or

the concentration index when the slope coefficients are constant. These figures are

comparable to the results obtained by van Doorslaer and Jones (2002, Table 3a ) in their

decomposition of the Gini index and the concentration index using the same data and

explanatory variables. In fact, they report an explained Gini of 0.0326 rather than our

equivalent figure of 0.0151 because their computation uses the rank for predicted HUI

rather than actual HUI. Thus the decomposition method that does not allow for

heterogeneity in individual responses performs well for the concentration index of

health on income, but it offers a less complete picture for overall health inequality as

measured by the Gini index.

The second component of the decomposition shows how heterogeneity in the slope

coefficients modifies the contribution to inequality of the explanatory variables. The

figures in table 1 show that heterogeneity in responses reduces the Gini coefficient by

51% and the concentration index by 18%. The impact of income is of particular interest

in this reduction of health inequality. Tables 2 and 3 show that heterogeneity in the

income effect result in the Gini coefficient and the concentration index being smaller

than what they would be if everyone had the average income slope coefficient all else

held equal. In particular tables 2 and 3 suggests that the Gini coefficient and the

concentration indices would be, respectively, 80% and 23% greater if the marginal

effect of income was homogeneous in the population. This makes intuitive sense. The

OLS results in Figure 2 show that the use of the logarithm of income captures concavity

in the relationship between HUI and income, supporting the notion of diminishing
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marginal returns on average. However, allowing for variation around the conditional

mean function due to individual heterogeneity shows that there is “excess” curvature

(i.e. additional concavity). The individual heterogeneity inherent in the data implies

greater concavity in the relationship between individual income and health than in a

world where all individuals have the same response to income, with the elasticity given

by the OLS estimates. This extra concavity reduces health inequality. Indeed, as

Contoyannis and Forster (1999) show, for a given level of income inequality, the more

concave is the relationship between income and health, the smaller is the level of health

inequality.

The contribution of the heterogeneous intercepts is interpreted as the effect of

unobserved heterogeneity. If the explanatory variables were not related to the level of

health, these figures tell us that the Gini index would be 22% greater than the actual

value but, on the other hand, the concentration index would be 77% smaller than the

actual value. Table 3 suggests that, apart from income itself, the main correlates of

income related health inequality are disability and retirement.

7. Summary and conclusion

In this paper we have shown how the regression based methods for the decomposition

of health inequality developed by Wagstaff et al. (2002) can be extended to incorporate

individual heterogeneity in the responses of health to the explanatory variables. We

have illustrated our proposal with an application to the Canadian NPHS of 1994. Our

strategy for the estimation of heterogeneous responses is based on the quantile

regression model.

 The results suggest that there is an important degree of heterogeneity in the association

of health to explanatory variables which, in turn, accounts for a substantial percentage

of the inequality in observed health. A particularly interesting finding is that the

marginal effect of income on health is zero for healthy individuals but positive and

significant for unhealthy individuals. The heterogeneity in the income response reduces

both overall health inequality and income related health inequality. This suggests that
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considering the possibility of heterogeneity in health responses, which can be done in

situations where a continuous measure of health is available, is likely to provide a fuller

picture of both overall and income related health inequality than assuming

homogeneity.
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Appendix

Substituting equation (5) into (1) we obtain,

Since

we can write after some manipulation,

Collecting terms and changing the order of summation,

Noting that the concentration index of xk on y is given by,
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And considering β1
OLS a measure of central tendency for βi1, we finally obtain equation

(6) in the main text,
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Figure 1. Quantile regression coefficients and OLS coefficients with 95% confidence

intervals
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Figure 2. Health-income relationships implied by the quantile regression estimates

and the OLS estimates.
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Figure 3. Actual and predicted values for HUI. Homogeneous (OLS) regression

model.
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Figure 4. Actual and predicted values for HUI. Heterogeneous (quantile) regression

model.
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