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ABSTRACT 

The problem of load modeling for Demand Side 
Management ( E M )  purposes is addressed in this paper. 
The proposed load models rely on information about both 
the physical characteristics of elemental load devices 
at the distribution level, and usage statistics of these 
devices. 

Although the class of models discussed here has 
been previously proposed in the literature, its 
suitability for D S M  purposes is definitely established 
by showing how the models can be a tool for real E M  
actions evaluation. Some results are shown. 

1. - INTBODUCTION 

The use of Demand-Side Management (DSM) 
alternatives is gaining adepts between utilities and 
distribution companies in order to achieve a better 
operation of the Electric Power System. 

Two different approaches may be used to cope with 
the growth of the demand in an Electric Power System. 
The first one is to expand the Power System so that the 
new energy requirements can be met (Supply-Side policy). 
The second one is to try to influence the electric 
energy consumption so as to reduce the investment 
requirements (Demand-Side policies). 

Demand Side Management has been defined as 
those activities oriented to influence customer uses of 
electricity in ways that will produce the desired 
changes in the load shape [ l l .  We will refer to  the 
Control actions directly performed upon the customer 
loads as Load Management (LM) actions. 

The reason for considering the possibility of 
influencing the customer uses must be found in the 
continuous rise in the cost of electricity and 
equipment, the availability of the required technology, 
more severe environmental constraints on power system 
generat ion, transmission and expansion, and the 
necessity to offer new options to the customer. 
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The consequences of E M  for the utility are a 
better use of its Power System, and hence a deferral of 
the need of new investments, whereas for the customer 
they represent the possibility of benefiting from 
reduced fares. 

Typical DSM objectives include Peak Clipping, 
Valley Filling, load Shifting and Strategic Conservation 
and Growth. 

Voltage reduction is a typical LM action that has 
been traditionally used by the utility for power peak 
consumption reduction. 

Some other actions need to be considered as 
potential LM control actions, mainly those related to 
the possibility of end-user load shedding: load 
interruption and load cycling. 

Obviously, the possibility of performing these 
kinds of actions upon the consumers must be attached to 
a flexible rates policy. 

One of the most critical problems when considering 
the application of DSM by the utility is to be able to 
assess whether this policy is going to produce the 
desired effects or not. Thus, in order to evaluate the 
DSM policies, it is necessary to have load models that 
can fulfill at least two objectives: First they should 
provide the necessary information to evaluate the 
benefits obtained through the use of the D S M  and, 
secondly, they must allow the evaluation of every 
control action from the end-customer side, for example, 
through the evaluation of some "comfort index". 

These comfort indices, in conjunction with a proper 
rates structure, can become very important in securing U 

high level of acceptance of DSM policies among the 
customers. 

The load models we are about to discuss in this 
paper have appeared earlier elsewhere in the literature 
[61, [71, [81, [91 and [121. However, due to their 
relative mathematical sophistication, their potential 
practical usefulness has remained largely unsuspected. 
The main goal of this paper is an attempt at correcting 
the above situation. 

These models are being tested by the authors with 
encouraging results. However we chose not to report them 
in this paper because lack of space. 

The paper is organized as follows: constraints on 
the load modeling problem are analyzed in section 2. The 
model building approach to be used is reviewed and 
compared with other proposed methodologies in section 3. 
Section 4 is devoted to the application of the models in 
LM. Numerical results are shown in section 5. Finally, 
in section 6, conclusions are drawn and directions for 
further research proposed. 
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2.- CONSTRAINTS ON THE LOAD WDELINC PRDBLEn 

Two different kinds of models can be considered for 
the electric load consumption: 

Denand Hodels, where the object is to model the 
load behavior with respect to time. 

The load demand modeling problem has been 
traditionally approached, for Power System purposes, by 
the use of large amount of past information filtered 
through some statistical techniques (Time Series 
Analysis) [21, [31. 

The main field of application of short term demand 
models has been Automatic Generation Control (Am), 
where highly diversified load aggregates are modeled. 

Response Ilodels. where the object is to 
characterize the behavior of the load when some changes 
in the external inputs to the load (such as voltage, 
frequency, operating state,etc) are to be considered. 

The main field of application has been stability 
studies . 

Both types of models need to be considered jointly 
for the purposes of this paper. Indeed, it is necessary 
to know how the demand is going to evolve during the 
period in which the control actions are to be performed. 
Also, the way in which the load is going to react 
against a given DSM action is basic for the evaluation 
and selection of that particular action. 

Two special characteristics are specific to the 
modeling problem considered here: 

1.- The aggregation level is very low. Only several 
a control hundreds of KW and KVAR are to be grouped in 

group. 
2.-The transient behavior of the control groups 

cannot be neglected. In fact, it is essential that the 
model accounts for that behavior with reasonable 
accuracy. 

Although some important attempts 141 have been made 
to include some parameters in the Time Series approach, 
such a methodology cannot be applied to solve the 
modeling problems discussed in this case mainly for the 
following reasons: 

1.- As the aggregation level is quite reduced, 
typical ARMA (Auto Regressive Moving Average) models 
will not work very well. 

2 . -  Since LM actions take the power system outside 
its "ordinary" state, regression analysis based models 
which have to rely on "ordinary" load data are 
inadequate . As a result, no identification of the 
result of control actions can be carried out, unless one 
sets up specific experiments to do so. Even if this were 
possible, the results would be valid only under the 
weather conditions of the experiments 

3.- The model structures developed under such 
approaches are not necessarily exportable to other 
distribution environments. 

3.- BASIC MAD lylDEL 

The most promising avenue for handling the problem 
of load modeling for E M  purposes is thus to consider 
Physically Based [SI, 161 modeling methodologies, where 
the problem is decomposed into two subproblems: Modeling 
loads, at the elemental level, and subsequently devising 
schemes to aggregate these elemental load models 
efficiently. 

The load modeling scheme used in this paper is 
based in the one proposed by Chong and Debs [71, and 
subsequently developed and improved by R. Malhamb and 
Chong [SI, [SI and Malhame [121. 

There has been considerable (and relatively recent) 
activity in the field of physically-based analytical 
load modeling methodologies for Load Management 
purposes. An excellent survey which unifies various 
modeling viewpoints can be found in Mortensen and 
Haggerty [ill. The approach recommended by these authors 
is the one closest in spirit to ours. They have 
formulated some concerns about the numerical complexity 
of our models. Thus, after a brief review of our own 
work, and while appreciating their insight into the 
problems we shall attempt to respond to these concerns, 
before we mention some of the advantages of our models 
which we feel may be lost in their approach. 

3.1 Elemental models. 

The basic elemental models on which our work is 
based were first proposed by Chong and Debs [71. The 
originality of their insight w a s  in recognizing that for 
certain types of devices (typically devices associated 
with an energy storage capability), there was a 
dissociation between service demand by the customer and 
the operating or "functional" state of the device as 
they chose to call it. 

Thus while a demand for electricity appears 
simultaneously with the turning on of lights by a 
customer, an electric water heater may be off while a 
customer is drawing water from the tank. Consequently 
and for devices associated with energy storage, it is 
essential to model the dynamics of the functional state 
properly. Inputs to the functional model could be 
weather variables, service demand, as well as power to 
the device. The output would be the operating state of 
the device. 

Typical devices falling within this class are 
electric space heaters, air conditioners and water 
heaters. The dynamics of the functional models 
associated with the first two, "as seen by the 
thermostat" can be adequately modeled by the following 
hybrid-state stochastic differential equation (a 
paradigm for so called weakly-driven functional models): 

Continuous State: 

dx( t )=  -a( x( t ) -xa( t ) )dt+R(V)m( t )b( t )dt+dv( t (3.1. a) 

where: 

a :Thermal resistance, that accounts for the 
heat loss through the floors, walls, 
ceiling, etc.of the dwelling. 

x(t) :internal temperature 
x (t): ambient temperature. 

R(V) :proportional to the rate of power supply. 
This parameter depends on: the voltage (V) 
of the power supply and both internal and 
external temperature. 

m(t) :the operating state of the device ( 1  for ON 
and 0 for OFF). 

b(t) :control action (1 for ON and 0 for OFF) 
v(t) :a Wiener process of variance parameter U 

simulating unaccounted for processes of heat 
gain or heat loss (fluctuating number of 
people in the residence, doors, windows 
being opened and closed, refrigerators, 
cooking etc). 

-- Discrete State: The evolution of the discrete 
state m(t) is governed by a thermostat with temperature 
x- and dead band (x+,x-). m(t) switches from 0 to 1 when 
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x(t) reaches x-and from 1 to 0 when x(t) reaches x+. No 
switching occurs otherwise. 

A simplified model of electric water heater 
operating state was also proposed by Chong and Debs [71. 
It is based on a linearized energy balance analysis and 
assumes that the devices are thermostat-controlled. The 
model comprises a continuous state m(t) to account for 
thermostat action, and is a member of a class of piece 
wise-deterministic Markov processes (a paradigm for so 
called strongly-driven functional models): 

C dx = -a( x ( t ) -xa( t ) ) -q ( t 1 ( xd-xi n( t 1 + R( VI in( t 1 b ( t 1 
(3.1. b) 

dt 

where : 

C : Tank thermal capacity 
x (t): Ambient temperature at time t 

xd 

xin(t):Inlet water temperature at time t. 

a : Thermal resistance of tank walls (a function 
of the water heather insulation). 

R(V) : Power rating of heating element 
m(t) : Thermostat control ( 1  for "on" and 0 for 

"off" 1 
b(t) : The on-off control applied by the utility in 

a load management program (1 for "on" and 0 
for "off") 

: Desired outlet water temperature (depends 

on the customer) 

q(t) : Hot water rate of extraction 

The modeling of the customer-driven hot water 
demand Drocess a(t) is a difficult step. It is basically 
a non-stationary (piecewise-constant) random process 
1141. However, it could be considered stationary during 
the control period (up to four hours) of interest, 
although other type of processes can be considered. As a 
first step, we have considered the following demand 
model : a two state (A - 0) Markov jump process where A 
is the constant rate of water demand, when present. The 
switching of q(t) is characterized by the following 
time-invariant transition probability, for h a small 
time increment: 

Pr( q(t+h)=A I q(t)=O = aOh 

Pr( q(t+h)=O I q(t)=A 1 = alh 

where ao, a1 are positive constants. 

Finally m(t) behaves as in (3.1.a). 

Note that more complex models of noise and 
demand for water in (3.l.b) can be easily incorporated 
in (3.1.a). 

3.2. Aggregation. 

Given that within a load management program by 
device control, it is not wise to send the same control 
signal to dwellings with different dynamics, we consider 
the aggregation problem for homogeneous or near 
homogeneous control groups (HCG), i.e. devices described 
by models (3.I.a) or (3.1. b) with nearly identical 
parameters and subjected to the same control by the 
utility. For an HCC, the aggregation problem consists of 
describing approximately the expected value of the total 
power demand due to the HCG. Note that this is 
tantamount to determining the expected value of the 
discrete state m(t), or equivalently the approximate 
fraction of devices that are in the "on" state at any 
time t, once the total number of connected devices in 
the HCG is known, as well as the common individually 
absorbed power when the device is "on". 

The aggregation problems for (3.1.a) and (3.l.b) 
were solved by Malhame and Chong [SI and Mal- [91, 
respectively. We review briefly here the results for 
(3.1.a). They are the basis for our modeling-of 
aggregate heating or cooling loads. The dynamics of m(t) 
are described by the interaction of two coupled 
Fokker-Planck partial differential equations. Each 
Fokker-Planck equation describes one of the two "hybrid" 
probability density functions fl(x, t), fo(x,t) defined 

by : 

Thus fl(x,t) characterizes the distribution of 

temperatures for the population of devices in the "on" 
state, and fo(x,t) that for the population of devices in 

the "off" state. 

The Fokker-Planck equations are as follows: 

6 f  6 2 62 f1(x.t) 
1 = -[ r,(x,t) fl(x.t) + - - 1 2 ax2 6 t  6 X  

(3.3.a) 

2 
6 62 fo(x.t) 6 f  

2 = -[ ro(x,t) fo(x.t) + - - 
6 t  6 X  1 2 6x2 

(3.3. b) 
where: 

r,(x,t) = R(V)b(tl - a(x(tl - xa(t)) 
ro(x,t) = -a[x(t) - x (tl) 

They are coupled through a certain number of 
boundary conditions at thermostat dead band edges x- and 
x+ (see [121 for furthers details). A pictorial 
representation of the model dynamics is shown in Fig 1. 

Fig. 1. Geometric Representation of the 
Aggregate Load Dynamics 
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Notice that : 

(3.4) 

A few remarks are in order here: 

* The complexity of (3.3.a). (3.3.b) coupled 
through boundary conditions may seem formidable at first 
sight. In reality, we show in appendix A the result of a 
difference numerical approximation scheme for the 
partial differential equations. It can be characterized 
as formed of two linear systems of algebraic equations 
of the forms: 

n+l n 
Al F1 = D1 (3.5. a) 

(3.5. b) 

where A1, A. are matrices the entries of which are 

directly expressible in terms of the parameters in 
equation 3.1.a and external temperature. These entries 
are constant for constant ambient temperature. 

$+I, $+lare vectors corresponding to the values of 

FO(x, t), Fl(x, t) on a discrete temperature grid, 

respectively, and t is the discretized value of time 
corresponding to iteration step n+l, where: 

(3.6.a) 

(3.6. b) 

Finally Ellnand Donare vectors the entries of which 
are known at the end of iteration step n. The two linear 
systems of equations are approximately decoupled. Thus a 
dimens i onal i ty reduc t ion is- possible . 

Note that L(t) = Fl(x+,t) (for heating 

The following remarks are in order: 

1. - As shown in Appendix A, matrices A, 

- 
m(t) = 1 + FO(x-,t) (for cooling loads). 

(3.5) are tridianonal. This shows that the 

oadsl, and 

and A. in 

insinht of 
Mortensen and G e r t y  in I l l 1  was indeed correct: They 
hypothesize a tridiagonal Markov Chain structure to 
characterize the evolution of %(t). Thus our numerical 
model has the same level of simplicity as theirs. 
However because we remain close to the physics of the 
switching process, we can easily accommodate 
time-varying external temperature, but more importantly 
we can compute control dependent comfort indices to 
evaluate the effects of control actions (interruptions 
or cycling) from the point of view of the customers. 

2.- By going directly to a Markov chain model, one 
loses interesting analytical results that one can obtain 
for the probability densities of "on" and "off" 
durations. Indeed, based on these results, and if 
utilities are willing to gather individual "on" and 
"off" thermostat durations, it is possible to devise 
surprisingly efficient on-line parameter estimation 
schemes (see [131). 

3.- Through parameter R in equation (3.l.a) and 
(3.1.b). the electrical model of the energy Conversion 
device can be taken into account. The dependence of 
these parameters versus the electrical supply parameters 
(voltage and frequency) or temperature can be found 
experimentally 

4.- Finally note that the total number of connected 
devices (not devices which are "on") will in general 
vary with time. We propose a regression analysis based 
model to predict that number. 

In the next section, we demonstrate the kind of 
information that can be extracted from (3.51, within a 
load management program. 

4.- LM APPLICATION 

Although the models described in the above section 

loads that can store energy. we are interested here only 
in Load Management applications. 

be aPPl1.d to DSM progruas that conolder end-uae 

Three different LM options are considered: voltage 
reduction, load interruption and load cycling. 

The influence of a specific control action in the 
nature behavior of an HCG will depend very much on 

of the loads integrating this HCG. 
the 

LM control actions should be considered for HCC, 
formed by loads with and without energy storage. 

4.1 Voltage control. 

The effect of voltage reduction for loads without 
energy storage capacity will depend only on the 
electrical model of the individual load components 
integrating the HCC. 

To study the effect of this LM action, the 
dependence of the real and reactive power absorbed by 
the elements should be established through testing. The 
service demand will inform us about the number of 
devices connected to the distribution system during the 
control period. 

In order to evaluate the effect of voltage 
reduction in loads with energy storage, not only the 
electric model has to be considered, but also the 
functional influence. Indeed, in case of a voltage 
variation, the rate of heatkool extracted from the 
energy storage area will change, and so will the time 
that a specific device is on or off. 

This effect can be completely studied with the 
basic model described in section 3. The parameter R(V) 
in (3.l.a) is voltage dependent, and the effect of the 
voltage can be taken into account through the 
determination of the relation between R and the input 
vo 1 tage . 

It can be assumed, as a first approximation, that 
the reduction in the real power absorbed by the 
electromechanical converter will be equal, in X rate, to 
the reduction experienced in R. 

In that case, for one typical air conditioning 
unit, the relation between increments in R and 
increments in the input voltage (AV) is as follows: 

AR(V) = kl ai AV+ k2 * A$ (4.i.a) 
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frequency and temperature. some results are shown in 
section 5. entry of th: F1 vector in (3.5.b). Cornfort index 4, is 

essential in assessing the effect of the control 
on the customer. 

Policy 
4.2 Load interruption and cycling. 

With respect to LM actions such as load 
interruption and cycling. only HCG's formed by loads 
associated with energy storage capacity have to be 
considered. The reason is that a load interruption or 
cycling will not mean the total interruption of the 
service as some inertia is provided by the dynamic 
behavior of the system. 

We consider only weakly driven loads (space 
heating/cooling) in this section. Nevertheless, the same 
analysis can be carried out for strongly driven loads 
(water heater) using the models described in section 3. 

In model (3.1.a), an interruption of power supply 
to the energy converter can be easily simulated by 
setting discrete control variable b(t) to 0. 

Considering first the load interruption, it is 
obvious that, after the interruption, the internal 
temperature will evolve steadily approaching the 
external temperature. 

The dynamic behavior of the HCG can be obtained 
from the model, and some interesting comfort indices can 
be computed to evaluate the quality of the control 
act ion. 

The longer the interruption lasts, the more 
uncomfortable the LM action can become for the 
customer. It is clear on the other hand that the 
utility will be interested in having the freedom to 
choose interruptions which are as long as possible. 

In order to evaluate the quality of the control 
action, a quality index, qx, is proposed here. This 
quality index is defined as: 

The maximum probability, during the control period, 
of reaching a temperature x degrees lower (for 
heating systems) or higher (for Air Conditioning 
systems) than the temperature setting of the 
thermostat in any residence or buildings 
belonging to the HGC under consideration. 
The temperature dynamics can be obtained from the 

model. So can the reconnection transients; this is very 
important when using this kind of models in Cold Load 
Pick-up studies. 

qx can be easily obtained from the model used in 
this paper in the following way: 

A LM policy with bad quality indices will not be 
popular at all and, presumably, will not be tolerated by 
the customers. 

5.-  RESULTS 

The model described in section 3 has been applied, 
according to section 4, to some simulated Situations. 
The simulated situation refers to an Air Conditioning 
system for residential use. 

To do this simulation, real data from AC devices 
have been obtained from testing in a laboratory specially 
designed and built in the Department of Electrical 
Engineering of the Universidad Politecnica de Valencia, 
Val enc i a, Spai n. 

The results that are going to be discussed are 
based in the aggregation of individual loads whose basic 
characteristics are the following: AC unit rate, 5.600 
Btu/h; room thermal capacity, 300000 J/'C; 
LOSS coefficient, 120 W'C. 

As the model equation (3.l.a) is normalized by 
dividing by the thermal capacity C of the dwelling, "a" 
parameter has to be computed by dividing the loss 
coefficient by the thermal capacity. R is the quotient 
between the AC unit rate and the thermal capacity (in 
the proper units). 

The service demand has been considered as a white 
noise with variance parameter 0.01. This corresponds to 
an uncertainty in the model of about 15% (see Appendix 
B ) .  

A homogeneous control group is formed with these 
types of loads so that the number of elements can be 
considered large enough. 

The connection process for this HCG is 'shown in 
figure 2, with an external temperature of 34 C and a 
setting for the thermostat of 24 'C. It can be observed 
that, after a transient period, the aggregate operating 
state settles at a constant value of 64%. It can be 
observed that all the units are connected to the supply 
about half an hour after the devices are reconnected. 

The effect of a 10% reduction in the input 
voltage is found by testing and corresponds to a 
reduction of 5% in the real power absorbed by the AC. 

fo(h,T)dh = Fo(m,T) - FO(x-+x.T) (4.2.b) 
qx = L-+x 

t ( h )  

Fig. 2 HCG Connection transient 
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Assuming the same reduction (5%) in the heat 
extraction rate, an increment of 3% in the aggregated 
operating state is found through the model. As a result, 
no effective energy saving is achieved in this type of 
loads through voltage reduction. 

action 
is shown in Figure 3, for external temperatures 34 OC 
(solid) and 38 'C (discontinuous).The associated quality 
indices , q for these situations are evaluated at 2.2% 
for 34 OC and 17.1% for 38 OC. 

The effect of a 10 minute load interruption 

3 

t (min) 

Fig 3 An HCG Interruptlon Translent 

With respect to load cycling, two different 
situations have been considered. First, as in the 
previous case. only one HCG is considered; subsequently 
a set of several H C G ' s  of similar characteristics are 
considered in a distribution feeder. 

When considering the response of an HCG to  cycling 
LM control actions, special consideration is devoted to 
the quality of the control action as measured by the 
comfort indices. 

A cycling control action will be referred as 
TOFF/TON where TOFF is the time in minutes the HCC is 

power interrupted and T is the time, also in minutes, 
the group is energized. 

ON 

Figures 4,  5 and 6 show the behavior of a single 
control group for the actions 10/10,15/10 and 10/5 
respectively. The LM control period is 7 hours, at 
external temperature of 34 OC. 

1.00 r 

0.00 ,U 
U 1 2 3  

Fig. 4. 10110 HCG cycling control 

.oo 

0.75 
3 
d, 
v 

0.50 
w 

a : 
0.25 

0 1 2 3 4 5 6 7 8 9  
t (h)  

0.00 

Fig. 5. 15/10 HCG cycl ing control 

1.00 

- 0.75 
3 
d. 
I 0.50 
d 

?I a 
0.25 

0.00 
0 1 2 3 4 5 6 7  8 9  

Fig. 6. 1015 HCG cycling control 

Table 1 shows the associated energy reduction and 
quality indices obtained through these cycling actions. 

TABLE 1. cycling Control Parameters 

LM Cycle Energy Reduction Quality 

10/10 
15/10 37.5 
10/5 47.9 

89.7 26.0 
99.9 70.0 

Obviously, these savings are not very important 
unless the disconnection time is quite large with 
respect to the connection time. 

To study the effect of the HCG control in a 
distribution system, consider a simulated distribution 
feeder where 4 HCG's of the same characteristics of 
those studied previously can be found. The four HCG ' s  
drnount to 25% of the rated power of the feeder. 

The control cycles (15/10) have been conveniently 
staggered so that the equivalent aggregated operating 
state is 0.4 all the time (Figure 7). 

For evaluation purposes, an actual load curve for 
the Valencia area has been used, and the total feeder 
load curve with ( I )  and without (11) control is shown in 
Figure 8 The reconnection transient once the control 
period is finished can be minimized through a more 
sophisticated control action, i.e. allowing a longer 
connection vs disconnection time as the end of the 
control period approaches. 

It can be observed that over 10% power peak load 
saving can be obtained. 
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Fig. 7. Feeder HCG's  15/10 cycling control. 
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Fig. 8 .  Feeder load profile 

6.-  CONnUSIONS 

It can be concluded from this paper that a 
previously proposed methodology can be successfully 
adapted to the study of the load response evaluation for 
Demand Side Management control actions, cold load 
pick-up, etc. 

This is a physically based load modeling 
methodology that allows the independent consideration of 
individual load components use and response models and 
the evaluation of the dynamic behavior of their 
aggregates. 

Although these models were previously proposed in 
the literature, this paper shows some ideas of how to 
make them useful for the above mentioned purposes. 
Although mathematically sophisticated, the computer 
implementation of these models is quite simple, as shown 
in Appendix A. 

The power of the models is demonstrated through 
some simulation results, where different control actions 
are simulated and the response of the loads obtained. 
Also the actions are evaluated in terms of both the 
utility and the end user convenience. This last feature 
is quite new. 

More research is needed in order to model more 
realistic service demand functions and in the real life 
validation of these models for Load Management 
applications as described in this paper. 
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Appendix A. discretization of the Coupled 
Fokker-Planck Equations Wel. 

n+ 1 
Fol 

Fo;+l 

n+ 1 
1 FO(Jo-l) 

The following numerical difference approximation 
scheme has been developed in [121 for equations (3.3) 
and the corresponding boundary conditions. Heating loads 
were considered. 

n+l n 
(A.  1. a) A1 F1 = D1 V n > O  

n+ 1 n 
A. Fo = Do 

where in (A. l.a,b) : 

A =  0 

0 

(A.1.b) 

c1(2) 0 . . . . . . . . . . . . . . . . . .  0 
b1(3) c1(3) 0 ............. 0 

a1(4) b1(4) c1(4) 

cl(J1-l) 

. . . . . . . . . . . . . . . . .  0 a (J 1 bl(J1) 1 1  

co(l) 0 . . . . . . . . . . . . . . . . .  0 

b0(2) co(2) 0 . . . . . . . . . . . .  0 

a0(3) b0(3) c0(3) 

0 . . . . . . . . . . . .  
c0 ( Jo-2 1 

. . . . .  ao(Jo-l) bo(Jo-l: 

don( 1) 

dOn(2) 

Don = 

n 
do ( Jo-1 

Furthermore, in the above, X1 is the lowest 
expected temperature (with or without interruptions) in 
the "on" population, and: 

x- = x1 + (L1 - l)h 
x+ = x1 + (J1 - l)h 
x+ = x- + (Lo - l)h 
xo = x- + (Jo - l)h 

where xo is the highest expected temperature (with 
or without interruptions) in the "off" population. 

In addition, let : 

r2 k 

7' 

rlr = rl(xl +(i-l)h, nk) , ray = ro(X- +(i-l)h, nk) 

Then 

k n+l 
a (i) = -p + -r 

1 2 h li 

al(J1) = -2p 

n+l k 
c (i) = -P - rli - 

2 h  
1 

while , 

k n+l 

for i = 2, . . . .  J1-l 

for i = 2, .... J1-l 

for i = 1, .... Jo-1 

for i = 1, . . . .  Jo-1 

for i = 2, . . . .  Jo-1 

Finally : 

d;(i) = Fly for i= 2 to L1-1 

n+l k 

where vectors C", $+'have already been defined 
in section 3 of the paper. More precisely, if k is the 
discrete time step and h is the discrete temperature 
step : 

n n n+ 1 
do(i) = Foi + 2p s1 for i= 1 . . . . .  Lo-1 

n 
Fli = F (x +(i-l)h , nk) ; i= 1 , . . ,  L1, . . ,  J1 n=O,l,.. 

n+l k 1 1  

~~r = F ( X  +(i-l)h . nk) ; i= 1 , . . , L o ,  ... J 0 n=0,1... 
0 0  
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Also : 

U = &- (0.15) 
for i= Lo+l, . . . ,  Jo-1 

n+l n+l n+ 1 

'1 = F1(J1-l) - FIJl 

n+l n+l n+ 1 
so = F02 - Fol 
Note that all the entries in D1 and Do are known at 

time n except for Sin+' and Son+'. We set : 
s1 n+ 1 = Sln 

so n+ 1 1 son 

This yields two decoupled tridiagonal systems 
each (A. 1.a). (A. 1.b) which can be solved separately at 

time step. 

The discretization in the case of cooling loads is 
similar except that the "geometries" of the "on" and 
"off" temperature distributions are inverted with 
respect to the case of heating loads. Thus one should 
interchange the indices "1" and "0", associating 0 f o r  
"on" and 1 for "off". In this case : 

- 
m(t) = - F0(x,t) 

Appendix B. Practical Estimation of the Noise 
Parameter. 

As we show in this appendix, the level of the noise 
variance parameter Q in Equation (3.l.a) is directly 
correlated with is energy content. Consider an "on" 
cycle of duration T1. Then it is a well known property 

of the Brownian motion (the process corresponding to 
integrated white noise) that the corresponding total 
root mean square energy contribution of the noise is 
given by C q ,  where C is the thermal capacity of the 
dwelling. Thus the longer the "on" cycle, the more 
energy (cooling or heating) is contributed by the noise. 
Now T the "on" duration is a random variable. However 
its mean is given approximately by A/p, where A is the 
thermostat dead band and p is the average cooling rate 
of the dwelling with the thermostat in "on", i.e.: 

x- + x+ - 
where x = 

2 

Over an "on" cycle, the net energy gained by the 
dwelling is given by CA. If we now consider that the 
noise root mean square energy over that "on" cycle is a 
fraction, say 15% of the net energy gained by the 
dwelling, we can write approximately: 

Thus : 

(B.3) yields for our homogeneous 
approximately 0.01 deg/min 

(B.3) used with a reasonable 
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(B.3) 

group a value of 

estimate of the 
relative noise mean square energy, can became a useful 
rule of thumb for estimating U, in general. Notice 
however, that all parameters in Equation (3.l.a) can be 

durations directly estimated from thermostat "on"-"off" 
1131. 
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