Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz Vivancos, Pedro 
dc.contributor.authorBernal Vicente, Agustina 
dc.contributor.authorCantabella, Daniel 
dc.contributor.authorPetri Serrano, César 
dc.contributor.authorHernández Cortés, José Antonio 
dc.date.accessioned2019-03-05T12:31:02Z
dc.date.available2019-03-05T12:31:02Z
dc.date.issued2017
dc.identifier.citationDiaz VIVANCOS, Pedro et al. Metabolomics and biochemical approaches link salicylic acid biosynthesis to cyanogenesis in peach plants. En: Plant and cell physiology, 2017, vol. 58, n. 12, p. 2057-2066. ISSN: 0032-0781es_ES
dc.identifier.issn0032-0781
dc.description.abstractDespite the long-established importance of salicylic acid (SA) in plant stress responses and other biological processes, its biosynthetic pathways have not been fully characterized. The proposed synthesis of SA originates from chorismate by two distinct pathways: the isochorismate and phenylalanine (Phe) ammonia-lyase (PAL) pathways. Cyanogenesis is the process related to the release of hydrogen cyanide from endogenous cyanogenic glycosides (CNglcs), and it has been linked to plant plasticity improvement. To date, however, no relationship has been suggested between the two pathways. In this work, by metabolomics and biochemical approaches (including the use of [C-13]-labeled compounds), we provide strong evidences showing that CNglcs turnover is involved, at least in part, in SA biosynthesis in peach plants under control and stress conditions. The main CNglcs in peach are prunasin and amygdalin, with mandelonitrile (MD), synthesized from phenylalanine, controlling their turnover. In peach plants MD is the intermediary molecule of the suggested new SA biosynthetic pathway and CNglcs turnover, regulating the biosynthesis of both amygdalin and SA. MD-treated peach plants displayed increased SA levels via benzoic acid (one of the SA precursors within the PAL pathway). MD also provided partial protection against Plum pox virus infection in peach seedlings. Thus, we propose a third pathway, an alternative to the PAL pathway, for SA synthesis in peach plantses_ES
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Economy and Competitiveness (Project AGL2014-52563-R). PDV and CP thank CSIC and UPCT, respectively, as well as the Spanish Ministry of Economy and Competitiveness for their ‘Ramon & Cajal’ research contract, co-financed by FEDER funds. We also acknowledge Prof. Manuel Acosta Echeverría for his very useful commentaries and discussion.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherOxford University Presses_ES
dc.relation.urihttps://academic.oup.com/pcp/article/58/12/2057/4222594es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleMetabolomics and biochemical approaches link salicylic acid biosynthesis to cyanogenesis in peach plantses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.subject.otherProducción Vegetales_ES
dc.subjectCyanogenesises_ES
dc.subjectMandelonitrilees_ES
dc.subjectMetabolomicses_ES
dc.subjectPeaches_ES
dc.subjectPhenylalaninees_ES
dc.subjectPlum pox viruses_ES
dc.subjectSalicylic acides_ES
dc.subjectSalt stresses_ES
dc.identifier.urihttp://hdl.handle.net/10317/7678
dc.identifier.doi10.1093/pcp/pcx135
dc.identifier.urlhttps://academic.oup.com/pcp/article/58/12/2057/4222594
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.type.versioninfo:eu-repo/semantics/submittedVersiones_ES
dc.relation.projectIDAGL2014-52563-Res_ES
dc.subject.unesco5102.01 Agriculturaes_ES
dc.contributor.funderMinisterio de Economía y Competitividades_ES


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España