
Computing large direct products of free groups inintegral group rings�Angel del R��o and Manuel Ruiz �AbstractWe construct explicitly a subgroup of �nite minimal index and min-imal rank inZG which is a direct products of free groups for each �nitegroup G for which this is possible.1 Introduction and preliminariesLet G be a �nite group. If G is abelian then the structure of the group ofunitsZG of the integral group ringZG is well known by the work of Higman,Bass and Milnor. If G is non abelian then generators of subgroups of �niteindex of ZG have been found for a large class of groups, (see e.g. [12] and[4]). However the structure of ZG (or of a subgroup of �nite index) is notknown except for some few groups. Some of the known cases appeared in[1], [2], [3], [7], [8] and [10].In a series of three papers ([5], [9] and [6]) Leal, Jespers and the �rstauthor characterized the groups G such that ZG contains a subgroup of�nite index which is a direct product of free groups. In those papers theexistence of such a large subgroup of ZG is proved theoretically. Let Gbe a group satisfying the mentioned property. The aim of these paper isto construct explicitly a subgroup of ZG which is a direct product of freegroups and of minimal index in ZG.We start with some notation:The cyclic, dihedral and quaternion groups of order m are denoted byCm, Dm and Qm respectively.Let G be a group and R a ring. Then R denotes the group of units ofR and RG the group ring of G with coe�cients in R. We refer to [12] for�The �rst author has been partially supported by the D.G.I. of Spain and Fundaci�onS�eneca of Murcia 1



notational matters concerning group rings. For any �nite subset H of G letbH = 1jH j Ph2H h 2 QG. More generally, if  : H ! Zis a map, then we setcH = 1jHj Ph2H  (h)h. If g 2 G, then set bg = chgi. The augmentation map isdenoted by ! : ZG! Z. If H is a normal subgroup of G then 4(G;H) =Ker !H is the augmentation ideal modulo H . We set 4(G) = 4(G;G).The rank of G, denoted by r(G), is the minimum of the cardinalities of thegenerating subsets of G. Set G� = Hom(G;Z) and let inv : G ! G denotethe map given by g 7! g�1.If K is another group and ' : G ! Aut(K) is a group homomorphism,then K o' G denotes the corresponding semidirect product.The non abelian �nite groups G such that ZG contains a subgroup of�nite index which is a direct product of free groups, are of the form G =H � Z where Z is an elementary abelian 2-group and H is of one of thefollowing types (see [6]):(a) hx; y j x4 = y4 = [x2; y] = [x; y2] = [x; [x; y]] = [y; [x; y]] = 1i,(b) hx; y1; : : : ; yn j x4 = y2i = [yi; yj ] = [x2; yi] = [[x; yi]; yj ] = [[x; yi]; x] =1i,(c) hx; y1; : : : ; yn j x4 = y4i = y2i [x; yi] = [yi; yj ] = [x2; yi] = [y2i ; x] = 1i,(d) hx; y1; : : : ; yn j x2 = y2i = [yi; yj ] = [[x; yi]; yj ] = [x; yi]2 = 1i,(e) hx; y1; : : : ; yn j x2 = y4i = y2i [x; yi] = [yi; yj ] = [[x; yi]; x] = 1i,(f) hx; y1; : : : ; yn j x4 = y4i = x2y21 = y2i [x; yi] = [yi; yj ] = [y2i ; x] = 1i,(g) hx; y1; : : : ; yn j x4 = x2y4i = y2i [x; yi] = [yi; yj ] = 1i,(h) U o� hxi where U is an elementary abelian 3-group, x has order 2 or4 and �(x) = inv.(i) U o� K where U is an elementary abelian 3-group, K = hx; yi �= Q8and �(x) = �(y) = inv.All throughout this paper G = H �Z where Z is an elementary abelian2-group and H is of one of the types (a)-(i). The letter n is reserved todenote either the number of y's for the groups of types (b)-(g) or the rankof U for the groups of type (h) and (i). The rank of Z is always denoted byk. 2



Our aim is to �nd a concrete subgroup F = F0�Qni=1 Fi of �nite index ofZG, such that F0 is free abelian and Fi is free nonabelian and optimal in thesense that the index of F inZG is minimal among all the possible subgroupsof ZG which are a direct product of free groups . There is a natural way toobtain such a group if we do not impose the optimal condition. For everyprimitive central idempotent e of QG one of the following conditions holds:(A) QGe is isomorphic to Q, an imaginary quadratic extension of Q or atotally de�nite quaternion algebra over Q.(B) QGe is a totally de�nite quaternion algebra over a real quadratic ex-tension of Q.(C) QGe is isomorphic to M2(Q).Let A, B and C be the sets of primitive central idempotents of QG of types(A), (B) and (C) respectively and I = A [ B [ C. For every e 2 I , letOe be an order in QGe. Then Oe is �nite if e 2 A, virtually in�nite cyclicif e 2 B and virtually free nonabelian if e 2 C. Since O = Qe2I Oe andZG are orders in QG, then O and ZG are commensurable, that is O \ZGhas �nite index in both. Therefore ZG \ (1 + QGe) contains a subgroupof �nite index Fe which is trivial if e 2 A, in�nite cyclic if e 2 B and freenonabelian if e 2 C. Then Qe2I Fe is a subgroup of �nite index of ZG withthe desired structure. However this does not give information on how bigthe constructed group is. Surprisingly what we are going to prove in thispaper is that this naive approach provides the optimal subgroup in almostall the cases. Our �rst theorem is:Theorem 1.1 Let G = H � Z, where Z is an elementary 2-group and His one of the types (a)-(i). Let B and C be the sets of primitive centralidempotents of types (B) and (C) respectively. Then1. F0 =ZG\ (1 +QGfB), where fB = Pf2B f , is free abelian of rank jBj2. If G 6�= D6; D8, then for all e 2 CFe =ZG\ (1 +QGe)is free non abelian and all the Fe's have the same rank.3. F = F0 � Qe2C Fe has �nite index in ZG3



So the group F = F0� Qe2C Fe of Theorem 1.1 has the desired properties. Weprove Theorem 1.1 in Section 2. Besides we compute the ranks of F0 and allthe Fe's for all the groups. Moreover every Fe is isomorphic to a subgroupof the modular group SL2(Z) that we compute in Proposition 2.1. Usingthat it is theoretically easy to compute generators for all the Fe's. Alsogenerators of F0 are easy to compute by using Proposition 2.3. So there isa method to obtain generators for F .In Section 3 we prove that the group F computed in Section 2 is thebest possible. Explicity we prove the following Theorem:Theorem 1.2 Let G = H � Z and F = F0 � Qe2C Fe as in Theorem 1.1.If E = E0 �Qj2J Ej is a subgroup of �nite index of ZG, where E0 is freeabelian and Ej is free non abelian for every j. Then1. r(E0) = jBj and jCj = jJ j.Besides, if G 6�= D8; D6; Q8 and Q16 then2. [ZG : F ] � [ZG : E].3. r(Ej) � r(Fe) for every e 2 C and j 2 J.Note that the exceptional groups D8, D6, Q12 and Q16 belong to thelist of groups we are considering with the following parameters: k = 0 andn = 1 for all of them; then D8 is of type (d) or (e), D6 and Q12 are of type(h) with x of order 2 and 4 respectively and �nally Q16 is of type (g). Thesefour groups have been studied separately in several papers and satisfactoryresults can be found in [3] for D8; [7] for D6; [10] for Q12 and [8] for Q16.2 Large subgroups: Proof of Theorem 1.1The statement (3) of Theorem 1.1 follows by the arguments in Section 1.The subsequent Proposition 2.1 implies (2) and Proposition 2.3 implies (1).For every a; b 2Zset�(b) = SL2(Z)\ �1 + b� Z ZZ Z�� ;�a(b) = SL2(Z)\ �1 + b� Z aZZ Z �� and�a(b) = SL2(Z)\ �1 + b� aZ ZaZ aZ�� :4



If � is a subgroup of SL2(Z), then b� denotes the image of � in PSL2(Z).Proposition 2.1 Let e be a primitive central idempotent of QG of type (C).1. Assume that H is of type (a)-(g). Then Ge ' D8 and there area; b 2 Ge such that fe; a; b; abg is an integral basis of ZGe. Furthermore if�e = �0e + �1a + �2b + �3ab, with �0; �1; �2; �3 2 Zand � 2 ZG, then!(�) � �0 + �1 + �2 + �3 mod 2.(i) If H is of type (a) then e = \hx2; y2i�(1�cG0)cZ for some non trivial� 2 hx2; y2i� and some  2 Z�. Moreover Fe ' �2(2k+3), so that Feis free of rank 1 + 23k+6,(ii) Assume that H is of type (b)-(f). For every i = 1; : : : ; n let ti = [x; yi].Let � : G0 ! G be given by �(ti11 ti22 � � � tinn ) = yi11 yi22 � � �yinn . Thene = eS;'; =cx2(bS �cG0)\�(S)'cZ where S is a maximal subgroup of G0,  2 Z� and ' : �(S)! Zis amap such that ' � � 2 S�. Moreover, if H is of type (f), then t1 2 S.If H is of type (b) or (c), then Fe ' �2(22n+k) which is free of rank1 + 26n+3(k�1).If H is of type (d)-(f) then Fe ' �2(22n+k�1). which is free of rank1+ 26n+3(k�2), unless H is of either type (d) or (e), n = 1 and k = 0,or equivalently G ' D8.(iii) Assume that H is of type (g). For every i = 1; : : : ; n let ti be the imageof [x; yi] in G=hx2i. Let � : G=hx2i ! G be given by �(ti11 ti22 � � � tinn ) =yi11 yi22 � � �yinn . Thene = eS;'; = (bS �cG0)\��(S)'cZ where � : G ! G=hx2iis the projection, S is a maximal subgroup ofG0 containing hx2i,  2 Z� and ' : � � �(S)! Zis a map such that'�� 2 (S=hx2i)�. Moreover Fe ' �2(22n+k), so that Fe is free of rank1 + 26n+3(k�1)2. Assume that H is of type (h) or (i). Then Ge ' D6 and there exista; b 2 Ge such thatZG(1� a)e =Ze(1� a)�Za(1� a)�Zb(1� a)�Zab(1� a):5



(i) If H is of type (h) with x of order 2 then e = eS = (bS� bU )cZ where Sis a maximal subgroup of U and  2 Z�. Moreover Fe ' �3(2k3n�1)which is free unless k = 0 and n = 1, that is to say, G = S3. Soif G 6= S3 then the rank of Fe is 33n�4 if k = 0, and 23k�133n�4otherwise.(ii) If H is of type (h) with x of order 4 then e = eS =cx2(bS� bU)cZ whereS is a maximal subgroup of U and  2 Z�. Then Fe ' �3(2k+13n�1)which is free of rank 1 + 23k+233(n�1).(iii) IfH is of type (i), then e = eS; ;� = (bS�cG0)cZ \hxyi� where S is a max-imal subgroup of U ,  2 Z� and � 2 hxyi�. Then Fe ' �3(2k+23n�1),which is free of rank 1 + 23k+533(n�1).Proof. The proof is done separately for each case. The �rst step in eachcase is to identify the elements of C. We leave this part to the reader. Thenfor each e 2 C one has to make a good selection of a and b. This selectioninduces a ring isomorphism � : QGe! M2(Q) and using this isomorphismone identi�es �(Fe) which happen to be the free subgroup of the modulargroup in the proposition. Cases (a)-(g) are very similar. We only do case(c) and let the reader check that similar arguments work for the remainingcases. Cases (h) and (i) are also similar so we only do case (i).Assume that H is of type (c) and let e = eS;'; 2 C as in (1.ii). ThenHS = hx2; G0; �(S); Zi is a normal subgroup of index 4 of G and if t 2 G0nS,then 1; x; y = �(t); xy is a transversal of G modulo HS . Set a = xe andb = ye. Every element � 2ZG can be written as� = �0 + �1x+ �2y + �3xywhere �i 2 ZG and Supp(�i) � HS . Moreover if h 2 HS , then he = �1and therefore �e = �0e + �1a + �2b + �3ab for some �0; �1; �2; �3 2 Zand !(�) = P3i=0 !(�i) � �0 + �1 + �2 + �3 mod 2. It is easy to seethat Ge ' D8 and e; a; b; ab is an integral basis of ZGe. Then there is anisomorphism � : QGe!M2(Q) given by�(�e) = � �0 � �1 + �2 � �3 2(�2 � �1)�1 + �3 �0 + �1 � �2 + �3 �(see [3] or [12]). Since the support of e is HS , �ie 2 ZG for every i andconsidering the coe�cient of 1 in this element one deduce that 22n+k j �i.Let i = �i=22n+k. Then � = 1+ 22n+k(0 + 1x+ 2y + 3xy)e, so that�(�) = 1 + 22n+k � 0 � 1 + 2 � 3 2(2 � 1)1 + 3 0 + 1 � 2 + 3 � :6



Therefore �(�) = 1 + 22n+k � a 2bc d � with a � dmod 2. Note that thisimplies that the determinant of �(�) is 1. Thus �(Fe) � �2(22n+k) andby solving a system of linear equation one can easily verify that the equal-ity holds. Moreover �2(22n+k) is a subgroup of index 2 of �(22n+k) and�(22n+k) ' \�(22n+k) is a subgroup of index 26n+3k�4 of d�(2) (see [11]). Sincethe last group is free of rank 2 then �2(22n+k) is free of rank 1+26n+3(k�1).Now assume that H is of type (i). Then e = eS; ;� as in (2.iii). Seta = ue and b = xe where u 2 U n S. Then HS = hxy; S; Zi is a normalsubgroup of G and 1; u; u2; x; xu; xu2 is a right transversal of G modulo HS .For the �rst part we argue as in the previous case by noticing that he = �efor every h 2 HS and (1+u+u2)e = 0. On the other handZGe=ZG(1�a)eso that (1 � a)e; a(1� a)e; b(1� a)e; ba(1� a) is an integral basis of ZGe.Moreover, as in [12] or [7], there is an isomorphism � : QGe! M2(Q) thatassociates �0(1� a)e+ �1(1� a)e+ �2b(1� a)e+ �3ba(1� a)e with� 3(�0 � �1 � �2) ��0 + 2�1 + 2�2 � �33(�0 � 2�1 � �2 � �3) 3(�1 + �2) �Furthermore, if � 2 ZG \ (1 + QGe) = Fe then � � 1 2 �(G; hui)e =ZG(1� a)e and� = 1+ (�� 1)e = 1+ (�0(1� a) + �1a(1� a)e+ �2b(1� a) + �3ba(1� a)ewith �i 2 Z. Unfortunately in this case, unlike the previous one, the sup-ports of the base elements intersect. However this di�culty can be overcomeas follows. The coe�cients of 1, u, x and xu in � � 1 are 0 = �02k+23n�1 ,1 = �12k+23n�1 , 2 = �22k+23n�1 and 3 = �32k+23n�1 , respectively. Thus�(�) = 1 + 2k+23n�1� 3(0 � 1 � 2) �0 + 21 + 22 � 33(0� 21 � 2 � 3) 3(1 + 2) �so that by similar arguments as in the previous paragraph one shows that�(Fe) = �3(2k+23n�1). The ranks can be computed as in the previous case.The classical quaternion algebra over an arbitrary ring R is denoted byH(R).In order to prove statement (3) of Theorem 1.1 we need informationabout the central idempotents of QG of type (B). This is the role of nextLemma. The proof is straightforward.7



Lemma 2.2 1. If G is not of type (g) or (i) then B = ;.2. Assume that G is of type (g) and letK = hy21y22; : : : ; y21y2n; Zi = fy2i11 y2i22 : : : y2inn : nXt=1 it � 0 mod 2g � Z:For every � 2 K� and every 2 � i � n, let �n = �(y21y2i ),K(�) = hy�21 y2; : : : ; y�n1 yn; Ziand T� = fyPnj=2 �jij1 yi22 : : : yinn : 0 � ij � 1g:Then T� is a transversal of hx2; K(�)i modulo K. Moreover each element ofB is of the form f = f�;� = (1�cx2)[K(�)��;�for some � 2 K� and � 2 K(�)� so that K � Ker � and ��;�(kt) = �(k)�(t)for every k 2 K and t 2 T�. FurthermoreGf�;� = ha = xf; b = y1f j a2 = b4; b8 = 1; aba�1 = b�1i ' Q16;B = ff; b; b2; b3; a; ab; ab2; ab3g is an integral basis of ZGf and the map� : QGf ! H(Q[p2]) given by�(Pg2B �gg) = �f + p22 (�b � �b3) + (�a + p22 (�ab � �ab3))i+(�b2 + p22 (�b + �b3))j + (�ab2 + p22 (�ab + �ab3))kis a ring isomorphism.3. Assume that G is of type (i). Then every element of B is of the formfS; = (1�cx2)(bS � bU)cZ where S is a maximal subgroup of U and  2 Z� Moreover GfS; ' Q12and if X = xf , Y = yf and W = wf , with w 2 U n S, then B =ff;X; Y;XY;W;WX;WY;WXY g is an integral basis of ZGf and the map� : QGf ! H(Q[p3]) given by�(Pg2B �gg) = 12 [2�1 � �W +p3�XYW + (2�XY � �XYW � p3�W )i(2�X � �XW � p3�Y W )j + (2�Y � �Y W + p32 �XW )k]is a ring isomorphism. 8



Next proposition provides a proof of statement (3) of Theorem 1.1 andalso computes the rank of F0.Proposition 2.3 The group F0 is embedded in the centre of QG. If H isof type (g) then F0 is free abelian of rank 22n+k�2; if H is of type (i) thenF0 is free abelian of rank 2k�1(3n � 1). In the remaining cases F0 = 1.Proof. By Lemma 2.2, we may assume that G is of type (g) or (i). By thecomments prior to Theorem 1.1, it is enough to show that for every f 2 B,F0f is embedded in the centre of QGf and realizing that the rank claimedfor F0 coincides with the cardinality of B that can be easily computed usingLemma 2.2.Assume that H is of type (g). Then fB = 1 � cx2. If � 2 F0 then� � 1 2 �(G; hx2i) and hence (� � 1)fB � 0 mod 2, in ZGfB. Therefore,if f 2 B, then (� � 1)f � 0 mod 2, in ZGf and, by Lemma 2.2, �(�) is aunit of H(Z[p2]), where � is the isomorphism of Lemma 2.2. Using that allthe units of H(Z[p2]) are of the form u; ui; uj or uk, where u 2Z[p2], oneeasily deduces that �(�) 2Z[p2] and hence � is central.Assume now that G is of type (i). Then fB = (1�cx2)(1� bU). Therefore,F0 � �(G; hX2i)\�(G;U) and we argue as in the previous case.3 Optimality: Proof of Theorem 1.2By Theorem [12, Theorem 30.1] the following is a torsionfree normal com-plement of the trivial units of ZG:V =ZG\ (1 + �(G)�(G;G0))It is well known that V is free nonabelian if G = D8 or G = D6. Using thisfact and Proposition 2.1, it is easy to prove:Lemma 3.1 For every e 2 C, V e is torsionfree.Set eF0 = fu 2ZG : ue = e for every e 2 Cgand for every e 2 C, leteFe = fu 2ZG : uf = f for all f 2 C n fegg:Plainly eF0 = eFe1 \ eFe2 for every two di�erent e1 and e2 in C.9



The group of type (h) with n = 1, k = 0 and x of order 4 is denoted byC3 o C4.The crux of our argument relies on the following technical lemma.Lemma 3.2 If G 6= C3oC4 and G 6= Q16, then for every e 2 C, eFe \ V �F0 � Fe and eF0 \ V � F0.Proof. Let e 2 C.Claim 1. If f is a primitive central idempotent, such that QGf is com-mutative or isomorphic to H(Q), then V f = f .If QGf is commutative, then f(1 �cG0) = 0 and the claim follows. IfQGf ' H(Q) then Gf ' Q8 = ha; bi and T = ff; a; b; abg is a rationalbasis of QGf . Moreover for every g 2 G0, gf = �f . This implies thatevery element of �(G)�(G;G0)f is of the form 2�f for some � 2 �(G).Moreover �f = Pt2T �tt, where �t 2 ZW , W being the kernel of thecanonical map G ! Gf ! Gf=ha2i. Then �tf = �tf where �t 2 Zand�t � !(�t) mod 2. Therefore Pt2T �t � !(�) = 0 mod 2. Thus, if u 2 V ,then uf = 1 + 2Pt2T �tt, with Pt �t even. Since the unique units of H(Z)are �1, �i, �j and �ij, we conclude that u = f . This proves Claim 1.Claim 2. If G 6= Q12 and f 2 A, then ( eFe \ V )f = f .By Claim 1, we may assume that QGf is not commutative and QGf 6=H(Q). This implies that H is of type (h) with x of order 4 and QGf isisomorphic to the generalized quaternion algebra A = Q[i; j : i2 = �1; j2 =�3; ij = k = �ji] (see [9]). By Proposition 2.1 and [9]e = eS; =cx2(bS � bU)cZ and f = fS1; 1 = (1�cx2)(cS1 � bU)cZ ;where S and S1 are two maximal subgroups of U and  ;  1 2 Z�. Fixy 2 U n S1. Then B1 = ff; a = xf; b = yf; abg is an integral basis of ZGfand there is an isomorphism � : QGf ! A so that �(a) = i and �(b) = 1+j2 .Therefore �(ZGf) is the subring of A generated by i and 1+j2 . Furthermorethe only units of this ring are �1, �i, �1�j2 , �1+j2 , �i1�j2 and �i1+j2 [10].Let u 2 V \ eFe. We have to prove that uf = f .Assume �rst that (S;  ) 6= (S1;  1). Let e0 = eS1; 1 . Then B2 =fe0; xe0; ye0; xye0g is an integral basis of ZGe0. Moreover for an � 2 ZGthe coe�cients of �f and �e0 in the basis B1 and B2 are pairwise congruentmodulo 2. Since (u�1)e0 = 0, the coe�cients of (u�1)f in the basis B1 areeven. Therefore uf = 1 + 2(Pt2B1 �tt) is a unit in ZGf . By the previous10



paragraph uf = �f . If uf = �f , then (u�1)f = �2f . Since u 2 V , we canwrite (u�1)f = (�0+�1x)1�x22 cS1dZ 1 where �0; �1 2ZG and its support isembedded in a �xed transversal of G modulo hx2; S1; Zi containing 1. Thenthe coe�cient of 1 in (u� 1)f is �2k+13m�1 , where � is the coe�cient of 1 in�0. However the coe�cient of �2f is � 12k3m , which yields to a contradiction.Thus uf = f as desired.Now assume that S = S1. By Claim 1 and the previous paragraph wehaveu� 1 = (u� 1)(fS; + eS; ) = (u� 1)(bS � bU)cZ = 3Xi=0 �ixi(bS � bU)cZ with �i =P2j=0 �ijyj 2 �hyi. The coe�cient of xiyj in u� 1 is3�ij � �i0 � �i1 � �i22k3n = �ij2k3n�1 2Z:Therefore 2k3n�1 j �ij and hence uf 2 f + 2k3n�1ZGf is a unit of ZGf .If n > 1, then uf = f . Assume now that n = 1. Since we are assumingthat G 6= C3 o C4, then k � 1 and we argue as at the end of the previousparagraph to prove that uf = f . This �nishes the proof of Claim 2.Now we prove that eF0\V � F0. By Claim 1, the result is obvious unlessH is of type (h) and the order of x is 4. In this case if G 6= Q12, then thecardinality of C is greater than 2 and the result is a consequence of Claim2. Now we prove eFe \ V � F0 � Fe for every e 2 C. If H is neither oftype (g) or (i), then B = ; and hence the Lemma is a direct consequence ofClaim 2.Assume now that H is of type (g) and G 6= Q16, so that either n > 1or k > 0. The sum of the elements of B is fB = 1 �cx2. Without lost ofgenerality one may assume thate = bR(bS �cG0)cZ where R = hy2; : : : ; yni, S = hy22; : : : ; y2ni and  2 Z�. The support of e isL = hy21; y2; : : : ; yni�Z and Te = f1; x; y1; xy1g is a transversal of G moduloL. Let u 2 V \ eFe and � = u � 1. If l 2 L, then le = �e. Therefore,�e = �0e with �0 2 ZG, Supp(�0) � Te and !(�0) � !(�) = 0 mod 2. ByClaim 2, u = 1+ �0e+ �fB. It is enough to prove that �g � �gx2 is even for11



every g 2 G. Indeed, in this case �fB 2ZG and so u = (1 + �0e)(1 + �fB),1 + �0e 2 Fe and 1 + �fB 2 F0.Let g 2 G and t 2 Te so that g � t mod L. Then the coe�cient of g inu� 1 is � �0t22n+k + �g � �gx22 :Therefore �0t = 22n+k�1�t for some �t 2 Zand g = �g � �x2g � �t mod 2.So it is enough to show that �t is even for every t 2 Te.To obtain our goal we are going to consider the image of uf under theisomorphism � = �f : QGf ' H(Q(p2)), given in Lemma 2.2, for every f 2B. Recall that an element of B is of the form f = f�;� = (1�cx2) \K(�)��;� asin Lemma 2.2. We use all the notation of that lemma. Then �f =Pb2B bbwhere b = Xk2K� ��;�(k)(�bk � �bkx2):Note thatK(�)\L has index 2 in K(�) and hence the cardinality ofK(�)\Lis 22(n�1)+k. Since either n > 1 or k > 0, these cardinality is even. Since�g1x2 � �g1x2 � �g2x2 � �g2x2 mod 2 if g1 � g2 mod L,t = Xk2K(�)\L��;�(k)(�th � �thx2) + Xk2K(�)nL��;�(k)(�th � �thx2)is even. By Lemma 2.2, �(ZGf)� H(Z[p2]). Since every unit of H(Z[p2])is of the form u, ui, uj or uk with u a unit of Z[p2] then by Lemma 2.2 wededuce that a = b2 = ab2 = ab = ab3 = b + b3 = 0:Writing these equations in terms of the �'s we obtain a system of linearequations Xh2K(�)��;�(h)(�th � �thx2) = 0;for every t = x; y21; xy21; xy1; xy31. For a �xed � 2 K� and k 2 K the previoussystem of linear equations becomesXt12T� �(t1)Xk2K �(k)(�tt1k � �tt1kx2) = 0:But the matrix (�(t1))t12T�;�2(K(�)=K)� is a Hadamard matrix, that is amatrix of 1's and �1's with orthogonal rows. In particular its determinant12



is not zero and hence Xk2K �(k)(�tt1k � �tt1kx2) = 0for every � 2 K� and t1 2 K. Using that the matrix (�(k))�2K�;k2K is aHadamard matrix too, we deduce that �tk � �tkx2 = 0 for every k 2 K(�).Therefore if g is congruent with either y21 , x, xy1, xy21 , or xy31 moduloK(�) forsome � 2 K� then �g � �gx2 = 0. In particular �1 � �y21 � �y21x2 = 0 mod 2,�x � �x � �x3 = 0 mod 2 and �xy1 � �xy1 � �x3y1 = 0 mod 2. Furthermoreif �(y21y22) = �1, then y�11 y2 2 K(�) and therefore y1y2 � y21 mod K(�).Moreover y1 � y1y2 mod L. Thus �y1 � �y1y2 � �x2y1y2 = 0 mod 2. This�nishes the proof for this case.Assume now that H is of type (i). Then fB = (1 � cx2)(1 � bU) ande = eS; as in Proposition 2.1. In order to simplify the arguments weassume that  (z) = 1 for every z 2 Z. The general case follows by similararguments. Let w 2 U n S and L = hy; S; Zi. Let u 2 eFe \ V . By Claim2 and Proposition 2.1, � = u � 1 = �0e + �fB where the support of �0 isembedded in f1; x; w; wxg. Then for every t 2 f1; xg and l 2 L�tl = 2�0t��0tw2k+2�3n + 3n�tl�Pv2U �tlv2�3n�twl = ��0t+2�0tw2k+2�3n + 3n�twl�Pv2U �tlv2�3n�tw2l = ��0t��0tw2k+2�3n + 3n�tw2l�Pv2U �tlv2�3nwhere �g = �g � �gx2 . Thus2�0t � �0tw + 2k+1(3n�tl �Pv2U �tlv) ���0t + 2�0tw + 2k+1(3n�twl �Pv2U �tlv) ���0t � �0tw + 2k+1(3n�tw2l �Pv2U �tlv) � 0 mod 2k+23n:>From this fact and the equality �g + �gx2 = 0, for every g 2 G, one deducesthat 2k+23n divides2k+1(3n(�tl � �tx2l)�Xv2U(�tlv � �tx2lv)) = 2k+2(3n�tl �Xv2U �tlv)for every t 2 f1; x; w; wx; w2; w2xg and hence 3n divides Pv2U �gv for everyg 2 G. Then 2k+13n divides 2�0t��0tw and ��0t+2�0tw and hence 2k+13n�1 j�0t; �0tw. Write �0g = 2k+13n�1�g. Then 3 j �t + �tw. Moreover for everyg 2 G, Pv2U �gv � Pw2hx2;Ui �gw = 0 mod 2 because � 2 4(G;G0) andG0 = hx2; Ui. Thus�tw � �tl mod 2; �t � �twl mod 2 and �t + �tw = �tw2l mod 2: (1)13



As in the previous case, to �nish the proof it is enough to show that �tand �tw are even for every t = 1; x. Again we obtain our goal by inspectionof the isomorphisms �f of Lemma 2.2 for f 2 B. Recall that B = ff;X =xf; Y = yf;XY;W = wf;XW; YW;XYWg is an integral basis of ZGf .Then, by Lemma 2.2, we have that �(uf) is a unit of Z[1+p32 ; i; j]. Theunits of this ring are of the form v or vj where v is a unit of Z[1+p32 ; i].Moreover �f =Pg2B gg, withT = Pz2Z  (z)Ps2S(�tsz � �tw2sz)TW = Pz2Z  (z)Ps2S(�twsz � �tw2sz)for every t = f;X; Y;XY . Let t 2 f1; x; y; xyg and T = tf . Then2T � TW = Pz2Z  (z)Ps2S(2�tsz � �twsz � �tw2sz)� �Pz2Z  (z)Pu2U �tzu = 0 mod 3:Thus, by Lemma 2.2, the coe�cient of 1 in the expression of �(uf) in thebasis �(B) is not zero and hence �(uf) is a unit of Z[1+p32 ; i]. That isX = Y = XW = YW = 0. In other wordsXz2Z  (z)Xs2S(�tsz � �tw2sz) =Xz2Z  (z)Xs2S(�twsz � �tw2sz) = 0for every t = x; y. Since the matrix ( (z)) 2Z�;z2Z is invertible, thenPs2S �tsz � �tw2sz =Ps2S �twsz � �tw2sz = 0 for t = x; y and z 2 Z. Usingthese formula and (1) one conclude that�xw � �x � 3n�1�x �Xs2S(�xsz � �xw2sz) = 0 mod 2and similarly �1 � �w � 0 mod 2, as desired.We need one more lemma.Lemma 3.3 If E is a free nonabelian subgroup ofZG then there is an e 2 Csuch that Ee is nonabelian subgroup. Moreover, for every e 2 C such thatEe is non abelian CenZG(E)e � f�eg.Proof. If e 2 I n C then for every x; y 2 E, there is n � 1 so that[(xe)n; (ye)n] = 1. Therefore there is e 2 C so that Ee contains a nonabeliansubgroup. Identify QGe with M2(Q). Let a 2 CenZG(E). Then Ee is anonabelian subgroup of the centralizer of ae. By considering the canonical14



Jordan form of ae one can prove easily that either ae is central in QGe orthe centralizer of ae in M2(Q) is abelian. Therefore ae is a unit in the ringof integers of the centre of M2(Q) and hence ae = �e.Now we can prove Theorem 1.2. Let E = E0 � Qj2JEj be a subgroup of�nite index of ZG so that E0 is free abelian and Ej is free nonabelian forevery j. By Lemma 3.3, there is a map � : J ! C such that for every j 2 Jthere is an �(j) 2 C so that Ej�(j) is nonabelian and E0�(j); Ej1�(j) �f��(j)g, for every j1 6= j. This implies that Ej \ F�(j) contains a subgroupof �nite index of F�(j). Plainly � is injective. Let now e 2 C. Then Fe \Eis a subgroup of �nite index of Fe and therefore Fe \ E is free non abelian.Thus Fe \Ej is non abelian for some j 2 J and then Fe \Ej0 = 1 for everyj0 6= j. This implies that the cardinality of C and J coincides and � is abijection. From now on we identify J and C and consider � as an equality,so that for every two di�erent elements e and f of C, Eee is non abelian andEef = �f .Then E0 \ eF0 and F0 are subgroups of �nite index of eF0 and thereforethey have the same rank. Since the former has also �nite index in E0, thenr(E0) = r(F0).If a 2 Ee, then a = vg for some v 2 V and a trivial unit g 2 �G. Thenfor every f 2 C n feg, �f = af = vf � gf . Therefore vf is a torsion elementof V f . By Lemma 3.1, vf = f . Combining this with Lemma 3.2 one obtainEe � �( eFe \ V )oG � �(F0 � Fe)o G and the same argument shows thatE0 � �( eF0 \ V ) o G = �F0 o G. Therefore E � F o (�G). Since E istorsionfree [F o (�G) : E] � 2jGj and thus[ZG : E] = [ZG : F o (�G)][F o (�G) : E]� [ZG : F o (�G)] 2 jGj= [ZG : F o (�G)][F o (�G) : F ]= [ZG : F ]:Finally, since Ee � �(F0�Fe)oG, Ee\F0 = 1 and F0 is central (Lemma2.3), there is an injective homomorphism f : Ee ! �Fe oG, so that f(Ee)has �nite index in �FeoG. Then [�FeoG : Fe] = 2jGj � [�FeoG : f(Ee)]and hence [Fe : Fe\f(Ee)] � [f(Ee) : Fe\f(Ee)]. Thus, if r = r(Fe\f(Ee))thenr(Fe) = 1+ r � 1[Fe : Fe \ f(Ee)] � 1+ r � 1[f(Ee) : Fe \ f(Ee)] = r(f(Ee)) = r(Ee):15
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