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Abstract

Entropy-based criteria for spatiotemporal sampling design naturally incor-
porate prior knowledge on structural heterogeneities of processes involved
in environmental applications, an important aspect of variation to be con-
sidered for risk assessment purposes. Whenever possible, real-time ob-
servations must be also integrated for dynamic adaptation of the spatial
sampling configurations, eventually under certain restrictions, to account
for the actual evolution of the system. In this paper, such information is
exploited to redefine, at each time, the region of interest in terms of lo-
cal density. Procedures are applied to simulated examples where different
ranges of memory and spatial dependence, as well as different levels of
local variability (fractality), are specified to study the structural influence of
the model in the entropy-based spatiotemporal sampling design.

Key words: Risk assessment; heterogeneity; Shannon’s entropy; spa-

tiotemporal sampling.

1. Entropy-based adaptive network design

Let S0 be the starting observation set, consisting of prelimi-
nary observations used for a first estimation of process X at
the initial time. At each time t ≥ 1, the adaptive design proce-
dure consists of the following steps:

1. Update the region of interest for the unobservable process
X at time t + 1, Λt+1, as follows:

(a) Specify a distribution F to select the sites to be included in
the set Λt+1. In particular, a Beta distribution will be con-
sidered here to generate points of interest in the neigh-
borhood of critical values observed at time t.

(b) By using the observations available at time t from
S1, . . . St, obtain estimated values for the process of inter-
est X at time t on a regular mesh. These values are nor-
malized into the interval [0, 1] by applying a nondecreasing
transformation h; in the examples here, we use the func-
tion h(x) = x−min

max−min, where min and max respectively
represent the minimum and the maximum taken over the
estimates.

(c) Generate random values from the distribution F and as-
sign each generated value to the closest value among the
transformed values on the grid. The sites corresponding
to these values determine the set Λt+1.

2. Select the set of locations to be observed at time t+1, St+1,
by maximizing the mutual information between XΛt+1

(the
random vector whose co-ordinates represent the spatiotem-
poral process of interest at Λt+1) and Y(S1,1),...,(St,t),(S,t+1)
(observable process at sets S1, . . . , St, S, at times 1, . . . , t, t+
1, respectively):

St+1 = arg max
S⊂St+1

I
(
XΛt+1

; Y(S1,1),...,(St,t),(S,t+1)

)
,

where St+1 denotes the class of admissible sets considered
from where S will be selected.

2. A simulated example

Assume that X is modelled by convolution of the following spa-
tiotemporal filter f with the innovation process ε, considered to
be spatiotemporal Gaussian white noise with variance σ2

ε:

f (s, t;x,y; β, θ) =
β

(1 + |t− s|2 + ‖x− y‖2)h(θ,x)
,

with β > 0, and θ ∈ Θ. The covariance function of X is then
defined by spatiotemporal self-convolution of f .
The observation process Y here consists of the process of
interest affected by additive noise,

Yt(s) = Xt(s) + εt(s), s ∈ R2, t ∈ {1, . . . , T},
where ε represents a spatiotemporal Gaussian white noise
process, mutually uncorrelated with X, with mean 0 and vari-
ance σ2

ε . All the parameter values involved are assumed to be
known.
The method is illustrated considering weak and strong hetero-
geneous dependence modelled by an exponent function h, in-
troducing heterogeneity in the filter f. In the weak-dependent
case (Case 1), h is given by

h = g(θ,x) =
θ1

θ2 + ‖x‖2/θ3
,

where for ‖x‖ > 0, Θ is designed with the restriction h > 3/2.
In the strong-dependent case (Case 2), the exponent function
considered is h = g−1. Note also that, in the strong-dependent
case (h−1 ∈ (0, 3/2)), the local regularity of the model in-
creases with small h−values. Two particular cases are then
considered corresponding to the parameter values β = 25,
θ1 = 6, θ2 = 0, and θ3 = 5, and σ2

ε = 3, with σ2
ε = 0.0001 in Case

1 and with σ2
ε = 0.001 in Case 2. In both of them, with spatial

domain D = [0, 10]2 ⊂ R2.

The set of potentially observable sites consists of 200 coor-
dinates randomly generated from a regular 20 × 20 grid de-
fined on D (see Figs. 1a) and 6a)). The set of locations
of interest is defined by 16 fixed points, with coordinates
{(2 ∗ i, 2 ∗ j), i = 1, . . . , 4, j = 1, . . . , 4}, plus 24 additional points
to be selected, at each time, from the 20× 20 grid.
For t = 1, . . . , 6, the design criteria are applied to sequentially
select, at each time t, 50 observation sites from the set of can-
didates. The starting observation set S0 is given by 50 sites
randomly selected from that set, which are displayed in Figs.
1b) and 6b).
Realizations generated for process X on D and times t =
1, . . . , 6 are displayed in Figs. 2 and 7.
The locations included in the successive regions of interest
obtained for t = 1, . . . , 6 are shown in Figs. 3 and 8, where
we can observe relatively higher concentrations located in the
areas with higher simulated values for the spatiotemporal pro-
cess X. The resulting designs, displayed in Figs. 4 and 9,
show the dynamical adaptation of the network, clearly influ-
enced by the model dependence assumed in each case.
Finally, Figs. 5 and 10 show the results obtained when the first
region of interest is maintained fixed for all subsequent times;
the network minor changes over time are due only to structural
variations, again reflecting the dependence effect.
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Figure 1: Case 1. a) Set of candidate sites for observation,
and b) starting observation set S0.
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Figure 2: Case 1. Simulated values of the spatiotemporal
process of interest at times t = 1, . . . , 6.
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Figure 3: Case 1. Locations of interest at times t = 1, . . . , 6.
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Figure 4: Case 1. Sequentially selected network for times
t = 1, . . . , 6, for the time-adaptive criterion.
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Figure 5: Case 1. Sequentially selected network for times
t = 1, . . . , 6, for fixed region of interest.
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Figure 6: Case 2. a) Set of candidate sites for observation,
and b) starting observation set S0.

t=1 t=2 t=3

0
2

4
6

8
10

0

2

4

6

8

10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0
2

4
6

8
10

0

2

4

6

8

10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0
2

4
6

8
10

0

2

4

6

8

10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t=4 t=5 t=6

0
2

4
6

8
10

0

2

4

6

8

10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0
2

4
6

8
10

0

2

4

6

8

10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0
2

4
6

8
10

0

2

4

6

8

10
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 7: Case 2. Simulated values of the spatiotemporal
process of interest at times t = 1, . . . , 6.
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Figure 8: Case 2. Locations of interest at times t = 1, . . . , 6.
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Figure 9: Case 2. Sequentially selected network for times
t = 1, . . . , 6, for the time-adaptive criterion.
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Figure 10: Case 2. Sequentially selected network for times
t = 1, . . . , 6, for fixed region of interest.
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