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Abstract

Background: Although cellular metabolism has been widely studied, its fully comprehension is still a challenge. A
main tool for this study is the analysis of meaningful pieces of knowledge called modes and, in particular, specially
interesting classes of modes such as pathways and Elementary Flux Modes (EFMs). Its study often has to deal with
issues such as the appearance of infeasibilities or the difficulty of finding representative enough sets of modes that are
free of repetitions. Mode extraction methods usually incorporate strategies devoted to mitigate this phenomena but
they still get a high ratio of repetitions in the set of solutions.

Results: This paper presents a proposal to improve the representativeness of the full set of metabolic reactions in the
set of computed modes by penalizing the eventual high frequency of occurrence of some reactions during the
extraction. This strategy can be applied to any linear programming based extraction existent method.

Conclusions: Our strategy enhances the quality of a set of extracted EFMs favouring the presence of every reaction
in it and improving the efficiency by mitigating the occurrence of repeated solutions. The new proposed strategy can
complement other EFMs extraction methods based on linear programming. The obtained solutions are more likely to
be diverse using less computing effort and improving the efficiency of the extraction.

Keywords: Metabolic networks, Pathways and EFMs, Representativeness and quality, Flux modes, Linear
programming, Systems biology

Background
Stoichiometry can be used to construct a model of the
biological system inside a cell. The resulting model is a
genome-scale metabolic network (GSMN) and it explains
how the chemical reactions occur and how the metabo-
lites are produced and consumed during the metabolic
process. Building high-quality GSMNs must follow some
steps [1]. The model can be enriched with omic data.
Constraint-based mathematical techniques are useful
tools to analyse GSMN models. However, automatic
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characterisation of the biochemical reactions present in a
particular metabolism constitutes a challenge [2].
GSMN can also be seen as the addition of interre-

lated sub-networks. To support life, each sub-part of
the metabolic network has to accomplish its specific
biological function. Pathways are a special class of sub-
networks. They are steady-state and thermodynamically
feasible subsets of reactions, that means that mass balance
remains unaltered while the reactions produce and con-
sume metabolites. Elementary flux modes (EFMs) [3] are
non-decomposable pathways. In other words, eliminating
any reaction from an EFM would result in an infeasible
pathway from the thermodynamical point of view. Since
the EFM concept was introduced, different mathematical
and computational procedures to find all (or some of) the
EFMs from GSMNs have arisen. The nature of the EFM
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concept suggests that optimization techniques could be
applied as extraction tool. The pretended solution of each
run of an optimization technique would be an EFM.
A very well-known optimization technique is Linear

Programming (LP). There are very efficient implemen-
tations of linear program solvers available [4, 5]. Those
solvers perform similarly and are deterministic. In order
to obtain different solutions while solving a linear pro-
gram, the program must be additionally constrained with
different sets of conditions. Stoichiometric equations also
express more or less evident dependency relationships
between reactions and metabolites along the network.
Previous studies approximate the computation of flux
coupling [6, 7] and metabolic coupling [8] discovering
those hidden relationships across the metabolic network.
It is important to deal with the side effects of coupling
relationships because they can condition the solver to
get the same solution even if the constraints explicitly
included in the linear programs are different or even
strictly disjoint.
The length of the modes and the presence of every

metabolic reaction in the set of solutions have been stud-
ied on [9]. This paper presents a new strategy to improve
existent LP-based extraction methods of pathways and
EFMs reducing the appearance of some recurrent reac-
tions in the solutions and, at the same time, increasing the
probability that every considered reaction appears in the
set of extracted EFMs, which would enhance the diversity
of such set. This would improve the representativeness
of this set of by promoting the occurrence of reactions
from all over the network. The implementation of the idea
exposed above has a straightforward applicability when
using extraction methods based on linear programming.
There are two main ways of getting different solutions

(at least, to reduce the proportion of repeated ones): find a
method to generate seeds that produce different solutions
or modify the objective function so that the optimization
process tends to get solutions that are different from the
ones previous obtained. In this paper, we are interested in
studying the viability of this second approach.
In order to drive the LP solver to different solutions

on each run, in this paper it is proposed to dynamically
modify the objective function to coerce the LP solver to
consider less used reactions. As it seems obvious that
proposing the most used reactions to be part of the seed
once and again favours the occurrence of repeated solu-
tions, a plausible method to try to avoid repetitions in
the new solution is to penalize any reaction that has been
included in previously obtained solutions. Our proposal
can be viewed as a mechanism to help LP solvers not to
fall insistently in local minimums.
The paper is structured as follows. In the “Methods”

section, an introduction on the the use of linear program-
ming for EFM extraction as well as comments on the

implementation and the issues found using this approach
are provided. The “Results and discussion” section
presents the results of our approach for some study cases,
discussing the tradeoffs involved in the modification of
the optimization problem for each iteration. The final
Section provides some conclusions and ideas for further
investigation.

Methods
The problem of pathways and EFM extraction
Network metabolic models let a full or a context-specific
analysis of the role that plays any reaction or metabo-
lite inside the cell. It is particularly interesting the role
that they play in particular disease research, where is
needed to extract a specific piece of information from
the full network. Pathways and Elementary Flux Modes
(EFMs) are types of sub-network whose analysis have been
remarked by plenty of works [10, 11]. Themain drawbacks
of using EFMs are the high computational cost to enumer-
ate them and, when obtaining a subset of all the possible
EFMs in a GSMN, the uncertainty in having enough
biological relevance. There are different proposals to enu-
merate subsets of EFMs in GSMNs [12–15]. There are
also a family of algorithms for context-specific metabolic
network reconstruction that ensuring the presence of
a key set of reactions within the simplified resulting
model.
There are two main groups of computational

approaches to extract information from metabolic path-
ways: path-finding and stoichiometric [16]. The first ones
consider the network as a directed graph and explore it
[17–19]. The main disadvantage is that they do not use
stoichiometric coefficients during the exploration pro-
cess. The second ones use the stoichiometric data to do
calculations during the process. Linear Programming and
Null-Space Algorithm [20] are some of the mathematical
strategies applied to find pathways, mainly solving the
system of linear equations proposed by the stoichiometric
matrix.

Genomic metabolic networks as a system of equations
Each metabolic reaction inside a cell can be repre-
sented by its correspondent stoichiometric equation. All
the equations are arranged in a stoichiometric matrix
where columns represent metabolic reactions and rows
represent metabolites. The matrix values represent the
stoichiometric coefficients for the production or con-
sumption of metabolites on each reaction.
Be S a stoichiometric matrix (i.e., the matrix of coef-

ficients of the biochemical reactions for the studied
network). These coefficients represent the frequency at
which reactions occur at the steady-state or, equiva-
lently, the rate of metabolites production/consumption
through the reactions. A feasible sequence of reactions
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occurring inside a cell can be comprised in a vector
called flux rate that contains the reaction rates, that is,
the values for the variables of the system of equations
represented in the S matrix. If R is the full set of
metabolic reactions, the flux vector �v must fulfil the
steady-state condition (Eq. 1) and the thermodynamic
constraints (Eq. 2).

S · �v = �0 (1)

vr ≥ 0, ∀r ∈ R (2)

Equation 1 (i.e, steady-state condition) involves a bal-
ance among all metabolites and constant concentra-
tions. The thermodynamic constraint forces each irre-
versible reaction present in the solution to have a pos-
itive rate. This is a biological thermodynamic restric-
tion. Many methods need to split reversible stoi-
chiometric reactions into two irreversible reactions
to implement the accomplishment of the thermody-
namic restriction. This are a very common strategy
and it is needed when using linear programming as a
mathematical tool.
Once the above equations are solved at least two differ-

ent solutions are obtained: the trivial one and other that
represents the whole network. A pathway is just a solu-
tion of the solutions: a vector flux that is positive and
verifies the steady-state condition. It can be viewed that
any solution is associated to a subset of the full set of
reactions formed by those that has non-zero rate. Start-
ing from the whole network, and working in an iterative
way, the goal is to find subsets of reactions, the ones asso-
ciated with pathways, that correspond to solutions of the
system. So, a pathway is a subset of the full set of reac-
tions satisfying that we can find a flux-vector that is a
solution of the previous equations and whose support
(its non-zero values) are exactly the values correspond-
ing to reactions in the pathway. If the metabolic network
is represented as a graph, a pathway can be seen as
a sub-graph.
It is said that �v is the vectorized representation of an

EFM if it is not decomposable (i.e., it can not be writ-
ten as a positive linear combination of flux rate vectors
representing any other pathway in the network). It is well-
known that a pathway −→v is an EFM if and only if there
is no other pathway whose support is strictly included in
that of −→v . Non-decomposability, also called minimality,
is the condition that let transform the extraction method
into an optimization problem instead of just a system of
equations.
The biological relevance of an EFM is inherited from the

fact of the uniqueness of the set of EFMs and the canonical
quality as a set of vectors that can generate any pathway,
even those unobserved [11, 21].

Linear programming
Linear programming (LP) is the most popular
optimisation-based approach for EFMs extraction. LP
is being widely used to reduce the complexity of com-
binational problems in systems biology introducing
optimization objectives that lead the search and con-
straint the space of solutions to a subset within an specific
focus [22–24].
The existing literature describes how to formulate an

EFMs extraction problem as a linear program consider-
ing the constraints defined in the previous Section [13]
(Eq. 3).

Minimize
n∑

i=1
vi (3)

subject to S · �v = �0
vri ≥ 0 ∀ri ∈ R

Once a linear program is obtained, it can be solved
using, for instance, the Simplex Algorithm implemented
in plenty of LP solvers.
A trivial solution for the linear program posed in Eq. 3

is vri = 0 ∀ri ∈ R , which provides no biological infor-
mation. Therefore, we must impose different conditions
to modify the linear program by adding new constraints
to the LP problem to obtain different solutions from the
trivial one.
Additional constraints can be seen as set of reactions

forced to have positive fluxes (positive constraints) or,
contrarily, as set of reactions forced to be inactive, which
means that their associated fluxes are equal to zero (nega-
tive constraints).
We define a seed as a constraint of this kind in ref-

erence to the fact that a seed is the precursor of one
solution. Seeds are needed to coerce the solvers to find
non trivial, thermodynamically feasible solutions and can
also be used to try to find solutions that are different
from the previous ones. There are existing heuristics
that, searching for good seeds, introduce jumps as a
strategy to escape of the attraction of local minimums.
The attraction of those local minimums is one of the
causes of the repetitions in the solutions found by the LP
solver.

EFM extraction using LP

Observe that the objective function Min
n∑

i=1
vi was intro-

duced in order to transform our system of equations into
an optimization problem. Intuitively, this function reaches
its minimum when the number of non-zero addends is
minimal and so we expect to get solutions that are EFMs.
But it is easy to modify the proposed function to obtain
a whole set of functions with the same behaviour (we can
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use, for example, f (−→v ) =
n∑

i=1
λivi for any set of positive

numbers λi).
A fairly approach for the extraction of EFMs is to use

a computer program based on linear programming. This
program essentially consists of a number of iterations of
the Simplex method. Algorithm 1 shows the typical com-
position the program used. The main loop is iterated at
least as many times as solutions needed (N).

Algorithm 1: Typical composition of a program to
extract EFMs from a metabolic network
Data : Matrix S, seed’s length L, extractions N
Result: set Z of solutions
Function runExperiment(S,L,N)

nR ← S.columns();
for i ∈ (1..N) do

s ← GenerateSeed(nR, L);
lp ← poseLinearProgram(S, s);
sol ← simplex(lp);
Z ← Z+[ sol];

end
return Z;

A seed is an input for the LP solver that is computed in
the constraints Section. It can be said that a linear pro-
gramming based extraction method is basically a strategy
to produce relevant seeds.

Seed generation: infeasibilities
There are two different issues that can appear when using
seeds. Firstly, different seeds can produce exactly the same
solution (as it is well-known). So, it is not enough to pro-
duce a large set of different seeds to obtain a large set
of different pathways. It is not easy to choose seeds to
get new pathways, and the difficulty increases as more
solutions are computed.
On the other hand, the chosen seed can led to a problem

that has no solution at all. That is, when a certain set of
reactions are imposed to be in the solution and another set
cannot appear, sometimes contradictory conditions are
being imposed. Suppose, for example, that a reaction r1
produces a metabolite m and it can only be eliminated by
another reaction r2. If the reaction r1 is imposed to be part
of the solution but not the reaction r2, it is impossible to
get a solution satisfying the steady-state condition (m will
be produced and cannot be eliminated). A seed is called
infeasible if its associated linear-program problem has no
solution.
In order to avoid infeasibilities, the set of seeds have to

be restricted to a positive ones, that is, seeds that only

determine what reactions are required to be part of the
solution but not what are forbidden to be.

Seed generation: repetitions and representativeness
Another frequent problem of a set of solutions after
run an long extraction experiment is the under or over-
representation of some part of the metabolic networks.
This phenomenon comes associated to some kind of
affinity of the seed generator or a lack of dispersion or
randomness of its conception.
Each iteration requires its own seed that is incor-

porated as a part of the final computed solution. The
process of building a seed consists of choosing what
reactions are included in the constraint and, therefore,
in the particular solution of a constrained LP using
that seed. Defining different constraints from previous
ones does not guarantee different solutions. As the Sim-
plex algorithm is deterministic, the method to com-
pose the seeds is critical to get a significant set of
solutions.
Due to the fact that the seed induces the final solution,

the correspondent seed generator is also responsible of
the quality of the final set of solutions. It seems clear that
the generation of a new seed should be influenced by the
previous ones, and in that way, avoid to obtain the same
EFM twice. For example, graph-affinity based approaches
use the graph adjacency of reactions to build seeds, so
in some way assures some kind of minimality by forcing
the connectivity of the solution. The counterpart is that
the adjacency can cause over-representation of a deter-
mined subgraph in detriment of the global meaning. It
is also worth to say that sometimes the same problems
are due to the exhaustion of the method to generateb
different seeds.
A completely random seed generator can be con-

sidered as the simplest and fair seed generator. It
could be a module of an invented extraction method
that produces constraints for a linear program on
every iteration. This is a neutral way to generate
seeds that frees us to record previously produced
seeds to avoid repeated seeds. Algorithm 2 shows how
it works.

Algorithm 2: Random seed generator
Data : Amount of Reactions nR, seed’s length L
Result: set s reactions
Function seedGenerator(nR,L)

s ←[ ];
for i ∈ (1..L) do

s ← s+[ rand()mod(nR + 1)];
end
return s;
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Frequencies
Pathways and EFMs extraction methods incorporate
strategies to avoid repeated solutions as much as possible.
The frequency distribution of the reactions present in the
solution is a characteristic of each extraction method. Be
N the number of iterations performed in one optimization
problem and Oi the number of occurrences of the reac-
tion ri in the experiment. The frequency of occurrence for
each ri is Fi = Oi

N . A typical frequency distribution that
outcomes for one experiment is shown in Fig. 1.
The frequency distribution is somehow conditioned by

the extraction method, but there are other characteris-
tics that can influence on it. For example, the intrinsic
properties of the biological network (its size or its cou-
pling relations), or even the amount of runs done for an
experiment can influence the outcome.
It is reasonable to expect similarity between two sets of

frequencies obtained in two separated experiments. So, if
the frequencies are almost the same, we can expect that
they express properties of the network and not of the
chosen extraction method. This can open a new path to
understand why some reactions appear more often in the
set of solutions than others.

Penalizing the objective function
Depending on structural properties of the network
or magnitude factor of the stoichiometric coefficients,
solvers could tend to include the same reactions in the
final solution in almost any case, and this can lead to
obtain repeated solutions independently of the chosen
seed.
In this work, a penalization scheme that modifies previ-

ous results is proposed in order to increase the number of
different solutions, and/or to get them faster. Our aim is

Fig. 1 Bargraph frequency/reaction. Bar graph for the frequencies of
an experiment. Each bar corresponds to the frequency (y-axis) of one
reaction. The order for the reactions in the x-axis is irrelevant but it is
the same through all the experiments

to force the solver to avoid (when possible) reactions that
are present in solutions computed previously in order to
get new ones.
The proposed strategy consists of modifying the objec-

tive function with sets of positive weights {wi} to for-
mulate it as

∑n
i=1 wi · vi instead of

∑n
i=1 vi. These

weights may vary depending of the number of previ-
ously computed solutions containing any reaction so
that overrepresented reactions get a higher weight. Due
to the fact that we are minimizing the function, the
solver will tend to avoid reactions with higher weights
if possible.
Observe that this strategy is not equivalent to the

use of negative seeds. The latter one can lead us to
infeasibilities while the use of weights only discour-
ages the use of reactions that has appeared before but
does not ban them. Therefore, different sets of weights
may provide different solutions even when using the
same seed.
It is interesting to study the influence of a set of

weights over the solutions. To that, the first step is to
analyse if the use of weights has a real impact on the
set of solutions obtained. Once we are sure that our
approach modifies the set of solutions, a second ques-
tion is how to choose the weights in order to obtain sets
of solutions with the desired properties: the number of
repeated solutions should be as small as possible and the
set should be representative (as many different solutions
as possible).
To answer these questions we have to compare the

outcomes of different experiments by applying different
statistical tools to compare the results. In this work, we
have used the Wilcoxon signed-rank test [25] and a test
based on chi-square.
Initially, all the objective function weights equal 1

(i.e., Eq. 3). We aim to modify some of these weights
to obtain different solutions from the LP. In particu-
lar, we increase the weights of the fluxes associated
to the reactions with higher frequencies in the set of
obtained solutions. This may bias the solutions towards
reactions not considered in the set of obtained solu-
tions, thus increasing the diversity of the extracted
EFMs.
Wemust avoid weights equal to zero, because this would

imply not taking the corresponding reaction into account.
Therefore we choose a minimum weight equal to 1 com-
mon for all fluxes (reactions) .We propose to use as weight
for a reaction ri the number

wi = 1 + p · Fi

where p is called the penalization of the method, and Fi
is the frequency of the appearance of the corresponding
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reaction in the previous set of solutions. Equation 4
shows the new linear program where penalties have been
included.

Minimize
n∑

i=1
wi · vi (4)

subject to S · �v = �0
vi ≥ 0 ∀ri ∈ R

where wi = 1 + p · Fi ∀ri ∈ R

As it can be deduced, the higher is the frequency Fi
the higher wi becomes and, over a threshold, the opti-
mizer is induced to consider other less penalized reac-
tions (if the structural network properties allow it). The
proposed modification of the objective function weights
should result in differences between the frequencies of
a non-penalized experiment (Fi) and the penalized one
(F ′i). Algorithm 3 extends the more general Algorithm 1
by adding the modification of the objective function and
the computation of occurrences and frequencies for each
reaction in the set of obtained solutions.

Algorithm 3: Program to extract EFMs and pathways
using penalization based on the frequencies.
Data : Matrix S, seed’s length L, extractions N,

penalization p
Result: array F with the frequencies of the reactions
Function runExperiment(S,L,N,p)

O ←[ 0];
F ←[ 0];
nR ← S.columns();
for i ∈ (1..N) do

s ← GenerateSeed(nR, L);
lp ← poseLinearProgram(S, s);
lp ← modifyObjectiveFunction(lp, F , s);
sol ← simplex(lp);
O ← computeOcurrencies(O, sol);
F ← O/i;

end
return F ;

Comparing set of solutions
Being able to compare different pathway extraction exper-
iments is required in order to measure the effective-
ness of our penalization strategy. Differences in the sets
of obtained frequencies F between penalized and non-
penalized experiments would involve that the penaliza-
tion approach has an impact in the obtained solutions.
Be F and F ′ the resulting frequencies in two different

experiments, the question is how to measure the possible
differences between them. In other words, our objective

is to determine whether two samples were selected from
populations with the same distribution or not. Observe
that we cannot compare these two samples performing
a standard chi-square test because the values Fi are not
independent in general. As we have mentioned before,
there are often structural dependencies between reactions
and metabolites that can force two related frequencies to
be the same. Thus, we have chosen another statistical test,
the Wilcoxon signed rank test [26].
To analyse the differences between F and F ′ we can use

the well-known statistic (denoted by χ2) that comes from
the chi-square test (Eq. 5) .

χ2 =
n∑

i=1

(
F ′i − Fi

)2

Fi
(5)

As in the usual χ2 test, χ2 provides a good measure of
the differences between the values of F and F ′ even if we
cannot assure that it corresponds to the chi-square dis-
tribution. That is, greater values of our statistic means
a greater difference between the corresponding experi-
ments but we cannot use it to assign a probability to assure
that this difference is statistically significant.
This test measures the differences between frequencies

taking into account all the possible factors that could be
causing them: the seed generator, the LP solver, the cou-
pling relationships, the size of the GSMN, the number of
iterations for the experiment and the penalization. Fixing
all the factors except the penalization and choosing a seed
generator as neutral as possible, we can study the impact
of the penalization in the difference between our non-
weighted experiment and the weighted ones. It is expected
that higher values of p should provide higher values of
the statistic which would mean that he behaviour of our
extraction method changes.

Results and discussion
Configuration of the experiment
The first characteristic we need to tune is the seed gener-
ator. The best approach to elucidate the impact of refor-
mulating the objective function is to eliminate any bias
produced by the seed generator. For that, we propose to
use a uniform random generator because other types of
seed generator not based on randomness could introduce
certain bias. For example, the adjacency concept used in
graph exploration based methods favours the minimal-
ity and the feasibility but at the same time harms the
independence of selecting reactions to be in a seed.
Then, the seed’s length is also important. The shorter

a seed is, the less constrained is the LP and thus it is
easier and faster to be solved. Related with the length
of the seed but also with the size of the full metabolic
network, seeds different enough to each other are required
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in order to obtain statistically significant differences in the
results. According to these considerations, in this study we
generate random seeds consisting of sets of 4 reactions.
We have selected two metabolic reconstructions for this

study. The first one is iAF1260 , the reconstruction of
the E. coli K-12 MG1655 organism [27]. The iAF1260 sto-
ichiometric matrix has 3234 de-doubled reactions. The
second reconstruction we use is core E. coli metabolic
model [28]. It is a subset of iAF1260 described as an
educational guide with 154 de-doubled reactions.
The first step in our study is to guarantee that the pos-

sible differences are in fact related to the inclusion of
penalizations. To do so, our start point is to character-
ize the similarity of the frequency distributions of two
experiments using our random pathway extractor without
penalization. As a random generator we use the stan-
dard Linux one in order to generate seeds consisting in
sets of 4 reactions. Every finished experiment provides
the frequency of occurrence for each reaction, which is
compared between experiments. The experiment consists
of several runs of the same number of iterations, the
same proportional penalization and the same metabolic
reconstruction.

The influence of the penalizations
As it has been said before, we are interested in knowing if
the introduction of penalizations have a significant impact
on the results obtained.
Table 1 shows what happens when we introduce penal-

izations. In this case, each experiment consists of 50.000
iterations. To visualize the effect of the penalization, we
have applied the Wilcoxon signed-rank test. The first row
shows the result of the test for two experiments with-
out penalization and the following rows show the test for
experiments with different penalizations.
It is well-known that high Wilcoxon p-values indicate

a high similarity between the two compared frequencies
while low values mean that there are significant differ-
ences between the outcomes. Starting with the first row,
we can observe that if we ran two experiments without
penalizations, the obtained frequencies are (statistically)
almost equal. This is important because we can assure
that if we find differences between frequencies they are

Table 1 Wilcoxon signed-rank test experiments over core E. coli
GSMN

Penal. 1 Penal. 2 Wilcoxon p-value

0 0 1

0 2 0.0001926

0 5 5.843e-06

2 5 3.262e-07

not caused by random oscillations produced by the seed
generator.
By observing the first three rows we can assure that the

results of experiments with and without penalizations are
clearly different and that this difference seems to grow
with the value of the penalization. The last row shows that
experiments with different penalizations have also a dif-
ferent behaviour. It was clear from rows two and three
that there were differences and now we can see that this
difference is clearly significant.
Table 2 shows a similar behaviour for the other pro-

posed network. This network is significantly larger than
the previous one.
Therefore, we conclude that the introduction of weights

in the objective function has an influence in the results,
and that there is also a clear difference between different
weights. The above tables also suggest that bigger values
of the penalization have more impact in this behaviour.

Iterations and penalizations
We are also interested in the possible influence of the
penalization over the set of frequencies in experiments
with a different number of iterations. Table 3 shows
the comparison between different experiments for each
reconstruction and diverse amount of iterations. A com-
parison is done applying the chi-square based statistic. It
shows how the penalization has an influence over the chi-
square value considering the same number of iterations.
Table 3 also shows a remarkable impact on the exper-

iment when a penalization is applied. If the number of
iterations is fixed and the initial penalization is 0 (see, for
example the first three rows of the table), the difference
between the frequencies obtained with or without penal-
izations is clearly increased in function of the value of the
penalization.
However, the main part of this difference seems to be

achieved with relatively low values of the penalization. If
we compare two sets of frequencies obtained with differ-
ent penalizations the difference between them seems to
be less significant (compare, for example, the first and the
fourth rows of the table).
It also seems that there is some kind of connection

between the length of the experiments and the influence
of the penalizations. Experiments with a higher number

Table 2 Wilcoxon signed-rank test experiments over iAF1260
GSMN

Penal. 1 Penal. 2 Wilcoxon p-value

0 0 1

0 2 7.507e-05

0 5 0.001265

The experiments has consisted in 50,000 iterations and random seeds of 4 reactions
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Table 3 Evolution of chi-square test depending on the length of
the experiment and the penalization for the core E. coli
reconstruction

Iterations Penal. 1 Penal. 2 Chi-square

10K 0 2 0.422773

10K 0 5 0.736042

10K 0 20 1.060799

10K 2 20 0.273936

50K 0 2 0.373511

50K 0 5 0.682528

50K 0 20 1.010308

100K 0 2 0.352029

100K 0 5 0.703740

of iterations should be performed in order to get accurate
conclusions.
Once we have checked that using penalizations changes

the set of frequencies obtained in one experiment, we try
to evaluate these changes among different runs. Figure 2
shows a bar graph where the reactions have been ordered
by frequencies in ascendant order. A difference is sensed
and it seems to confirm the previous numeric results.
It can be also observed that some reactions keep their
supremacy over the rest even after trying to reduce its
frequency with penalizations.
Moreover, Fig. 3 shows a different view of previous

experiments, representing the subtraction of the frequen-
cies of two experiments with different penalization (p=0
and p=2). Negative bars reflect how some reactions are
persuaded to be so frequent, and the positive ones rep-
resent that those reactions are being included in the set

Fig. 2 Comparison of two experiments with different penalization. Bar
graph grouping the frequencies of two experiments with different
penalization (p=0 and p=2) over core E. coli metabolic model. A seed
has 4 reactions. The experiments have consisted in 5000 iterations

Fig. 3 Increment of frequency over an experiment without
penalization. Bar graph representing the subtraction of the
frequencies of two experiments with different penalization (p=0 and
p=2) over core E. coli metabolic model. A seed has 4 reactions. The
experiments have consisted in 5000 iterations

of solutions more often. The expected result was that
the greater is the previous frequency, the most nega-
tive is the difference between both experiments. Figure 3
almost let us visualize the expected result but, as com-
mented before, there are other factors within the cell
that prevent the solver from ignoring the inclusion of
some reactions despite the penalization. More experi-
ments should be done in the future to extract the meaning
of the phenomenons like the persistent supremacy of
some reactions or the easy variability for some others.

Conclusions
In this paper, a new EFM extraction strategy is proposed.
It can be used together with other LP-based methods. A
penalization associated to the previous occurrence of each
reaction during an experiment provides information that
the LP solver uses to avoid the recurrent appearance of the
same reactions in the full set of solutions. As main effect,
the solutions are more likely to be diverse. Additionally,
rarely included reactions are better represented in the set
of solutions. Other factors can affect the effectiveness like
the size of the GSMN and the number of iterations of the
experiments.
The biological relevance of the extracted EFMs is at

least the same that it is supposed to the full set of
EFMs. Recently, context-specific approaches are focused
on extract a subset of EMFs where a set of reactions are
present [22, 23]. Our proposal let implement an interme-
diate strategy where the not promoted reactions could be
penalized.
Regarding future work, it could be relevant to study

what results are obtained by doing longer experiments.
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Besides, frequency distribution and the apparent con-
vergence of the set of solutions using a combination of
the proposed factors induces us to think in a measure
of “knowledge that holds a extracted subset of pathways
from the total remaining”. Furthermore, it seems relevant
to us the analysis of the shape of the distribution of solu-
tions and the over and under representation of reactions
on them.
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