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Abstract: Microbial fuel cells (MFCs) are an environmentally friendly technology that can recover
electricity directly from several wastes at ambient temperatures. This work explores the use of
mineral oil refinery wastewater as feedstock in single-chamber air-cathode MFC devices. A polymer
inclusion membrane based on the ionic liquid methyltrioctylammonium chloride, [MTOA*][Cl],
at a concentration of 70% w/w, was used as separator, showing a good efficiency in power production
and chemical oxygen demand (COD) removal. The power and the chemical oxygen demand removal
reached values of 45 mW/m? and over 80%, respectively. The evolution of other parameters of
the wastewater including nitrites, phosphates and sulphates were also studied. Kjeldahl nitrogen
and sulphates were significantly reduced during MFC operation. The results show that mineral oil
refinery wastewater can be used as feedstock in air breathing cathode-microbial fuel cells based on
polymer ionic liquid inclusion membranes. This configuration could represent a good alternative for
wastewater depuration while producing energy during the process.

Keywords: microbial fuel cell; mineral oil refinery wastewater; ionic liquid; polymer inclusion
membrane; water depuration; electricity production

1. Introduction

Water availability is a global issue requiring pressing solutions. Currently, around 40% of the
world population is facing a scarcity of clean water, and this situation is likely to worsen in the
next decades. The lack of access to safe water and sanitation causes serious health problems and has
large unquantified impacts on economic productivity. Moreover, over 80% of the world’s wastewater
is discharged into the environment without any treatment, damaging ecosystems and triggering the
spread of communicable diseases [1]. Microbial fuel cells (MFCs) are a promising technology that
could help to tackle this problem. MFCs are systems in which organic matter is oxidized by microbes
under anaerobic conditions in the anodic compartment. Protons and electrons are released due to the
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oxidation process. While electrons are transferred to the cathode by an external circuit, protons travel
from the anode to the cathode typically through a separator. At the cathode, electrons and protons
combine to form water according to the schematic representation showed in Figure 1. Electricity can
be produced from a single substrate (e.g., acetate, lactate or glucose), but what is truly innovative is
that electricity can also be generated from complex substrates such as domestic sewage and industrial
wastewater [2,3]. When these complex substrates are used to feed MFCs, this technology offers the
two-fold benefit of energy production and wastewater treatment.

Organic
substrate

Cathode
Separator
Anode chamber

Figure 1. Schematic representation of a microbial fuel cell (MFC).

Compared with other available options for wastewater treatment, MFCs offer prominent advantages.
These include direct electricity generation, energy savings due to the lack of aeration sources and low
sludge production compared with conventional wastewater treatment with no downstream processes.
Regarding this, nearly half of the cost of current standard wastewater processes is due to the energy
input, especially for the needs of aeration and the treatment of the sludge generated during the
treatment process [4]. Other benefits are operational advantages such as the possibility of using many
types of wastes, low operational costs and resistance to environmental stress [5,6].

MECs usually include a separator between the anode and the cathode that prevents short circuits
due electrode separation and improves Coulombic efficiency (CE) since it hinders the diffusion of
oxygen to the anode [7,8]. Very recently, polymer inclusion membranes based on ionic liquids have
shown to be efficient separators in MFCs acting as proton exchange membranes. These membranes
showed a good performance when compared with conventional materials such as Nafion and their
cost are lower compared with this commercial membrane [9-11]. Ionic liquids (ILs) are organic salts
that remain liquid near room temperature. They consist of an organic cation such as imidazolium,
pyridinium, pyrrolidinium, phosphonium, ammonium, and a polyatomic inorganic anion or organic
anion such us tetrafluoroborate, hexafluorophosphate, chloride, trifluoromethylsulfonate, and
bis[(trifluoromethyl)sulfonyl]imide). Some of their advantages include task-specific functionality
since these compounds can be tailored by selecting the proper cations and anions in their structure for
a given purpose. They generally have high viscosities, negligible vapor pressure and non-flammability
in addition to good electrochemical features such as high ion conductivity and wide electrochemical
stability window [12]. Due to these properties, it can be adventurous to use ionic liquid-based
separators for wastewater treatment in MFCs. However, the study of the performance of MFC devices
including such types of membranes is scarce in the literature.

Several types of complex substrates have been investigated for bioenergy generation in these
devices, including domestic, food processing and swine wastewater [13-18]. Brewery wastewater of
high organic matter loading has been a preferable option for feeding MFCs. Other carbon sources
such as starch-processing wastewater have shown to be suitable for microbial consortium enrichment.
More recently, effluents containing azo dyes from dye-manufacturing textile industries have been



Appl. Sci. 2018, 8,438 30f10

treated in MFC devices, proving their removal capacity of xenobiotic compounds. Thus, the use of
MEC technology could offer a great potential for wastewater treatment before discharge [19-21].

In this work, the application of MFC technology specifically for the treatment of wastewater
from industries involved in the production of white mineral oils and petroleum sulfonates is
evaluated. This type of wastewater has not been previously studied in these devices. For this purpose,
single-chamber MFCs using polymer membranes based on the ionic liquid methyltrioctylammonium
chloride, [MTOA*][C1™], were used. The chemical and electrical performance of the MFCs fed with
industrial oil wastewater were analyzed. Wastewater physico-chemical parameters such as chemical
oxygen demand (COD), total suspended solids (TSS) and concentration of nitrite, orthophosphate
and ammonium sulphate were analyzed. The ionic liquid-based polymer membranes employed were
characterized with a scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX).

2. Materials and Methods

2.1. Preparation and SEM-EDX Characterization of Polymer lonic Liquid Inclusion Membrane

The ionic liquid methyltrioctylammonium chloride, [MTOA*][C] ], (purity > 97%), poly(vinylchloride)
(PVC) of high molecular weight and tetrahydrofuran (THF) were purchased from Sigma-Aldrich-Fluka
Chemical Co. (Madrid, Spain)

The polymer ionic liquid inclusion membranes (PILIMs) used as separators in MFCs were
prepared by casting method dissolving 210 mg of [MTOA*][CI™] and 70 mg of PVC in 3 mL of
THF according to a previous reported method [9].

A Hitachi S-3500N scanning electron microscope (Berkshire, UK) coupled to a Bruker AXS X-ray
analyser (Karlsruhe, Germany) was used for energy dispersive X-ray analysis in order to study the
morphology, chemical composition and distribution of the chemical elements present in the membranes.
The PILIMs were characterized immediately after preparation (fresh membrane) and after being used
in microbial fuel cells.

2.2. Microbial Fuel Cell Set-Up

Experiments were performed in air-cathode single-chamber MFCs. They consisted of 250 mL
glass reactors using graphite granules and a graphite bar as anode and carbon cloth sprayed with
platinum (0.5 mg/cm?, Cimyt-Quimica, Barcelona, Spain) as described in other works of the research
group [11]. The anode chamber was fed with 160 mL of wastewater. MFCs were operated during
9 days (217 h) at a fixed temperature of 25 °C with an external resistance load of 1 KQ). Two replicates
of each reactor were set-up. The values reported are average values.

Two other types of reactors were also added to the experimentation, which were named the
baseline (containing only carbon granules as a biofilm support with 100 mL of graphite granules and
160 mL of wastewater without an external connection) and control (only with 160 mL of wastewater;
no graphitic components). They served to compare the outputs from MFC operational conditions to
those from an anaerobic digester with biofilm and to those from an anaerobic reactor with suspended
microflora, respectively.

2.3. Substrate

The substrate used for the experiments was obtained from a local industry dedicated to the
production of white mineral oils and petroleum sulfonates located in the southeast of Spain. Before and
after the experiments, an exhaustive characterization of the wastewater was performed. The initial
values of the physicochemical parameters of the wastewater monitored in this work are presented
in Table 1.
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Table 1. Comparison of physicochemical parameters before and after water treatment in microbial fuel
cells (MFCs), baseline and control.

Final Values

Water Parameter Method Initial N
MEFC Baseline Control
pH [-] 8.19 6.78 6.99 6.99
Alkalinity (mg/L) RODIER [22] 67.60 19.60 23.60 31.60
TSS (mg/L) AFNOR 90-105 [23] 0.18 1.40 0.98 0.58
COD (mg/L) AFNOR 90-101 [23] 1760.00 334.00 1200.00 1092.00
Total Phosphate (mg/L) AFNOR 90-022 [23] 0.51 16.44 19.27 1.58
Kheldahl nitrogen (mg/L) AFNOR 90-110 [23] 11.20 5.60 8.40 7.00
Nitrite (mg/L) AFNOR 90-013 [23] 0.48 0.38 0.42 0.39
Ammonium (mg/L) AFNOR 90-015 [23] 2.67 1.40 1.48 2.19
Sulphate (mg/L) RODIER [22] 263.50 128.50 148.50 142.67
Chloride (mg/L) AFNOR 90-014 553.80 837.80 552.80 569.60
Hardness (mg/L) RODIER [22] 876.00 1076.00 836.00 816.00

2.4. Wastewater Characterization

Sampling was done by removing a 5 mL aliquot with a plastic syringe from glass reactors.
The sample was centrifuged at 5000 rpm for 5 min and then subjected to filtration (standard membrane
filter of 0.45 microns). In addition, 3 mL of the filtered aliquot was employed for COD analysis
according to the French Standarization Association (AFNOR) method T90-101 with a Spectroquant
Nova 30 spectrophotometer (Merck, Darmstadt, Germany). Soluble COD removal or CODg, is defined
as the ratio between the total COD consumed in the process (difference between initial COD value or
[COD]p and the COD value at a given time or [COD]):

(IcoD), — [cOD};)
coD),

CODg(%) = x 100 (1)
Total suspended solids, hardness, alkalinity and ion analysis were performed using AFNOR
standard methods [22,23].

2.5. Polarization Method

Polarization tests were performed with a variable resistor box in the range from 11 MQ to 1 Q.
For each case, voltage was taken once the cell reached the pseudo-steady state under the correspondent
resistor value (typically after 1 min). For each external resistance load, current density was determined
as I = E/Rext and the power density alternatively as P = E2? /Rext. Both values are normalized to anode
capacity (wastewater volume used to feed the MFCs). Polarization and power curves depict voltage
and power output, respectively, versus current density measured in polarization tests.

2.6. Coulombic Efficiency

Coulombic efficiency (Y() is defined as the ratio between the number of coulombs transferred
to the anode from the substrate and the theoretical maximum number of coulombs that could be
produced if the entire substrate were available for current generation:

_ coulombs produced
" total theoretical coulombs

Yo x 100 @)
The number of total coulombs obtained is determined by integrating current versus time.
The above equation can be rewritten in order to obtain the Coulombic efficiency in an MFC in batch
mode as follows [24]:
My [y i(t)dt
Yo =

= Facoppy < 100 ®)
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where M, is the molecular mass of oxygen (32 g/mol), i(t) is the rated current (A = C/s), F is the Faraday
constant (96,485 C/mol of e™), ACOD is the variation of COD during the time ¢ ((COD], — [COD]),
b is the mols of electrons produced per mol of oxygen (b = 4) and V is the volume of liquid in the anode
chamber (0.25 L).

3. Results and Discussion

3.1. Industrial Wastewater Treatment by Microbial Fuel Cells

The physicochemical parameters of the wastewater used for the MFC experiments, baseline and
control, are shown in Table 1, including initial and final values, which are common for all operational
conditions, and final values after 217 h (test time).

The wastewater analysis shows that the pH shifts from an initial value over 8 in the anode
chamber to neutral values at the end time for all systems (MFCs, baseline and control). In MFC
systems, the pH of the anodic chamber greatly influences the metabolic activity of microbes affecting
the mechanism of proton and electron generation from electroactive bacteria. Since the final pH values
are neutral, protons produced are not accumulated during time operation in the anodic chamber
in MFCs but transferred through the ionic liquid membrane to the cathode at which they combine
with oxygen. Accordingly, alkalinity also decreases in MFCs from 67.60 mg/L to 19.60 mg/L in the
MEFC anode chamber.

Another significant parameter for wastewater treatment is the evolution of the COD loading.
As can be seen from Table 1, a high removal rate is achieved in the MFC system after nine days
of operation. COD loading reduces from 1760 mg/L to 334 mg/L, which accounts for 81.0% in terms
of COD removal. The digestion of the wastewater performed in the presence of graphite granules
only (baseline) and the absence of graphitic components (control) for comparison purposes, offers
removal rates of only 31.8% and 37.9%, respectively. These values show that the degradation of
soluble organic matter is clearly promoted in MFC operation versus conventional anaerobic digestion.
Regarding the levels of TSS, higher values of these parameters were found in MFC and baseline
conditions in comparison with the control. The increase in this parameter for such conditions is related
to the presence of graphite granules in the two first configurations, which would increase the level by
adding solids from the graphite phase to the anode bulk solution.

Regarding the analysis of the ion species present in the wastewater used, different tendencies can
be observed depending on the case. Nitrite, sulphate and ammonium show a decreasing tendency in
all conditions, but generally more accentuated under MFC operation. Considering the complexity of
the anode conditions in MFCs, it is likely that several mechanisms are involved for each ion species.
In the absence of oxygen, nitrites and sulphates can act as electron donors and be employed as nutrients
by bacteria. The higher decrease rates in MFC when compared with baseline and control conditions can
be attributed to the growth of the biofilm, and the faster water oxidation rate as previously commented.
Given that the initial concentration of sulphate is significantly high (263.50 mg/L), it is worth noting
that the reduction of this ion species in the MFC systems reaches 51.23%. The concentration of
ammonium also decreases in comparison with the initial values. Ammonium is another nutrient used
by microorganisms. This reduction is also higher in MFCs than in the baseline and control. This trend
is also observable for Kheldahl nitrogen, which is reduced by a 50% in MFCs, showing higher removal
rates compared with the rest of the conditions.

Regarding the concentration of total phosphates, it can be observed that there is a significant
increase in their concentrations in comparison with their initial values (0.51 mg/L) in those systems in
which graphite are present (MFC and baseline). The final values for these two parameters are in the
interval 14.41-19.27 mg/L. In previous works, it has also been also reported that these ion species can
be released to the medium from the class of graphite used in this work due to its composition [25].

In the case of chloride, this parameter clearly increases in the case of MFCs. This is caused by the
release to the media of a small amount of ionic liquid that forms the membrane as discussed in the
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following section. Finally, the hardness remained practically unchanged for baseline and control, but
increased by 22% in the MFCs.

3.2. Ionic Liquid-Based Membranes Applied to Wastewater Treatment

As stated in the Materials and Methods section, a polymer inclusion membrane based on the
ionic liquid [MTOA*][C]~] was employed as separator for the treatment of white oil refinery industry
wastewater in the MFC system. The ionic liquid membrane was characterized before (fresh membrane)
and after MFC operation by scanning electron microscope with the purpose of obtaining information
about morphology, topography and chemical composition. Figure 2A,B show the SEM micrographs of
the [MTOA™][Cl~] membrane before and after use in MFCs, respectively. The fresh membrane offers
a homogenous appearance with no porosity observable. The surface of the membrane is virtually
smooth and clean. Figure 2B shows that, after being employed as a separator in the MFC system, the
membrane becomes rougher due to the formation of deposits over the surface that has been in contact
with the oil industry wastewater.

BSE MAG:40 x HV:15.0 kV WD: 15.0 mm

BSE MAG: 40 x HV: 16.0 kV. WD: 15.0 mm

Figure 2. Scanning electron micrograph of the membrane with [MTOA™*][Cl™] ionic liquid after being
used in MFC with white oil refinery industry wastewater.

Figure 3 and Table 2 (EDX normalize %wt) includes the EDX spectrum and the EDX analysis
results (in %wt) of the ionic liquid membrane before and after MFC operation. In Figure 3, a reduction
of the Cl content of the membrane is observed, which, according to the EDX analysis, corresponds
to a percentage of 3.28%. Given that the Cl content of the membrane stems from the ionic liquid
composition and PVC (polymer matrix), it can be concluded that a certain amount of the ionic liquid
has been released from the membrane to the medium, since PVC is recognized as an insoluble polymer.
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The same applies to the content of the nitrogen, although, in this case, the reduction percentage is
higher, since nitrogen is not present in the polymer but only in the ionic liquid. The stability of
polymer ionic liquid membranes based on [MTOA™][Cl™] in contact with water has been previously
studied [9], showing that they are capable of retaining an important amount of ionic liquid after
long-time water contact. As noted before, the membrane showed that some deposits were formed over
the membrane surface (Figure 2). After MFC operation, new chemical elements (S, Ca, Fe, Zn) were
found absorbed in the membranes, which would come from the white oil refinery wastewater used
as fuel. In addition, higher concentrations of oxygen and carbon concentration were found in the used
membranes compared with their concentration in the fresh separator. Both findings could be related to
the deposition of CO, generated during the microbial activity on the membrane.

a

Fresh Membrane MFCs' Membrane

Intensity (a.u)

0 100 200 300 400 500 600 700

Energy (eV)

Figure 3. Energy dispersive X-ray (EDX)spectra of the [MTOA*][C1™] (70% w/w) membrane, fresh
and after operation in MFCs with white oil refinery wastewater.

Table 2. EDX spectrum data of membranes before and after use in MFCs in contact with oil
industry wastewater.

70% w/w [MTOA*][C1~] + poly(vinylchloride) (PVC)

Element Fresh After Opreation

C. Norm (% wt) C. Norm (% wt)
C 36.05 22.16
N 13.76 491
(@) 9.27 19.97
Cl 4091 37.63

P - -

S - 5.88
Ca - 0.59
Fe - 0.63
Zn - 5.88

3.3. Electric Performance

Figure 4 displays the voltage response of the MFC system, showing that the pseudo-stationary sate
is reached after 50 h of operation. Typically, the breaking of the long organic chains and the formation
of biofilm take place in the first hours of operation (24 h). Beyond this point, an increase in voltage
output is observed and a further stabilization of the system is appreciated after 50 h. Figure 5 illustrates
the results of the polarization tests performed after 72 h of operation. As can be seen, the maximum
level of power density is 45 (mW/m?) at a current density of around 500 mA /m?, corresponding to an
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internal resistance of 0.98 k(2. This level of power could be increased by mixing wastewater with other
microbial promoting substrates [26,27], although this proves that direct white oil refinery wastewater
with natural occurring bacteria without previous treatment (direct use of wastewater effluent) can be
used for energy production. Finally, as regards the evolution of the Coulombic efficiency for the MFC
system, after operation, the Coulombic efficiency of the system reaches only 1.5%. This low level of
Coulombic efficiency can be attained in MFCs fed with wastewater that are not strengthened by the
addition of other microbial cultures specifically selected for electricity production.

180 -
160 1
140 -
120 -
100 - ~——
80 -
60 -
40
20 -
0

Voltage (mV)

0 24 48 72 96 120 144 168 192 216 240
Time(h)

Figure 4. Voltage output in MFC using polymer inclusion membrane based on 70% w/w of
[MTOA™][C]™] using white oil refinery wastewater as feedstock.

N
[9,]
P (mW/m?3)

0 200 400 600 800 1000
i(mA/m3)

Figure 5. Polarization test of MFCs using white oil industry wastewater as feedstock and a polymer
inclusion membrane based on [MTOA*][C]~]. Polarization curve for MFCs (V vs. I). Power output
curve (P vs. I). Calculations are based on anode liquid volume.

4. Conclusions

The present work studies the use of white oil industry wastewater as direct feedstock in MFCs.
MEFC systems incorporated an ionic liquid membrane based on methyltrioctylammonium chloride,
[MTOA*][C1 ], as an effective separator for the treatment of white oil refinery wastewater. A high
removal of COD of 80% was achieved after nine days of operation, with 105 mV as voltage output
and 45 mW/m? of power density, respectively. A reduction of other species such as Kjeldahl nitrogen,
nitrite, sulfate and ammonium was also found, with a high removal percentage of over 50% in the
case of sulfate. Moreover, the analysis of the ionic liquid membrane after use showed a good behavior
of this type of separator in contact with the substrate in terms of stability, indicating that MFCs
containing ionic liquid based separators are suitable for bioenergy production and simultaneous
treatment of white oil refinery wastewater. These preliminary results could be for the application of
MEC technology for the treatment of wastewater effluents in white oil refinery industries. Future works
may be comprised of several strategies for strengthening electrical performance by mixing different
microbial and substrate sources when using white oil refinery industry wastewater as feedstock.
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