ESCUELA TECNICA SUPERIOR DE INGENIERIA DE TELECOMUNICACION

UNIVERSIDAD POLITECNICA DE CARTAGENA

Proyecto Fin de Carrera

Design Space Exploration of an Advanced Direct
Memory Access Unit for a Generic VLIW processor

AUTOR: Féatima Reino Gomez
DIRECTOR(ES): José Javier Martinez Alvarez,
Francisco Javier Garrigés Guerrero
CODIRECTOR: G.Paya Vaya
P.Pirsch

Septiembre/ 2008

Autor Fatima Reino Gémez

E-mail del Autor fatimareino@hotmail.es

Director(es) José Javier Martinez Alvarez, Francisco Javier Garrigds Guerrero

E-mail del Director JJavier.Martinez@upct.es

Codirector(es) G.Paya Vay4, P.Pirsch

Design Space Exploration of an Advanced Direct Memory Access Unit for a
Generic VLIW Processor

] DMA avanzado, codificacion de video, procesamiento de video, motion
Descriptores estimation, procesadores VLIW.

Titulo del PFC

Resumen

Analizando los actuales requerimientos para la transferencia de datos de los estandares de
codificacion de video, los diferentes tipos de procesadores, y estudiando el funcionamiento y
las ventajas de los accesos directos a memoria (Direct Memory Access), he desarrollado un
modelo parametrizable de un acceso directo a memoria. Considerando un método de
codificacion de video concreto (motion estimation), he implementado una version mejorada,
afiadiendo funcionalidad extra en el DMA para conseguir una reduccion en el tiempo de
ejecucion y por lo tanto mejoras en las aplicaciones de video. A partir del estudio de los
resultados obtenidos he realizado un analisis exhaustivo indicando las posibles futuras
modificaciones.

. L, Ingeniero Superior de Telecomunicaciones
Titulacién

e Planificacion y gestion de Telecomunicaciones
Intensificacion

Electrénica, tecnologia de computadoras y proyectos
Departamento € P ¥ proy

Fecha de Presentacion | SePtiembre-2008

mailto:fatimareino@hotmail.es
mailto:JJavier.Martinez@upct.es

El objetivo de este documento es realizar una breve presentacidn en castellano sobre
el proyecto realizado.

El procesamiento multimedia tiene un gran niumero de aplicaciones como la televisidon
interactiva de alta definicion o teléfonos madviles multimedia. Debido a esto, estd tomando
cada vez mas importancia en la actualidad.

El procesamiento multimedia abarca la captura, almacenamiento, manipulacién vy
transmisién de objetos multimedia como por ejemplo objetos de audio, de texto, imagenes,
video y graficos de 2-D/3-D.

Hoy en dia, debido a la amplia variedad de aplicaciones como por ejemplo las actuales
aplicaciones de video, teléfonos moviles multimedia, la television interactiva de alta
definicién... son necesarias continuas mejoras requiriendo para esto sofisticadas operaciones
multimedia, las cuales implican una alta demanda de potencia. Por ello y para conseguir
mejores resultados, han aparecido una gran variedad de métodos que consiguen que los
procesadores se comporten menos linealmente y mas en paralelo.

El paralelismo puede existir a varios niveles, por ejemplo de datos, de instrucciones o
de hilos (programas).

a) Paralelismo de instrucciones (ILP) busca aumentar la velocidad a la que las
instrucciones son ejecutadas en la CPU (es decir, aumenta la utilizacion de los recursos
en la ejecucidn). Se pueden distinguir dos tipos principales:

e Super-Scalar: Superscalar es el término empleado para describir un tipo de
microarquitectura de procesador capaz de ejecutar mds de una instruccién por
ciclo de reloj. En un procesador superescalar es el hardware en tiempo de
ejecucidn el que se encarga de planificar las instrucciones. La microarquitectura
superescalar usa el paralelismo de instrucciones ademas de el paralelismo de
flujo, este Ultimo gracias a la estructura en pipeline.

e VLIW: Esta arquitectura implementa una forma de paralelismo a nivel de

instruccion. Es similar a las arquitecuras superescalares, pues ambas usan varias
unidades funcionales (por ejemplo: varias ALUs, varios multiplicadores, etc)
para lograr este paralelismo.
Los procesadores con arquitecturas VLIW estdn caracterizados, como su
nombre sugiere, por tener juegos de instrucciones muy simples en cuanto al
numero de instrucciones diferentes, pero muy grandes en cuanto al tamafio de
cada instruccidn. Esto es asi porque en cada instruccién se especifica el estado
de todas y cada una de las unidades funcionales del sistema. El objetivo de este
tipo de arquitectura de computadoras es simplificar el disefio hardware
dejando la tarea de la planificacion del cédigo en manos del
programador/compilador. Por el contrario, un procesador superescalar
requiere hardware extra para realizar esta programaciéon en tiempo de
ejecucion.

b) Paralelismo a nivel de hilo de ejecucion (TLP) busca aumentar el nimero de hilos

c)

(programas individuales) que un CPU puede ejecutar simultdaneamente. Ejecuta
simultdneamente instrucciones de multiples hilos en lugar de ejecutar
concurrentemente multiples instrucciones del mismo hilo.

Paralelismo de datos (DLP) trata con multiples piezas de datos en el contexto de una
instruccién. Por ejemplo:

e Single Instruction Multiple Data (SIMD) es una técnica empleada para lograr el

paralelismo de datos. Las instrucciones aplican la misma operacién en un
conjunto de datos. Una unica unidad de control envia las instrucciones a
diferentes unidades de procesamiento. Todos los procesadores reciben la
misma instruccién de la unidad de control, pero operan en diferentes conjuntos
de datos. En otras palabras, la misma instruccidon es ejecutada de manera
sincrona por todas las unidades de procesamiento.

Debido a la posibilidad de explotar el paralelismo de datos en las aplicaciones

multimedia, la arquitectura VLIW esta siendo muy empleada en los ultimos afios. Usando

subword parallelism (es una forma a pequefia escala de SIMD), una arquitectura VLIW puede

conseguir unas mejoras significativas en los resultados.

Para explotar el paralelismo de datos, es necesario subword parallelism, que realiza la

misma operaciéon simultaneamente en diferentes subword empaquetadas en una word.

Subword es una pequefia unidad de datos que estd contenida en una word. En subword

parallelism, se empaquetan varias subword en una word para posteriormente procesar la

word completa. El paralelismo de datos también necesita:

1)

2)

Un modo de expandir los datos en largos contenedores.

Reorganizacién de las subword en un registro. Muchos son los algoritmos que
necesitan esta reorganizacién de las subword. Dos ejemplos de instrucciones que se
encargan de realizar esta reorganizacién de las subword son:

MIX: Estas instrucciones cogen subwords de dos registros e intercalan alternativas
subwords de cada uno de los registros en el registro final. Mix left empieza cogiendo
la subword situada mas a la izquierda de cada uno de los dos registros fuente,
mientras que mix right termina con la subword situada mas a la derecha de cada
uno de los dos registros fuente. La figura 1.1 del proyecto ilustra esto para 16-bit
subwords [1].

-iv -

o Permute: La instrucciéon permute coge un registro fuente y realiza una permutacion
de las subwords de este registro. Con subwords de 16-bits, esta instruccién puede
generar todas las permutaciones posibles, con o sin repeticiones, de las 4 subwords
en el registro fuente. La figura 1.2 del proyecto muestra una posible permutacion.
Para especificar una permutacion particular, se usa un indice de permutacion. El
numero de subword en el registro fuente empieza con cero para el subword situado
mas a la izquierda. El indice de permutacién identifica el subword del registro fuente
se situard en un determinado subword del registro destino [1].

3) Alineamiento de datos realizado durante una transferencia entre una memoria externa
y una memoria local.

Una referencia a memoria es llamada alineada cuando accede a posiciones de
memoria que coinciden con el acceso a memoria alineado del procesador, cuando esto no
ocurre es llamada no alineada. Para acceder a una posicion no alineada, se debe realizar un
proceso de alineamiento. El proceso de alineamiento se muestra en la figura 1.3 del proyecto.

Se debe leer la word alineada en memoria que se encuentra antes de la posiciéon no
alineada y descartar los bytes que no son necesarios, después se lee la word alineada en
memoria que estd localizada después de la posicidon no alineada y descartar los bytes que no
son necesarios y finalmente se juntan los bytes necesarios de las dos anteriores words.

La mayoria de los procesadores SIMD proporcionan acceso solo a datos contiguos en
memoria, con fuertes restricciones de alineamiento porque tienen una arquitectura de
memoria limitada. Estas arquitecturas, a menudo no proporcionan ningln soporte hardware
para accesos no alineados o lo proporcionan pero degradando los resultados. Debido a esto,
normalmente el programador acaba realizando el alineamiento en software, lo cual implica
una carga extra y degrada los rendimientos significativamente. Por ejemplo, en aplicaciones de
codificaciéon y decodificacion de video que usan los algoritmos motion estimation (ME) y
motion compensation (MC), se requieren alineamientos de modo impredecible.

Hoy en dia, hay numerosos consensos sobre la importancia de los accesos no alineados
para las aplicaciones de video (no teniendo un soporte eficiente para accesos no alineados se
degradan los rendimientos de manera significativa), pero la mayoria de las actuales
arquitecturas SIMD que soportan accesos no alineados presentan restricciones y limitaciones.

Debido a que las aplicaciones requieren cada vez mds recursos, una unidad de acceso
directo a memoria (DMA) es una caracteristica esencial en todos los ordenadores modernos,
ya que permite a diferentes dispositivos comunicarse sin someter a la CPU a una carga masiva
de interrupciones, incrementando de este modo los rendimientos de la aplicacidon. Una
transferencia DMA esencialmente copia un bloque de memoria de un dispositivo a otro. Con
un DMA, la CPU podria iniciar la transferencia, realizar otras operaciones mientras la
transferencia esta en proceso, y recibir una interrupcion del controlador del DMA una vez que
la operacion ha sido realizada. Un uso tipico en un DMA es transferir un bloque de memoria
desde/hacia una memoria externa o desde/hacia un buffer del dispositivo.

Con las instrucciones explicadas anteriormente, el proceso de alineamiento somete a
la CPU a una gran sobrecarga. Hay muchas aplicaciones, como las de procesamiento de video,
gue requieren un soporte eficiente para accesos no alineados, el no tenerlo degrada los
rendimientos significativamente. Debido a que el DMA permite a los dispositivos transferir
datos sin someter a la CPU a una carga masiva de interrupciones, una posible solucién seria
disefiar un ‘Enhanced DMA Unit’ (DMA inteligente) capaz de realizar este alineamiento de los
datos. Este nuevo DMA ahorrara muchos ciclos porque ahora este alineamiento es realizado
en el DMA y la CPU puede ejecutar otras partes del codigo de la aplicacidn en paralelo.

La idea de este proyecto es implementar un DMA que ademas de realizar este
alineamiento pueda también realizar otras permutaciones de datos, por ejemplo padding
(extensiones de datos). Las instrucciones explicadas anteriormente seguiran siendo empleadas
porgue una vez que los datos estén en la memoria interna, estas instrucciones seran las
responsables de realizar cualquier alineamiento requerido. Pero muchos seran los casos en los
que podremos usar el 'Enhanced DMA Unit' y colocar los datos ya alineados del modo
requerido en la memoria interna. De este modo se eliminaran muchas instrucciones de cédigo
y por tanto estaremos eliminando ciclos.

Un ejemplo donde el 'Enhanced DMA Unit' puede claramente reducir la sobrecarga
para la CPU seria en aplicaciones de codificacién y decodificacién de video que usan los
algoritmos ME y MC. Estos algoritmos requieren mover bloques de datos de una memoria
externa a una local mas rapida, y alinear estos bloques para colocarlos correctamente en la
memoria local. Ademas en los casos en los que estemos leyendo fuera de la imagen de
referencia sera necesario realizar una extension de los datos (padding process).

Los objetivos de este proyecto son los siguientes:

= Analizar los requerimientos de transferencias de los actuales estandares de
codificacion de video y desarrollar un modelo parametrizable de un acceso directo a
memoria (Direct Memory Access).

= Considerando un método particular de codificacién, por ejemplo motion estimation,
una versidn mejorada serd implementada, afiadiendo funcionalidad extra en el DMA
para disminuir el tiempo de ejecucidn.

= Un analisis exhaustivo de los rendimientos de los resultados sera realizado, indicando
posibles futuras modificaciones.

Este proyecto estd organizado del siguiente modo. El capitulo 2 presenta los
procesadores VLIW y una introduccion a los DMA. El capitulo 3 introduce H.264/AVC que es un
estandar de compresion de video y ademads introduce el algoritmo motion estimation (ME). El
capitulo 4 expone las propuestas para el ‘Enhanced DMA Unit’. Después de esto, en el capitulo
5, se muestra la evaluacién del DMA propuesto usando el algoritmo motion estimation.
Finalmente, las conclusiones son presentadas en el capitulo 6.

-Vi-

H.264/ AVC y Motion Estimation

H.264 es un estandar para compresion de video. El objetivo del proyecto H.264/AVC
era crear un estandar capaz de proporcionar buena calidad de video, sin aumentar mucho la
complejidad del disefio para que este no fuera impractico o excesivamente caro de
implementar.

La figura 3.2 del proyecto muestra un diagrama genérico de un codificador de video.

A continuacién se va a realizar un estudio del bloque motion estimation para analizar
las mejoras que serian Utiles en un DMA.

Motion Estimation

Es el proceso de determinar los vectores de movimiento que describen la
transformacion de una imagen a otra.

La idea clave de motion estimation es que imagenes de video consecutivas seran
similares excepto por pequefos cambios introducidos por objetos que se mueven en las
imagenes.

Motion estimation extrae informacién del movimiento de las secuencias de video. El
movimiento estd representado con un vector de movimiento(x,y). Este vector indica el
desplazamiento de un pixel o un bloque de pixels de la imagen actual debido al movimiento. El
proceso de aplicar este vector de movimiento a una imagen para obtener la siguiente se llama
motion compensation. La combinacién de motion compensation y estimation es una pieza
clave de la compresién de video.

Hay muchas técnicas para realizar motion estimation, pero la mas empleada es el
algoritmo de correspondencia de bloque (Block Matching Algorithm).

Block Matching Algorithm

Este algoritmo calcula un vector de movimiento para un bloque de pixels. La figura
3.11 del proyecto puede ayudar a comprender el funcionamiento del algoritmo.

La imagen actual es dividida en bloques de pixels y motion estimation se realiza para
cada uno de estos bloques.

Motion estimation se realiza identificando el bloque de pixels de la imagen de
referencia que mas se le parece al bloque a codificar. El bloque de referencia es generado por
el desplazamiento (este desplazamiento se realiza con los vectores de movimiento) de la
localizacién del bloque a codificar en la imagen de referencia.

- Vii -

Para encontrar el bloque de pixels que mas se parece al bloque actual la bdsqueda en
la imagen de referencia se realiza solo en una regién de busqueda.

Para decidir cual es el bloque de pixels que mas se parece al actual hay dos posibles
criterios:

e Sum of Square Error (SSE) = x=N zzllv(C(x, y) — R(x,y))?

SSE proporciona una muy buena correspondencia de bloque pero requiere una carga
computacional alta.

e Sum of Absolute Difference (SAD) = ZﬁzﬁVZZ:iVIC(x,y)—R(x,y)l

SAD proporciona una buena correspondencia de bloque y requiere menor carga
computacional. Por esto el criterio mas usado es SAD. El bloque que mds se parece al bloque
actual es el bloque con el menor SAD, y su vector de movimiento sera el vector de movimiento
que describa el desplazamiento del bloque actual.

Se ha asumido que el bloque se va a encontrar situado en un nimero entero de
pixeles. En la practica, el desplazamiento de un objeto entre dos imagenes consecutivas de
video no coincidird con un numero entero de pixeles. Por lo tanto, los actuales estdndares de
codificacion de video emplean subredes de pixeles, en las cuales los vectores de movimiento
pueden apuntar a bloques candidatos localizados en medio-pixel o incluso en cuarto-pixel.

En la aplicacién empleada en el proyecto es posible apuntar a bloques situados solo en
medio-pixel (ademas de pixeles enteros) y existen los siguientes casos:

e FH: Media vertical (circulo verde).

e HF: Media horizontal (circulo azul).

e HH: Media vertical y media horizontal (circulo amarillo).
e FF: copia (circulo rojo).

Estos casos estan representados en la figura 3.9 del proyecto.

Buscar el bloque en toda la regién de busqueda supone un gasto computacional
elevado. Para reducir esta busqueda en la imagen de referencia existen diversos algoritmos, en
este proyecto se va a emplear busqueda recursiva de tres dimensiones (Three Dimensional
Recursive Search (3DRS)).

Three Dimensional Recursive Search

Three dimensional recursive search (3DRS) es un algoritmo de busqueda. Este
algoritmo se basa en dos premisas:

- viii -

e Los objetos son mas largos del tamafiio de un bloque

e Los objetos tienen inercia

Teniendo en cuenta la primera premisa los vectores de movimiento de los vecinos
pueden ser usados como candidatos para el bloque actual. En este punto puede aparecer un
problema para bloques vecinos cuyo vector de movimiento aun no haya sido calculado. Aqui
es donde se aplica la segunda premisa y se emplean para estos bloques los vectores de
movimiento de la imagen anterior. En la aplicacion empleada en este proyecto para la
busqueda de los vectores de movimiento candidatos mediante 3DRS, se cogen los vectores de
movimiento de cuatro bloques vecinos y sumando un random a estos cuatro vectores de
movimiento obtenemos otros cuatro. Es decir, obtenemos en total ocho vectores de
movimiento candidatos.

Cuando hay dos candidatos iguales, dos vectores de movimiento iguales, solo se empleara
una vez este vector de movimiento, por tanto tendremos en este caso un candidato menos.

Scheme of operation of motion estimation

La figura 3.15 del proyecto muestra el esquema de operacién de motion estimation.
Los pasos son los siguientes:

1. El bloque (a codificar) de la imagen actual es introducido.
Se estima el primer vector de movimiento en la imagen actual por medio de 3DRS.

3. Con el vector de movimiento y la imagen de referencia, por medio de motion
compensation, se localiza el candidato en la imagen de referencia.

4. Por medio de la resta del bloque de la imagen actual y del candidato localizado en
la imagen de referencia, se obtiene el SAD.

5. Se repiten los pasos del 2 al 4 para los 8 candidatos, para quedarse finalmente con
el vector de movimiento del candidato con el menor SAD.

- X -

DMA propuesto

DMA con alineamiento

Las direcciones apuntan a datos de 64 bits. Debido a que ahora existe subword
parallelism, la informacién esta dividida en pequefios datos de 8 bits. Es decir, las direcciones
apuntan ahora a words que estan formadas por 8 subwords. Gracias al alineamiento de datos
es posible apuntar a cualquier subword y a partir de esta coger una word completa.

La idea es usar los primeros tres bits de la direccién para realizar el alineamiento de
datos, es decir, con esos tres bits indicaremos si la word esta alineada o si es necesario coger
una word de 64-bits a partir de una determinada subword. En la figura 4.7 del proyecto se
ilustra esto.

Como se puede observar, los numeros en color negro permanecen iguales para los 64
bits de la word alineada, y los tres primeros bits (marcados en rojo) indican la subword a la que
se esta apuntando.

En el caso en que sea necesario realizar el alineamiento de datos, se debera copiar la
word alineada en memoria que se encuentra antes de la posicién no alineada en un registro
interno del DMA, después copiar la word alineada en memoria que se encuentra después de la
posicidn no alineada en otro registro interno del DMA, y finalmente en otro registro almacenar
los datos necesarios (determinaremos los datos necesarios con los tres bits nombrados
anteriormente) de las dos words anteriores. Las figuras 4.9 y 4.10 del proyecto ilustran un
ejemplo.

Realizando el alineamiento en el DMA, se conseguird una mejora en los resultados
obtenidos porque se disminuye considerablemente la carga a la que se sometia a la CPU
realizando el alineamiento con otros métodos.

Con las instrucciones descritas anteriormente, era necesario cargar los datos en
memoria, posteriormente realizar el alineamiento en software y finalmente cargar los datos
alineados de nuevo en memoria. Por lo tanto se estdn empleando tres registros y ademas se
estd haciendo trabajar a la CPU.

Realizando el alineamiento en el DMA, los datos son cargados en memoria ya
alineados. De este modo el alineamiento se lleva a cabo sin interrumpir a la CPU que mientras
se realiza este proceso puede realizar otras tareas, ademas solo se estd empleando un registro
de memoria (en el que se almacenan los datos ya alineados del modo deseado).

En aplicaciones de codificacion y decodificacion de video que usan los algoritmos ME y
MC, este modo de realizar el alineamiento de datos puede mejorar significativamente los
resultados.

DMA con extensiones

En aplicaciones de codificacion y decodificacidon de video que usan los algoritmos ME y
MC, cuando se quiere buscar el bloque de la imagen de referencia que mas se parece al bloque
gue se va a codificar, se busca solo en una regién de busqueda. Cuando un candidato (a ser el
bloque de la imagen de referencia que mas se parece al bloque a codificar) se sale fuera de
esta region, es necesario hacer una extension de los datos (padding). La figura 4.11 del
proyecto muestra la necesidad de realizar padding en las aplicaciones de video.

En la figura, se puede observar como parte de un candidato se encuentra fuera de Ia
region de busqueda (el bloque amarillo), lo cual significa que para representar este candidato,
es necesario realizar una extensiéon de los datos. En este caso, la extensién de los datos se
realiza por la parte de arriba, es decir, los contenidos de la ultima linea de datos que estd
dentro de la regidn de busqueda, deben ser replicados hacia arriba.

Hay ocho casos diferentes donde existe una necesidad de extensién como se puede
observar en la figura 4.12 del proyecto:

e Extension horizontal por la derecha (bloque marrdn).

e Extensidn horizontal por la izquierda (bloque gris).

e Extension vertical superior (bloque amarillo).

e Extensidn vertical inferior (bloque naranja).

e Extensidn vertical superior y extension horizontal por la derecha (bloque azul).

e Extensidn vertical superior y extension horizontal por la izquierda (bloque verde).
e Extension vertical inferior y extensidén horizontal por la derecha (bloque lila).

e Extensidn vertical inferior y extensidon horizontal por la izquierda (blogue rosa).

La idea es que el 'Enhanced DMA Unit' ademds de realizar el alineamiento de los
datos, realice también la extension de estos.

Para realizar la extension de datos en el DMA es necesario crear dos nuevos registros que
aparecen ilustrados en la figura 4.13 del proyecto:

e X_EDGE: Indica el numero de words que se encuentran fuera de la imagen. Si es
positivo significa que las words estan fuera de la imagen por el lado izquierdo, y
si es negativo por el lado derecho.

e Y_EDGE: Indica el nUmero de lineas que se encuentran fuera de la imagen. Si es
positivo significa que las lineas estan fuera de la imagen por arriba, y si es
negativo por abajo.

En aplicaciones de codificacién y decodificacidon de video que usan los algoritmos ME y
MC, realizar las extensiones en el DMA reduciria considerablemente la sobrecarga de la CPU.
Cada vez que un candidato se sale fuera de la regién de busqueda, la CPU debe hacer un
trabajo extra, un trabajo que se puede ahorrar si es realizado por el DMA. Ademas si la CPU no
tiene que realizar este trabajo, podra realizar otras tareas mientras el DMA realiza las
extensiones.

-Xi -

DMA con cola

En aplicaciones de codificacion y decodificacion de video que usan los algoritmos de
ME y MC, para encontrar el bloque candidato que mds se parece al bloque a codificar, es
necesario transmitir varios candidatos, y cada vez que se transmite un candidato se
interrumpe a la CPU y se le hace trabajar para cargar los datos de la transmisién.

Por lo tanto, seria interesante que el DMA fuera capaz de almacenar varias
transmisiones en la CPU, de modo que cuando una transferencia termine, no sea necesario
programar la siguiente sino que esta ya estara en la cola y simplemente cargara directamente
los datos necesarios para realizar la siguiente transferencia.

La idea es que el 'Enhanced DMA Unit' ademas de realizar el alineamiento y las
extensiones de datos, pueda almacenar varias transmisiones en una cola, porque de este
modo estaremos reduciendo la carga de la CPU.

Para implementar esto en el DMA un se ha sido necesario crear un nuevo registro:

e DMA_READ_OUT: Es un registro de un bit. El usuario pone a 1 esta variable cuando quiere
saber si el DMA ha terminado con una determinada transferencia o estd aun
transmitiendo. Este registro incrementa un puntero de lectura interno.

Ademads para implementar el DMA son necesarios tres punteros internos:

e Write: Indica el nUmero de transferencias cargadas. Es incrementado cada vez que los
datos de una nueva transmisidn son cargados en la cola.

e Read: Indica el nimero de la transmisién del que el usuario quiere saber el estado. Es
incrementado cada vez que el registro DMA_READ _OUT estd a alta.

e Transfer: Indica el nimero de la transmisiéon actual. Es incrementado cada vez que la
transmisién de un bloque finaliza.

Cuando una de estas variables alcanza el limite de la cola, se pone a cero, y los
registros internos que usan esta variable como indice son sobrescritos.

Para entender mejor el modo de funcionamiento de las colas y el uso del registro
DMA_READ_OUT, ver las figuras 4.29 y 4.30 del proyecto respectivamente.

En aplicaciones como la codificacion y decodificacion de video que usan los algoritmos
ME y MC, un DMA capaz de almacenar varias transmisiones en una cola, reduce
considerablemente la sobrecarga de la CPU mejorando de este modo los resultados.

- Xii -

Evaluacion del DMA propuesto

Descripcion del sistema

El sistema con el que trabaja este proyecto se muestra en la figura 5.1 del proyecto.

El proyecto trabaja con el ‘Enhanced DMA Unit’, que estd en el interior del procesador
Moaidk.

Hay tres modelos diferentes de DMA que seran analizados:

e Basic Profile (BP) es un DMA bdsico.

e Advanced Profile 2 (AP2) es el Basic Profile afadiéndole los procesos de
alineamiento y padding.

o Advanced Profile 3 (AP3) es el Advanced Profile 2 afiadiéndole una cola para
almacenar varias configuraciones de transferencias.

El ‘Enhanced DMA Unit’, se comunica con la memoria externa (SDRAM) por medio del
bus AMBA.

Con el objetivo de obtener resultados mas realistas, una latencia ha sido introducida
en el controlador de memoria externa y los resultados han sido obtenidos con diferentes
valores para esta latencia (entre 15 y 55 ciclos).

Algoritmo de Motion Estimation

Usando el ‘Enhanced DMA Unit’ propuesto y el algoritmo de motion estimation como
aplicacidn, las ventajas de este DMA seran demostradas.

El algoritmo motion estimation ha sido elegido como aplicacion por las siguientes razones:

e Con el algoritmo motion estimation, es inevitable el tener que acceder a
posiciones de memoria no alineadas cuando se hace referencia a un bloque
candidato.

e Con el algoritmo motion estimation, para buscar el bloque de la imagen de
referencia que mas se asemeja al bloque a codificar, la busqueda se realiza solo
en una region de busqueda, por lo tanto cuando un candidato se sale fuera de
esta region es necesario realizar una extensién de los datos.

- Xiii -

e Con el algoritmo motion estimation es necesario transmitir una gran cantidad
de bloques, y cada vez que se transmite uno la CPU debe interrumpir lo que
esté realizando y cargar los datos para la siguiente transferencia.

El algoritmo de motion estimation ha sido programado en lenguaje ensamblador. La
estructura del cddigo se puede ver en la Figura 5.2 del proyecto.

El algoritmo ha sido implementado de este modo porque se ha comprobado que es la
forma éptima para programar las transferencias en este algoritmo teniendo en cuenta que se
debe terminar una transferencia para programar la siguiente.

Resultados

Empleando el ‘Enhanced DMA Unit’ propuesto y el algoritmo motion estimation como
aplicacién, se han realizado analisis con latencias entre 15 y 55 ciclos para cada uno de los
diferentes modelos de DMA implementados.

En el proyecto se pueden ver los resultados detallados para cada uno de los modelos
con diferentes latencias, pero en este resumen se van a comentar los resultados para el
modelo basico con diferentes latencias y se va a realizar una comparacién entre los diferentes
modelos implementados.

En las figuras 5.3, 5.4 y 5.5 del proyecto aparecen los resultados del modelo basico con
latencias de 15, 30 y 45 ciclos respectivamente.

En las graficas se puede observar el nimero de ciclos que cada bloque emplea en
realizar cada tarea. Ademas se puede observar el nimero total de ciclos empleado por cada
bloque para encontrar el bloque de la imagen de referencia que mds se parece al bloque a
codificar.

Los picos aparecen en las graficas porque cuando hay dos vectores de movimiento
iguales, se usa solo una vez este vector de movimiento, y por lo tanto tendremos un candidato
menos. Debido a esto habrd un nimero de candidatos diferente dependiendo del bloque a
codificar, por lo que se realizaran un numero diferente de operaciones, y por este motivo
aparecen los picos en las graficas.

Comparando los resultados del modelo basico con diferentes latencias se puede
apreciar como el nimero de ciclos que cada bloque emplea para encontrar el bloque que mas
se le parece, aumenta al aumentar la latencia. Esto es porque cuando la latencia aumenta,
aumenta el tiempo que se debe esperar a que una transferencia finalice para poder empezar la
siguiente. Con los otros modelos de DMA implementados ocurre lo mismo.

En la figura 5.12 del proyecto se muestra una comparacion de los resultados obtenidos
con los diferentes modelos de DMA implementados.

- Xiv -

En la grafica se puede apreciar el nimero total de ciclos que cada bloque emplea en
media en ejecutar el algoritmo para cada modelo con cada latencia.

A partir de la grafica se puede concluir que:

e Cuando la latencia aumenta, aumenta el nimero total de ciclos ejecutados para
identificar el bloque de la imagen de referencia que mas se asemeja al bloque
gue se quiere codificar.

e Comparando el BP con el AP2 con latencias bajas, el nimero total de ciclos
ejecutados decrece porque el proceso de alineamiento y padding es realizado
por el DMA. Sin embargo con latencias altas, el numero de ciclos tiende a ser
igual. Esto se debe a que con bajas latencias no es necesario esperar a que llegue
el bloque y cuando el alineamiento y las extensiones se realizan en el DMA, el
numero de ciclos se reduce. Por el contrario, con latencias altas es necesario
esperar a que llegue el bloque y no importa el hecho de ahorrar ciclos realizando
el alineamiento y las extensiones en el DMA porque de todos modos tendré que
seguir esperando una vez estos se hayan realizado.

e Comparando AP2 con AP3, es facil apreciar que AP3 emplea menos ciclos que
AP2 y esto es mas notable conforme aumenta la latencia. Esto se debe a que con
latencias bajas en la mayoria de los casos no es necesario esperar, pero con
largas latencias serd necesario esperar en casi todos los casos, y con AP2 se debe
esperar mas porque espera el fin de una transmisidn para programar la siguiente.

e El codigo para AP2 ha sido implementado para obtener los mejores resultados
teniendo en cuenta que para realizar una transferencia debe haberse
completado la previa, y por este motivo la diferencia entre el AP2 y AP3 es
menor. Con AP3 ademas de disminuir el nimero de ciclos que se emplean al
ejecutar el algoritmo se ahorra trabajo al programador, al no tener este que
decidir el mejor modo de implementar el cédigo teniendo en cuenta que debe
haberse terminado una transferencia para empezar la siguiente.

XV

Conclusiones

En este proyecto han sido analizados los procesadores VLIW y SIMD, las unidades de
acceso directo a memoria (DMA) y los estandares de codificacién de video. Motion estimation
(un método particular de codificacidon de video) ha sido estudiado, analizando el algoritmo y
las transferencias necesarias.

En aplicaciones de codificacion y decodificacion de video que usan motion estimation (ME), no
es posible evitar las referencias a posiciones no alineadas de memoria. El algoritmo ME busca
el bloque que mas se parece al bloque a codificar. Este bloque, llamado de referencia, es
generado por el desplazamiento de la localizaciéon del bloque a codificar en la imagen de
referencia. Este desplazamiento puede ser arbitrario y por tanto, esto hace que sean
necesarios multiples e impredecibles accesos a posiciones no alineadas de memoria.

En este tipo de aplicaciones, las actuales optimizaciones de software no son del todo
satisfactorias porque las instrucciones necesarias para realizar el alineamiento de datos en
software someten a la CPU a una gran sobrecarga.

Conociendo que un DMA es una caracteristica esencial en todos los ordenadores
modernos debido a que el DMA permite a los dispositivos transferir datos sin someter a la CPU
a una carga masiva de interrupciones, la solucidon adoptada en este proyecto ha sido disefar
un ‘Enhanced DMA Unit’ (DMA inteligente) capaz de realizar el alineamiento de los datos.

Este 'Enhanced DMA Unit' ademas de realizar el proceso de alineamiento puede
realizar el proceso de extensidon de los datos (padding). Por ejemplo en aplicaciones de
codificacién y decodificacion de video que emplean el algoritmo de motion estimation para
encontrar el bloque de la imagen de referencia que mds se le parece al bloque que se quiere
codificar, la busqueda se realiza solo en una region conocida como area de busqueda. Cuando
un candidato (a ser el bloque de pixel de la imagen de referencia que mejor se asemeja al
bloque a ser codificado) se sale fuera del drea de bulsqueda, es necesario realizar una
extension de los datos (padding).

Ademas este 'Enhanced DMA Unit' es capaz de almacenar varias configuraciones de
transferencias en una cola, de este modo cuando una transferencia termine, se iniciara
inmediatamente la siguiente. Ahora no es necesario esperar a que termine la transferencia
anterior para programar otra.

Con el ‘Enhanced DMA Unit’ propuesto, que se encuentra en el interior del procesador
Moaidk y se comunica con la memoria externa (SDRAM) por medio del bus AMBA, y usando el
algoritmo motion estimation como aplicacidn, han sido analizados los resultados obtenidos
empleando tres modelos diferentes:

e Basic Profile (BP)

e Advanced Profile 2 (AP2)

- XVi -

e Advanced Profile 3 (AP3)

Con el objetivo de obtener resultados mas realistas, una latencia ha sido introducida
en el controlador de memoria externa y los resultados han sido obtenidos con diferentes
valores para esta latencia (entre 15 y 55 ciclos).

Se puede concluir que:

e Cuando la latencia aumenta, aumenta el niumero total de ciclos ejecutados para
identificar el bloque de la imagen de referencia que mas se asemeja al bloque
que se quiere codificar.

e Comparando el BP con el AP2, el niumero total de ciclos ejecutados decrece
porque el proceso de alineamiento y padding es realizado por el DMA.

e Comparando AP2 con AP3, es facil apreciar que AP3 emplea menos ciclos que
AP2. Con AP2 DMA es necesario esperar el final de una transferencia para
programar la siguiente. Esta “espera para programar transferencias”, que es
programada en el cédigo de instrucciones, es evitada empleando el AP3 DMA.

En conclusidn, con AP3 se ha disminuido el tiempo de ejecucién, porque ha sido
eliminado cédigo de instrucciones (proceso de alineamiento y padding) y no es necesario
esperar el final de una transferencia para programar una nueva. Ademas, con AP3, el tiempo
requerido para considerar el mejor lugar en el cddigo de la aplicacidn para esperar el fin de
una transferencia para empezar una nueva, es eliminado.

Para finalizar el proyecto, se proponen algunas ideas indicando posibles futuras
modificaciones.

Cuando el padding estad siendo realizado, es necesario copiar los contenidos de una
linea en todas las lineas que estan fuera de la imagen, esto ha sido implementado leyendo
varias veces la misma linea. Leer todo el tiempo el contenido de la misma linea no es necesario
y se producen transferencias innecesarias que pueden ser evitadas:

e Ajustando el tamaio del bloque a los contenidos de este que permanecen dentro
de laimagen.

e Almacenando este contenido en la memoria local, y copiando estas lineas que son
iguales al mismo tiempo.

La implementacién de estas futuras modificaciones podria ahorrar bastantes recursos
pero haria el DMA mucho mas complejo.

Como conclusién a este proyecto se puede decir que un nuevo modelo de DMA

inteligente 'Enhanced DMA Unit' ha sido integrado en un procesador VLIW genérico para
futuros estudios con otras aplicaciones multimedia.

- Xvii -

Leibniz Universitdt Hannover
Institute of Microelectronic Systems

Prof. Dr.—Ing. P. Pirsch

Design Space Exploration of an Advanced
Direct Memory Access Unit for a Generic
VLIW Processor

Master Thesis
Fatima Reino GOmez

July 2008

Advisor : Ing. G. Paya Vaya

Examiner : Prof. Dr.-Ing. P. Pirsch

- Xviii -

MASTER’S THESIS

Ms. Fatima Reino Gémez

Design Space Exploration of an Advanced Direct Memory
Access Unit for a Generic VLIW Processor

In the last decade embedded consumer device requirements have grown, requiring
more efficient computer architectures. On the one hand, current image and video
coding standards, e.g. MPEG-4, H.264 or JPEG2000, are pushing the limits of the
existing media processors. Actual media processors cannot comply the tremendous
demand on the increasingly sophisticated multimedia operations, requiring special
architectural improvements. On the other hand, low power consumption is mandatory
in any multimedia portable device.

A Direct Memory Access (DMA) unit bus is mandatory in this kind of media processors.
A processor uses the DMA to transfer data between memory spaces or between a
memory space and a peripheral in background. An Advanced DMA can help to reach
the performance demanded by a multimedia application by performing some data
transformation during the background transfers. Moreover, this data transformation
will decrease the amount of executed operations, saving power consumption.

Ms Fatima Reino Gémez’s task is firstly to analyze the transfer’s requirements of actual
video coding standards and to develop a parameterized Direct Memory Access unit
model. Then, considering a particular video coding task, i.e. motion estimation, an
improved version has to be implemented, by adding extra functionality in the DMA
unit in order to decrease the required execution time. Finally, an exhaustive analysis of
the performance results should be done, indicating possible future modifications.

The submitted copies as well as the results of the work remain the property of the
institute.

Prof. Dr.-Ing. Peter Pirsch

- XiX -

| hereby declare that this thesis is entirely the result of my own work except
where otherwise indicated. | have only used the resources given in the list

of references.

Hannover, July 2008

Fatima Reino Gdmez

XX

Contents

l.Introduction 1
2. VLIW processorsand DMABasics 6
2.1. - Basics of VLIW/SIMD processors 6

2.1.1. - VLIW vs. Superscalar processors 6
21.2.-VLIWbenefits oL 8

2.1.3.-SIMD processors e 9

22.-Moaidk 9
2.2.1.-Introduction. o o oL 10

2.2.2. - A generic VLIW architecture. 10

2.3. - Basics of Direct Memory Access Units 15
23.1.-Introduction. L. 15
2.3.2.-OperationofaDMA. 15

2.3.3. - DMA Transfer Strategies. 19

2.3.4. - How to program a DMA Controller. 19

2.3.5.- DMA Classification 25

3. H.264/AVC and Motion Estimation. 26
3.1.-H.264/AVC Coding Standard 26

3.1.1. - Introduction L 26
3.1.2.-VideoEncoder L. 28
3.13.-VideoDecoder., 35

3.2. - Motion Estimation. 35
3.2.1.—Introduction. L. 36

- XXi -

3.2.2. - Block Matching Algorithm

- XXii -

3.2.3. - Three Dimensional Recursive Search 38
3.2.4. - Scheme of operation of motion estimation. . . . 40
3.2.5. - Example of motion estimation. 41
4. Proposed enhanced DMA wunit 44
4.1.-Introduction. L 44
4.2. - DMA processorinterface. 45
4.2.1.-Processorinterface. 46
422 -Example. 46
4.3.-Alignmentprocess. 48
43.1.-Introduction. 48
4.3.2. - DMA with alignment. 50
4.4.-Paddingprocess., 56
44.1.-Introduction. Lo 56
44.2.-DMA withpadding. 58
4.5. - Queue implementation. 71
451.-Introduction. 71
45.2.-DMAwithqueue. 71
5. Evaluation of the proposed enhanced DMA Unit. 74
5.1. - Design Space Exploration. 74
5.1.1. - System description. 74
5.1.2. - Motion Estimationtask. 75
5.2. - Characteristics of motion estimation algorithm . . . 78
53.-Results. 78
5.3.1. - Results of Basic Profile (BP) 79

5.3.2. - Results of Advanced Profile 2 (AP2) 82

5.3.3. - Results of Advanced Profile 3 (AP3). 85

5.3.4. - Comparison of the different profiles. 88

6.Conclusions 91
7.References 94

- XXxiii -

Chapter 1

Introduction

Multimedia processing has increasingly applications such as high-definition interactive
television or multimedia cell phones. Because of this, multimedia processing is taking an
increasingly importance.

Media processing involves the capture, storage, manipulation and transmission of
multimedia objects such as audio objects, handwritten data, text, images, full-motion video
and 2-D/3-D graphics.

Nowadays, because of the wide variety of applications such as current video
applications, multimedia cell phones, high-definition interactive television... are necessary
continuous improvements requiring sophisticated multimedia operations, which imply a high
demand of power. Because of this and to achieve better performance, it has resulted in a
variety of design methodologies that cause the processors to behave less linearly and more in
parallel.

Parallelism can exist at various levels i.e. data, instruction and thread.

a) Instruction level parallelism (ILP) seeks to increase the rate at which instructions are
executed within a CPU (that is, to increase the utilization of on-die execution
resources). We can distinguish two principal types:

e Super-Scalar: Superscalar is the term used to describe a type of
microarchitecture processor capable of running more than one instruction per
clock cycle. In a superscalar processor is the hardware at runtime which is
responsible for planning the instructions. The microarchitecture superscalar
uses the instruction parallelism in addition to the parallelism flow, the latter
through the pipeline structure.

e VLIW: This architecture CPU implements a form of parallelism at the level of
instruction. It is similar to architectures Superscalar, both used several
functional units (e.g., several ALUs, several multipliers, etc.) to achieve this
parallelism.

Processors with VLIW architectures are characterized, as its name suggests, in
executing very long instructions that contain several independent operations,
which each one uses a different functional unit. The aim of this computer
architecture is to simplify the hardware design leaving the instruction
scheduling task in the hands of the programmer / compiler. As opposed, a

superscalar processor requires extra hardware to perform this scheduling at
runtime.

b) Thread level parallelism (TLP) seeks to increase the number of threads (effectively
individual programs) that a CPU can execute simultaneously.

c) Data level parallelism (DLP) deal with multiple pieces of data in the context of one
instruction. An example:

e Single Instruction Multiple Data (SIMD) is a technique employed to achieve

data level parallelism, as in a vector processor. The instructions apply the same
operation on a set of data. A single control unit sends instructions to different
processing units. All processors receive the same instruction from the control
unit, but operating on different data sets. In other words the same instruction is
executed in a synchronous manner by all processing units.

Due to the capability of exploiting parallelism in multimedia applications, VLIW
architecture is being very used in the last years. Using subword parallelism (this is a form of
small-scale SIMD), a VLIW architecture can achieve a significant improvement in performs.

To exploit data parallelism, we need subword parallel compute instructions, which
perform the same operation simultaneously on subwords packed into a word. A subword is a
lower precision unit of data contained within a word. In subword parallelism, we pack multiple
subwords into a word and then process the whole word. Data parallelism also need:

1) A way to expand data into larger containers.

2) Subword rearrangement within a register. Many algorithms require this subword
rearrangement. Two data rearrangement instruction examples are:

o MIX: These instructions take subwords from two registers and interleave alternate
subwords from each register in the result register. Mix left starts from the left most
subword in each of the two source registers, while mix right ends with the rightmost
subwords from each source register. Figure 1.1 illustrates this for 16-bit subwords

[1].

12 (3[4 3|6|7|[8

Reg A Reg B

MIXL Reg C, Reg A, RegB

1[5[3[7

RegC

MIXR RegC, Reg A, RegB

2|6|4|8

Reg C

Figure 1.1.MIX instruction

o Permute: The permute instruction takes one source register and produces a
permutation of that register’s subwords. With 16-bit subwords, this instruction can
generate all possible permutations, with and without repetitions, of the four
subwords in the source register. Figure 1.2 shows a possible permutation. To specify
a particular permutation, we use a permute index. The instruction numbers
subwords in the source register starting with zero for the leftmost subword. A
permute index identifies which subword in the source registers places in each

subword of the destination register [1].

NEEE EF |G]H

01 2 3 4 5 &/ 7
Reg A RegB

Permute RegC, Reg A, RegB permute index: 1537

B[F[D[H

1537
RegC

Figure 1.2.Permute instruction

3) Data alignment performed during a transfer between an external memory and a local

memory.

A memory reference is called aligned when it accesses positions that match with the
memory access granularity of the processor, when that does not happen is called misaligned
(or unaligned). To access an unaligned position, must be done a realignment process. The

realignment process is shown in Figure 1.3:

External Memory 0x00a 0x00b

— [1N
T 'y

Unaligned Position

0x00a

0x00b

Aligned Position Aligned Position

- Final Register

Figure 1.3.Alignment process

We must read the aligned memory word that is located before the unaligned position
and discards the unnecessary bytes, then read the aligned memory word that is located after
the unaligned position and discards the unnecessary bytes and finally merge the necessary
bytes of the two previous words.

Most SIMD processors provide access to only contiguous data in memory, with strong
alignment restrictions because they have limited memory architecture. These architectures,
either do not provide any hardware support for unaligned accessed or provide it but with
degrade results. Therefore, the programmer usually ends doing the alignment in software
which implies an extra-overhead and degrades the performance significantly. For example,
applications like video coding and decoding that use motion estimation (ME) and motion
compensation (MC) algorithms, require performing unpredictable alignments.

Nowadays, there are wide consensus about the importance of non-aligned accesses for
video applications (not having an efficient support for unaligned accesses degrade the
performance significantly), but most of the current SIMD architectures that support unaligned
accesses have restrictions and limitations.

Because the applications require increased resources, DMA Unit is an essential feature
of all modern computers, as it allows devices to transfer data without subjecting the CPU to a
heavy overhead, thus increasing application performance. A DMA transfer essentially copies a
block of memory from one device to another. With DMA, the CPU would initiate the transfer,
do other operations while the transfer is in progress, and receive an interrupt from the DMA
controller once the operation has been done. A typical usage of a DMA is to transfer a block of
memory from/to an external memory or from/to a buffer on the device. A DMA is usually used
in high performance embedded systems.

Because the instructions explained above, the alighment process subjects the CPU to a
heavy overhead. There are some applications, like video processing that require an efficient
support for unaligned accesses, degrading the performance significantly. Due to the DMA
allows devices to transfer data without subjecting the CPU to this heavy overhead, a possible
solution would be to design an ‘Enhanced DMA Unit’ capable of performing this alignment of

data. This new DMA will save many cycles because now the alignment is performed in the
DMA and the CPU can execute other part of the application code in parallel.

The idea of this project is to implement a DMA that in addition to perform this
alignment can also perform some data permutations, for example padding. The instructions
explained before can continue be using because once we have the data in internal memory,
these instructions will be responsible for performing any required alignment. But in many case,
we will use an 'Enhanced DMA Unit' because then we will be able to remove instructions code
and therefore reduce instructions cycles.

One example where the 'Enhanced DMA Unit' can reduce fairly the overload for the
CPU would be in applications like video coding and decoding that use ME and MC algorithm.
This algorithm requires to move blocks of data from an external memory to a local memory
faster, and to align theses blocks to place them correctly in the local memory. Moreover in
case of reading out from a reference frame some padding process should be executed.

The objectives of this project are the follows:

= Analyze the transfer’s requirements of actual video coding standards and to develop a
parameterized Direct Memory Access unit model.

= Considering a particular video coding task, i.e. motion estimation, an improved version
has to be implemented, by adding extra functionality in the DMA unit in order to
decrease the required execution time.

= An exhaustive analysis of the performance results should be done, indicating possible
future modifications.

This project is organized as follows. Chapter 2 presents the VLIW processors and the
DMA basics. Chapter 3 introduces H.264/AVC which is a standard for video compression and
also introduces motion estimation (ME) algorithm. Chapter 4 explains the DMA proposal for
the ‘Enhanced DMA Unit’. After that, in Chapter 5, the evaluation of the proposal DMA Unit
using Motion Estimation algorithm is shown. Finally, conclusions are presented in Chapter 6.

Chapter 2

VLIW processors and DMA Basics

This section presents the VLIW processors compared with other types of processors.
After that, we are going to study and analyze Moaidk processor, which is a processor that
implements a VLIW architecture. Finally, the basics of Direct Memory Access Units (DMA) are
presented in this section.

2.1. - Basics of VLIW /SIMD processors

This section, presents the VLIW processors compared with Superscalar processors.
After that, VLIW benefits are explained. Finally, SIMD processors are presented.

2.1.1. - VLIW vs. Superscalar processors

Superscalar is the term used to describe a type of microarchitecture processor capable
of running more than one instruction per clock cycle. The term is used as opposed to scalar
microarchitecture that only is able to execute an instruction per clock cycle. A superscalar
processor presents the following characteristics:

o In a superscalar processor, it is the hardware at runtime which is responsible for
planning the instructions. The microarchitecture superscalar uses the instruction
parallelism in addition to the parallelism flow, the latter through the pipeline
structure.

o Inasuperscalar processor, the processor handles more than one instruction at every
stage. The maximum number of instructions in a particular stage of the pipeline is
called degree and a processor superscalar grade 2 in reading (fetch) can read up to
two instructions per cycle.

IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB

Figure 2.1.Simple superscalar pipeline. By fetching and dispatching two instructions at a time, a
maximum of two instructions per cycle can be completed.

o A superscalar processor is able to execute more than one instruction simultaneously
only if the instructions do not present any kind of dependence (hazard).

A statically scheduled superscalar must verify in the issue packet for any dependence
between instructions, as well as between any issue candidate and any instruction already in
the pipeline. A type of superscalar processor requires so much compiler assistance to achieve
good performance. In contrast, a dynamically-scheduled superscalar requires significant
hardware costs but less compiler assistance.

An alternative to the superscalar processors is to rely on compiler technology not only
to minimize the potential data hazard stalls, but to actually format the instructions in a
potential issue packet so that the hardware need not check explicitly for dependences.

With this new approach the compiler may be required to avoid dependences within
the issue packet, or if there are dependences to indicate when may be presented. This new
approach offers good performance with the potential advantage of simpler hardware.

The first multiple-issue processors that required the instruction stream to be explicitly
organized to avoid dependences used wide instructions with multiple operations per
instruction. For this reason, this architectural approach was named VLIW, standing for Very
Long Instruction Word, and denoting that the instructions, since they contained several
instructions, were very wide. A VLIW processor presents the following characteristics:

o VLIWs use multiple functional units that must be independent. A VLIW packages the
multiple operations into one very long instruction.

o VLIW leaves all the work of planning the code in the hands of the programmer /
compiler, as opposed a superscalar processor, which is the hardware at runtime
which plans instructions.

Example: Assume the following program:

1. Multiply Regl and Reg2 save in Reg3
2. Add Reg3 and Reg4 save in Reg5
3. Subtract Regl and Reg4 save in Regb

a) Execution on a Superscalar machine

In this program, the planner code that would see that the second instruction depends
on the first (until it is not calculated Reg3 cannot run the sum), and that change in the third
instruction is independent of the other two. Therefore, the processor will begin simultaneously
multiplication and subtraction in different units and, once finished the multiplication, will
execute the sum. All this scheduling work is conducted by an internal circuitry in the
microprocessor.

b) Execution on a VLIW

In this case all the work will be made by the compiler and the code would be:

1. MULT(Regl, Reg2, Reg3) - REST(Regl, Reg4, Reg6)
- SUM(Reg3, Reg4, Reg5) -

Figure 2.2.Code executed for a VLIW processor
In each instruction specifies the status of each and every one of the functional units of

the system. In the first instruction, it would be carried out multiplication and subtraction and
in the second the sum.

2.1.2. - VLIW benefits

VLIW offers the followings benefits:

a) Offers the potential advantage of simpler hardware while still exhibiting good
performance through extensive compiler optimization.

b) Reducing the number of instructions in the programs.

c) Has the ability to use a more conventional, and typically less expensive, cache-based
memory system.

d) Has the potential to extract some amount of parallelism from less regularly structured
code.

2.1.3. - SIMD processors

Vector processors deal with multiple pieces of data in the context of one instruction.
This contrasts with scalar processors, which deal with one piece of data for every instruction.
These two schemes of dealing with data are generally referred to as SISD (single instruction,
single data) and SIMD (single instruction, multiple data), respectively. The great utility in
creating CPUs that deal with vectors of data lies in optimizing tasks that tend to require the
same operation (for example, a sum) to be performed on a large set of data. Some classic
examples of these types of tasks are multimedia applications (images, video, and sound), as
well as many types of scientific and engineering tasks. Whereas a scalar CPU must complete
the entire process of fetching, decoding, and executing each instruction and value in a set of
data, a vector CPU can perform a single operation on a comparatively large set of data with
one instruction. Of course, this is only possible when the application tends to require many
steps which apply one operation to a large set of data.

The repertoires of SIMD consist of instructions that apply the same operation on a set
more or less big of data. A single control unit sends instructions to different processing units.
All processors receive the same instruction from the control unit, but operating on different
data sets. In other words the same instruction is executed in a synchronous manner by all
processing units.

For example: Typical operations encountered such as SAD require the same operation to be
performed on multiple pixels or data units with no dependencies involved. Therefore, the same
instruction can be used to perform this task simultaneously on all the data units.

In most embedded media processors and in microprocessors for desktop computers,
the common approach for dealing with the requirements of digital video processing, and the
other multimedia applications, has been the extension of the Instruction Set Architecture (ISA)
with SIMD instructions.

2.2. - Moai4k

Moaidk is a processor, created in Rapanui project, that implements a VLIW
architecture. This section study and analyze this processor, and presents the generic VLIW
architecture [2].

2.2.1. - Introduction

Multimedia processing has increasingly applications and because of the wide variety of
applications such as current video applications, multimedia cell phones, high-definition
interactive television... are necessary continuous improvements requiring sophisticated
multimedia operations, which imply a high demand of processing power.

Because of this and to achieve better performance, have resulted in a variety of design
methodologies that cause the processors to behave less linearly and more in parallel. VLIW
architecture is being very used in the last years due to the capability of exploiting parallelism in
multimedia applications. VLIW architectures execute multiple operations within a single long
instruction word. Therefore, to allow this concurrency, multiple parallel functional units have
to be implemented.

Using subword parallelism in a VLIW architecture can be achieved a significant
improvement of results. VLIW can be also improved with instruction set extensions, specialized
functional units and instruction level parallelism. VLIW architectures require instruction
scheduling to be performed at compile time to assemble the long instruction words.

For designing a media processor there are multiple architectural features that should
be taken into account. For example, increasing the amount of instruction level parallelism (ILP)
requires more registers to hold the operands and results of those instructions. This lead to a
complex register file with a high number of read/write ports to allow the concurrence access.
On the other hand large multiport memories introduce performance degradation. Therefore,
partitioned register should be considered for this kind of processor architectures.

2.2.2. - A Generic VLIW architecture

This generic VLIW architecture covers the basics requirements for media processing.
Two important characteristics have been considered:

1) A fully parameterized architecture: easily extendable by adding or modifying functional
units.

2) A novel register file structure avoids a high number of required ports when there are a
big number of parallel operations.

For this generic VLIW architecture, a parameterized simulator was written in Open
Vera and standard C. Figure 2.3 shows an overview of the design space exploration
environment.

-10-

Application
Asseambler
Code

Architecture:Description

Assembler ;

Pipeline
Simulator

| Binary |
| Code |

Figure 2.3.Rapanui Design Space Exploration Environment

a) Vector Unit Structure

Dynmic
and static
- perferma ;

metrics

The basic structure of this VLIW architecture, has been specially designed for efficient
processing of blocks of data or macroblocks normally used in video coding algorithms. This

basic structure will be hereafter called Vector Unit (VU).

Figure 2.4 shows a Vector Unit architecture:

DMA .
o Instruction
- Interface 0 Mar’fmry
VectorUnit Two Instr: Decoder
Issue 0 Issue 1
v
Intercore [~ * Lt
Memory Data Memory l l 1
|
._‘ Vector Register File
!u'l hd l l ll l l l l
MUL ~MAC Akl Special FU Special FU
| | | |
: v v 3

Figure 2.4.Vector unit architecture

The VU comprises a flexible datapath controlled by a 64-bit dual-issue VLIW (two 32-
bit operations). Moreover, the datapath implements subword parallelism (e.g. for a 64 bit
datapath, operands splitable into one 64-bit subword, two 32-bit subwords, four 16-bit
subwords or eight 8-bit subwords) in almost every functional unit.

-11 -

The control path is divided initially into 5 different basics stages:

#* Instruction Fetch(IF)
#* Instruction Decode(DE)
Register Access(RA)
4+ Execution(EX)

+ Write Back(WB)

The EX stage, as shown in Figure 2.5, can be subdivided into more stages depending on

the characteristics, e.g. latency, of the functional units.

Vector Unit

Figure 2.5.Vector Unit pipeline

The VU implements a configurable global address map which allocates a 64-bit dual

port instruction memory with configurable size. There is also a dual port data memory with

configurable size. Each memory is accessed by the processor itself and DMA unit, which

performs data transfers in background between memories and external slaves through a

configurable bus system.

b) Specialized instructions and functional units

The VU implements an orthogonal instruction set that contains several extensions for

typical video processing computations, e.g. data formatting, different kinds of rounding,

multiply-and-accumulate operations. To facilitate adding new instructions and functional

units, most instructions use a common bit-pattern, as shown in Figure 2.6:

f Operandl TARGET
OPCODE Opltlonal Reg./ Address Operand2 Reg./ Address
Flags Reg. Reg. Reg.
tional Operand1 TARGET
OPCODE O'El ona Reg./ Address Inn?g(firz;zdez-bit Reg./ Address
ags Reg. Reg.
i Operandl TARGET
OPCODE Olgltlonal Reg./ Address Reg./ Address IaneZiearlg]gg-bit
ags Reg. Reg.
< > —— >
32 Bit 32 Bit

Figure 2.6.Instructions types

-12 -

R_R_R mode

R_I_R mode

R_IL_R mode

Move and flow operations use different patterns. Access to memory or special
registers, e.g. address registers for indirect addressing mode or configuration register
located in the functional units, are performed by move operations.

Functional units are represented by a set of characteristics, e.g. latency, which is
expressed in number of execution stages, and type and number of operands, which are
related with the number of read and write ports required in the register file.

Table shows details about the functional units implemented: operations performed,
latency required and number of register and number of register written in the write-back
(WB) stage. MV, LS and FLOW are not considered functional units.

|
AU Arithmetic 1 1
Multiplication and
MAC Multiply and Accumulation 2 lor2
LU Logic 1 1
SR Shift and Round 1 1
CMM Clip, Max and Min 1 1
FOR Data formatting 1 1
MY Move lor3 Oorl
LS Load and store 1 Oorl
FLOW Control flow 2or3 Oorl

Table 2.1.Details about the functional units implemented

Another interesting feature is that a VU can execute all kinds operations either of its
two issues. Therefore, two operations that execute the same function can only be
scheduled in the same instruction, if the needed functional unit has been replicated for the
desired architecture configuration.

Multiple Vector Unit and Partitioned Register File
Using a higher degree of parallelism in some applications, results in considerably more

performance. This can be achieved by increasing the number of VUs to two or even three
within the architecture as shown in Figure 2.7:

-13-

DMA . DMA
Instruction
Interface 0 > Merﬁory Interface 1
\ 4
v
Vector Unit 0 Two Instr: Decoder Vector Unit 1
Two Instr: Decoder
lssie? + lssued
lssue 0 » lssued < =
vV V
woo_v v v
Vector Vector
Data Miemory Regjster Register Data Nemory
Fila Fila
VIRY VIRY
v v
Vector
Register File
V1RX
i
\ 4 N 20 4) .
'*v v V.V ¥ VvV
A4 MULEMAC t Akl t Special FU ¢ Special FU
MUL #MAC Al Special FU Special FU
L _l_ i_i_ . 2 A 4

Figure 2.7.Dual Vector Unit architecture

The pipeline configuration is mostly the same, with the exception of the IF stage, which is
now common for all VUs. The other stages are independent for each VU.

VectorUnit0

VectorUnit1

Figure 2.8.Dual Vector Unit pipeline architecture

In this new architecture, every VU has its own data memory and DMA, allowing multiple

transfers in parallel.

-14 -

These changes implicate a redesign of the register file structure:

e Having a unique register file for two VUs (with two issues each) results in
implementing many ports memory, which is not practicable.

e Having separated register files for each VU results in inefficient data transfers.

Therefore, the register file structure for multiple VUs can be implemented with a ring
structure. This new register file structure increases the operation parallelism allowing to
parallelize operations that require same functional units and same input data. Input data is
not duplicated, instead it is stored in the register file located between VUs. This structure
occupies less area and improves timing performance of the hardware implementation.

2.3. - Basics of Direct Memory Access Units

This section, presents the Directs Memory Access Units, the operation of a DMA Unit,
the DMA Unit strategies transfer, how to program a DMA controller, and finally a classification
of the DMA Units.

2.3.1. - Introduction

The processor core can make multiple operations in a cycle such as data fetches, data
stores and pointer increments/decrements. Moreover, the core, moving data into and out of
the register file, can lead data transfer between internal and external memory spaces.

The issue is that for achieving high performance in a specific application it is necessary
to interrupt the core to perform the transfers. To solve this, it is possible to use a DMA.
Processors use DMA to release the core from these transfers between internal/external
memory and peripherals, or between memory spaces.

2.3.2. - Operation of a DMA

Direct memory access (DMA) is a feature of modern computers that allows certain
hardware subsystems within the computer to access system memory for reading and/or
writing independently of the central processing unit. Many hardware systems use DMA
including graphics cards, disk drive controllers, sound cards, and network cards. DMA is also
used for intern-chip data transfer in multi-core processors, especially in multiprocessor
system-on-chips where each core is equipped with its local scratchpad memory and DMA is
used for transferring data to and from these local memories. Computers that have DMA
channels can transfer data to and from devices with much less CPU overhead than computers
without a DMA channel.

-15-

Using a DMA Unit, in a programmed input/output mode, the CPU would initiate the
transfer, makes other operations while the transfer is in progress, and receive an interrupt
from the DMA controller once the operation has been done. This is especially useful in real-
time computing applications where not stalling behind concurrent operations is critical. If we
don’t use a DMA, for the entire duration of the read or write operation the CPU is fully
occupied and is thus unavailable to perform other work.

DMA allows devices to transfer data without subjecting the CPU to a heavy overhead.
Otherwise, the CPU would have to copy each piece of data from the source to the destination.
During this time the CPU would be unavailable for any other tasks involving CPU bus access,
although it could continue doing any work which did not require bus access.

A typical usage of DMA is copying a block of memory from system RAM to or from a
buffer on the device. Moreover DMA is used in high performance embedded systems. DMA is
also used in functionalities such as network audio playback, packet routing and streaming

video.
Figure 2.9 shows a common interaction between the processor and the DMA
controller.
Fazspond Intamupts
Frncgssnr
Core
Interrupt
DM handler
")
Descriptor List
Buffer
MMoveDat
Process data i
Peripheral # Sourcs of dats

Figure 2.9.Interaction between the processor and DMA controller

The steps allocated to the processor involve enabling interrupts, setting up the
transfer, and running code when an interrupt is generated. The lines between peripheral and
the memory indicate operations the DMA controller makes to move data independent. Finally,
the interrupt input back to the processor can be used to signal that data is ready for
processing.

The DMA controller can perform several types of data transfers:

-16 -

1) Moving to peripherals

Peripheral
Memory @ DMA @ FIFO @

Figure 2.10.Data transfer to a peripheral

2) Moving from peripherals

Peripheral
Memory @ DMA @ FIFO <Z:|

Figure 2.11.Data transfer from a peripheral

3) Moving from one memory space to another

Memory @ DMA @ Memory @

Figure 2.12.Data transfer between memories

-17 -

For example, source video might flow from a video to external memory, because
the working buffer size is too large to fit into internal memory. We don’t want to
make the processor fetch pixels from external memory every time we need to
perform a calculation, so a memory-to-memory DMA can be used for more
efficient access time.

A DMA transfer can involve data and code. We can use code overlays to improve
performance, configuring the DMA controller to move code into instruction memory before
execution. The code is usually staged in larger external memory.

Figure 2.13 shows one DMA bus structure, where the DMA Core Bus connects the
controller to internal memory, the DMA External Bus connects the DMA controller to external
memory and DMA Access Bus connects to the peripherals. Moreover an additional DMA bus
set is also available when on-chip memory is presented, in order to move data within the
processor’s internal memory spaces.

Internal
Memory

On-Chip VabN DMA
Memory A-"4 Controller

System Bus

Figure 2.13.DMA Unit bus structure

Each DMA channel on a DMA controller (if the DMA controller has channels, in our
case the DMA has a queue) has a programmable priority associated with it. If more than one
channel requests the DMA bus in a single cycle, the highest priority channel wins access.

When more than one DMA controller is presented on a processor, the channels from
one controller can run at the same time as channels on the other controller. This is possible
when both don’t try to access the same resource, if both DMA controllers try to access the
same resource, arbitration must take place (one of the controllers can be programmed to a
higher priority than the other).

-18 -

2.3.3. - DMA transfer strategies

The following are different techniques to make data transfer:

1)

‘Cycle stealing’: is based in use one or more CPU cycles per instruction that runs
(hence the name). So it is achieved high availability of the system bus to the CPU,
although, consequently, the transfer of data is considerably slower. This method is
being used routinely because the interference with the CPU is very low.

‘Burst DMA'’: consists of sending the block of data requested by a burst, occupying the
system bus until the end of transmission. So gets the maximum speed, but the CPU can
not use the bus during that time, so it would remain inactive.

‘Transparent DMA’: uses the system bus when there is confidence that the CPU does
not require it, such as in the stages of the execution process of the instructions where
never uses because the CPU performs internal tasks (eg phase decoding of the
instruction). Thus, as its name suggests, the DMA will remain transparent to the CPU
and the transfer will be done without jeopardizing the relation CPU-system bus. As a
disadvantage, the transfer rate is the lowest possible.

‘Scatter-gather DMA’: allows data transfer to several areas of memory in a single
transaction DMA. It is equivalent to chaining multiple requests DMA simple. Again, the
aim is to liberate the CPU of copy tasks of data and multiple interruptions of data
input/output.

2.3.4. - How to program a DMA Controller

To perform a DMA transfer, starting source and destination address is required. In the

simplest case of a memory DMA, we need to specify the DMA controller the source address,

the destination address and the number of words to transfer. This type of transaction is called

simple one-dimensional (1D) transfer with a unity ‘stride’. With a unity stride, the address

increments by 1 byte for 8-bit transfer, 2bytes for 16-bit transfers, and 4 bytes for 32 bits
transfers. Figure 2.14 shows a 1D DMA Unit with unity stride:

-19-

Source Destination

0x00a 0x00a
0x00k Ox 00k
0x00c Ox00c
ox0od Ox00d
0x00e 0x00e
oxoof ox00f
0x010 : : Ox010
0x011 : : %011
0x012 0x012

Figure 2.14.1D DMA Unit with unity stride

If we want to add more flexibility to a one-dimensional DMA Unit, we only have to
change the stride. For example, with non unity strides, we can skip addresses in multiples of
the transfer sizes. That is, specifying a 8-bit transfer and striding by 4 samples results in an
address increment of 4 bytes (four 8-bit words) after each transfer. Figure 2.15 shows this

case:
Source Destination
Ox00a 0x00a
0x00b ‘ 0x00b
0x00¢c §_'. 0x00c

ox00d
0x00e

oxood

Ox00f Ox00f

0x010 <-1 0x010
0x011 Ox011
0x012 0x012

Figure 2.15.1D DMA Unit with non-unity stride

In the case of a peripheral DMA, the peripheral’s FIFO serves as either the source or
the destination. If the peripheral serves as the destination, a memory location serves as the
source address, in otherwise (the peripheral serves as the source), a memory location (internal
or external) serves as the destination address.

-20-

We can describe two registers, XCOUNT and XMODIFY.

e XCOUNT: is the number of transfers that need to be made

e XMODIFY: is the number of bytes to increment the address pointer after the
DMA controller moves the first data element. Is always expressed in bytes.

The two-dimensional (2D) capability is even more useful than 1D DMA. 2D DMA is very
used especially in video applications, 2D DMA is an extension to 1D DMA. In this configuration
we program two registers more, YCOUNT and YMODIFY:

e YCOUNT: is the number of transfers

o YMODIFY: is specified as a number of bytes to increment the address pointer

2D DMA can be seen as a nested loop, where the inner loop is specified by XCOUNT
and XMODIFY, and the outer loop specified by YCOUNT and YMODIFY. A 1D DMA can then be
viewed simply as an ‘inner loop’ of the 2D transfer of the form:

for y =1 to YCOUNT STEP YMODIFY /*2D with outer loop*/
for x =1 to XCOUNT STEP XMODIFY /*1D inner loop*/
{/*Loop goes here*/

}

Figure 2.16.1D DMA Unit as an ‘inner loop’ of the 2D DMA transfer

While YMODIFY determines the stride value of DMA controller takes every time
XCOUNT decrements, YMODIFY determines the stride taken whenever YCOUNT decrements.
YMODIFY can be negative, which allows the DMA controller to wrap back around to the
beginning of the buffer.

For a memory DMA, the ‘memory side’ of the transfer can be 1D-to-1D transfer, a 1D-
to-2D transfer, a 2D-to-1D transfer, and a 2D-to-2D transfer. The only constraint is that the
total number of bytes being transferred on each end of the DMA transfer block has to be the
same.

Figures 2.17 show different Memory DMA configurations:

-21-

Memory — Memory Hemary Hemory

0x00a 0x00a
0x00b (.] 0x00b
0x00c 0x00c
0x00d 0x00d
0x00e 0x00e
0-0
0x00f 0x00f
0x010 0x010
0x011 0x011
0x012 0x012
a) 1Dto 1D c) 1Dto 2D
Memory
0x00a
0x00b
0x00c
0x00d
0x00e m m
ooof

0x010
0x011

b) 2Dto 1D d) 2D to 2D

Figure 2.17.Posible Memory DMA configurations

Peripheral DMA offers less flexibility, the ‘memory side’ of the transfer can be either
1D or 2D. On the peripheral side it is always a 1D transfer. The only constraint is that the total
number of bytes transferred on each size (source and destination) of the DMA must be the

same.

-22 -

Example

Consider a 3-pixel (per line) x 4-line array, with byte-sized pixel values, ordered as shown in
Figure 2.18:

Oxa 0xb Oxc

Oxa 0xb Oxc

Oxa 0Oxb Oxc

Oxa 0xb Oxc

Figure 2.18.5ource array

While this data is shown as a matrix, it appears consecutively in memory as shown in
the Figure 2.19:

Address Data

Oxa
Oxb
Oxc
Oxa
0xb
Oxc
Oxa
0xb
Oxc

=R - I < T I B

Oxa
Oxb
Oxc

[T
(=

Figure 2.19.Posible Memory, it appears consecutively en memory

We want now to create using the DMA controller, the array shown in the Figure 2.20:

Oxa Oxa 0Oxa 0xa

0xb 0xb 0xb 0Oxb

Oxc Oxc Oxc Oxc |

Figure 2.20.Destination array
Source and destination word transfer size = 1 byte per transfer.

We can use a memory DMA, with a 2D-to-1D transfer configuration. First | will explain
the values of the registers of the source.

-23-

The source is 2D and the array size is 4 lines x 3 pixels/line, therefore XCOUNT is 4 and
YCOUNT is 3.

We want to take the first value (Oxa) and skip 3 bytes to the next value of Oxa. We will
repeat this four times (Source XCOUNT = 4). The value of the source XMODIFY is 3, because
that is the number of bytes the controller skips over to get to the next pixel (including the first
pixel). XCOUNT decrements by 1 every time a pixel is collected. When the DMA controller
reaches the end of the first row, XCOUNT decrements to 0, and YCOUNT decrements by 1.The
value of YMODIFY on the source side then needs to bring the address pointer back to the
second element in the array (Oxb). At the instant this happens, the address pointer is still
pointing to the last element in the first row (Oxa). Counting back from that point in the array to
the second pixel in the first row, we traverse back by 11 elements. Therefore, the source
YMODIFY =-11.

Therefore the source DMA register setting for this transfer are:

SOURCE
XCOUNT = 4
XMODIFY = 3
YCOUNT = 3

YMODIFY = -11

Figure 2.21.Source DMA registers
Now the values of the registers of the destination will be explained.

Due to we will use a 1D transfer to fill the destination buffer, we only need to program
XCOUNT and XMODIFY on the destination side. In this case, the value of XCOUNT is set to 12,
because that is the number of bytes that will be transferred. The YCOUNT value for the
destination side is simply 0, and YMODIFY is also 0.

Therefore the destination DMA register setting for this transfer are:

DESTINATION

XCOUNT = 12

XMODIFY = 1

YCOUNT = 0

YMODIFY = 0

Figure 2.22.Destination DMA registers

-24-

2.3.5. - DMA Classification

There are two main classes of DMA transfer configuration: Register mode and
Descriptor mode. The Table 2.2 shows the type of information into the DMA controller, which
is the same regardless of the class of DMA.

DMA Registers

Address of next descriptor

Address of next descriptor

Start Address (source or destination)

Start Address (source or destination)

Control information (enable, interrupt selection,1D vs. 2D)
Number of transfer in inner loop

Number of bytes between each transfer in inner loop

Number of transfer in outer loop

Number of bytes between end of inner loop and start of outer loop

Table 2.2.DMA registers
a) Register-based DMA

In a register-based DMA, the processor directly programs DMA control register to
initiate a transfer. Registers don’t need to keep reloading from descriptors in memory, and the
core does not have to maintain descriptors. This DMA provides the best performance.

b) Descriptor-based DMA

Require a set of parameters stored within memory to initiate a DMA sequence. The
descriptor contains all of the same parameters normally programmed into the DMA control
register set. In descriptor-based DMA operations, we can program the DMA to automatically
set up and start another DMA transfer after the current sequence completes. The descriptor-
based model provides the most flexibility in managing system’s DMA transfers.

-25-

Chapter 3

H.264/AVC and Motion Estimation

This section introduces H.264/AVC which is a standard for video compression and also
introduces motion estimation (ME) algorithm.

3.1.- H.264/AVC Coding Standard

H.264 is a standard for video compression. It is also known as MPEG-4 Part 10, or
MPEG-4 AVC (for Advanced Video Coding). H.264 is the result of the collaboration between the
ISO/IEC Moving Picture Expert Group and the ITU-T Video Coding Expert Group.

The intent of the H.264/AVC project was to create a standard capable of providing
good video quality at substantially lower bit rates than previous standards (e.g. half or less the
bit rate of MPEG-2, H.263, or MPEG-4 Part 2), without increasing the complexity of design so
much that it would be impractical or excessively expensive to implement. An additional goal
was to provide enough flexibility to allow the standard to be applied to a wide variety of
applications on a wide variety of networks and systems, including low and high bit rates, low
and high resolution video, broadcast, DVD storage, RTP/IP packet networks, and ITU-T
multimedia telephony systems.

In this section H.264/AVC Coding Standard is studied, and the encoder and decoder
will be explained.

3.1.1. - Introduction

H.264/AVC is the latest standard in a sequence of the video coding standards H.261,
MPEG-1 Video, MPEG-2 Video, H.263, MPEG-4 Visual or part 2. These previous standards
reflect the adaptation of video coding to different applications and networks and the
technological progress in video compression. Applications range from video telephony to
consumer video on CD and broadcast of standard definition or high definition TV.

Nowadays, the importance of new network access technology (cable modem, Xdsl, and
UMTS) is increasing and therefore creating demand for the new video coding standard
H.264/AVC, providing enhanced video compression performance in view of non-interactive
applications like storage, broadcast and streaming of standard definition TV where the focus is
on high coding efficiency and interactive applications like video telephony requiring a low
latency system.

-26-

Comparing the H.264/AVC video coding tools to the tools of previous video coding
standards, H.264/AVC brought in the most algorithmic discontinuities in the evolution of
standardized video coding.

The standardization of the first version of H.264/AVC was completed in May of 2003.
The JVT (Joint Video Team) then developed extensions to the original standard that are known
as the Fidelity Range Extensions (FRExt). H264/AVC achieved a leap in coding performance that
was not foreseen just five years ago.

Figure 2.23 shows the scope of video coding standardization, where only the syntax
and semantics of the bit stream and the processing that the decoder needs to perform when
decoding the bit stream into video are defined:

T Pre-T |——— codir
n ding
. Processing m

Source Bitstream }

anne
. Storage
S _ {é
Error !

!

Recovery

|

Receiver Video Bitstream

Figure 3.1.5cope of video coding standardization

The steps of the previous scheme would be as follows:

e Adigital video is captured from a camera or synthesized using appropriate tools.

e Optional pre-processing: the sender might choose to preprocess the video using
format conversion or enhancement techniques.

e Encoder: encodes the video and represents the video as a bit stream.

e Transmission of the bit stream over a communications network.

e Decoder: decodes the video.

e Optional post-processing: step which might include format conversion, filtering to
suppress coding artifacts, error concealment, or video enhancement.

-27-

The standardization of the bit stream and the decoder by the H.264/AVC preserves
the fundamental requirement for any communications standard—interoperability.

Manufactures of video decoders can only compete in areas like cost and hardware
requirements. Optional post-processing of the decoded video is another area where different
manufactures can compete creating competing tools to create a decoded video stream
optimized for the targeted application. The standard does not define how encoding or other
video pre-processing is performed thus enabling manufactures to compete with their encoders
in areas like coding efficiency, cost, error resilience and error recovery or hardware
requirements.

Not only coding efficiency is relevant for efficient transmission in different
environment, but also the seamless and easy integration of the coded video into all current
future protocol and network architectures. This includes Internet and wireless network
expected to be a major application for the new video coding standard.

3.1.2. - Video Encoder

An encoder is a device used to change a signal or data into a code. In H264/AVC
standard the encoder encodes the video and represents the video as a bit stream for the
transmission over a communications network. Figure 2.24 shows a generalized diagram of a
video encoder with motion compensation:

Input Image Quantized E
Signal Coefficients ntro
g_4>®_> Transform > Quant Py

> > Coding "
A
v
Inverse
Transform
i +
Intra-Frame Deblocking
Prediction Filter
\ < |MC prediction |4 Memory
1
giton
™| Estimation [

Figure 3.2.Block diagram of a video encoder with motion compensation

The input image is divided into macroblocks and each of these macroblocks is what we
introduce into our encoder. Each machroblocks consists of the three components:

e Y: Luminance component which represents the brightness information.

e Crand Cb: Chrominance components which represent the color information.

-28-

As the human eye system is more sensitive to the Luminance than to the chrominance,
the chrominance signals are both divided by a factor 2 in horizontal and vertical direction.

A macroblock consists of one block of 16 by 16 picture elements (luminance
component) and two blocks of 8 by 8 picture elements (chrominance components).

=)

Cr

ﬁ

Figure 3.3.Macroblock consisting of a Luminance component and Chrominance components.

Each macroblock are coded in Inter or Intra mode:

e Inter mode: A macroblock is predicted using motion compensation (will be
explained later).

e Intra_ mode: The image can be coded without reference to previously sent
information (will be explained later).

The macroblocks are processed in so called slices. A slice is usually a group of
macroblocks processed in raster scan order. There are five different slice-types:

e |: All macroblocks are encoded in Intra Mode.

e P: All macrobloks are predicted using a motion compensated prediction with
one reference frame.

e B: All macrobloks are encoded using a motion compensated prediction with
past and future pictures as reference.

e Sland SP: are used for an efficient switching between two different bit streams.

The following is the explanation of the operation of each of the blocks that appear in
the diagram, to finally explain the operation step by step of the encoder.

Intra_prediction: Predict a current block from previously coded blocks in the same
frame.

For the prediction of the luminance component Y are in H.264/AVC two different types
of intra prediction:

-29-

e |INTRA 16X16: Only one prediction mode is applied for the whole macroblock.
Four different prediction modes are supported for the type INTRA_16X16:
Plane prediction, vertical prediction, horizontal prediction and DC prediction.

e |INTRA 4X4: The macroblock, which is of 16x16, is divided into sixteen 4x4
subblocks and a prediction for each subblock of the luminance signal is applied
individually. Nine different prediction modes are supported for the type
INTRA_4X4. One is DC prediction mode and in addition eight prediction modes
each for a specific prediction direction.

For the prediction of the chrominance signals Cb and Cr of a macroblock is similar to
the INTRA_16x16 type for the luminance signals. It is performed always on 8x8 blocks using
plane prediction, vertical prediction, horizontal prediction and DC prediction.

Motion compensation prediction: One method used by various video formats to

reduce file size is motion compensation, that is a technique for describing a picture in terms of
the transformation of a reference picture to the current picture. For many frames of a movie,
the only difference between one frame and another is the result of either the camera moving
or an object in the frame moving. In reference to a video file, this means much of the
information that represents one frame will be the same as the information used in the next
frame. Motion compensation takes advantage of this to provide a way to create frames of a
movie from a reference frame.

For this purpose, each macroblock can be divided into smaller partitions. The use of
larger blocks can reduce the number of bits needed to represent the motion vectors, while the
use of smaller blocks can result in a smaller amount of prediction residual information to
encode. Partitions with luminance block sizes of 16x16, 16x8, 8x16, 8x8 samples are

supported.

Figure 3.4.Partitions with luminance block

In case of an 8x8 sub-macroblock, one additional syntax element specifies if the
corresponding 8x8 sub-macroblock is further divided into partitions with block sizes of 8x4,
4x8, 4x4.

-30-

8x8 4x8 | 8x4 4x 4

Figure 3.5.Partitions of an 8x8 sub-macroblock

A displacement vector (motion data) is estimated and transmitted for each block
(motion estimation), refers to the corresponding position of its image signal in an already
transmitted reference image. With this (motion data) and the reference image stored in
memory, motion compensation calculates the prediction of the current image.

In former MPEG standards this reference image is the most recent preceding image. In
H.264/AVC it is possible to refer to several preceding images. For this purpose, an additional
picture reference parameter has to be transmitted together with the motion vector. This
technique is called motion-compensated prediction with multiple reference frames.

Already Decoded Images as Reference Image to Code

[=]
i
1l
4%

\\

A
i

Motion-Compensated prediction with multiple reference images. Inaddition to the
motion vector, also an image reference parameter deis transmitted.

Figure 3.6.Motion-compensated prediction with multiple reference frames

H.264 encoding supports sub-pixel resolution for motion vectors, meaning that the
reference block is actually calculated by interpolating inside a block of real pixels.

Hence, we employ sub-pixel grid, in which motion vectors may point to candidate
blocks placed at half-pixel or sometimes quarter pixel locations. The reference block at sub-
pixel grid can be generated using either bi-linear interpolation but in H.264 standard is used a
more sophisticated six-tap filter.

-31-

resolution Grid

Pixel block on half pixel

Figure 3.7.Pixel block on half pixel resolution Grid

Normally, the integer motion vector is further refined to first half pixel by testing the
eight neighbouring half pixel locations and further to quarter pixel by testing the neighbouring

eight quarter pixel locations.

Quarter resolution pixels

Half resolution pixels

Figure 3.8.Quarter resolution pixels

In the application used in the project it is possible to point to candidate blocks placed
only at half-pixel (of course also at full-pixel) and we will have the following cases:

resolution Grid

Pixel block on half pixel

Figure 3.9.Cases in the application of the project.

FH: Average vertical (green circle).
HF: Average horizontal (blue circle).

HH: Average vertical and average horizontal (yellow circle).

FF: copy (red circle).

-32-

Transform Coding: Is applied in order to code the prediction error signal. The task of

the transform is to reduce the spatial redundancy of the prediction error signal. For the
purpose of transform coding, all former standards such as MPEG-1 and MPEG-2 applied a two
dimensional Discrete Cosine Transform. In H.264/AVC, different integer transforms are applied
instead of the DCT.

Quantification: The human eye is very good detecting small changes of brightness in
relatively large areas, but not when the rapidly changing brightness in small areas (high-
frequency variations), this allows elimination of high frequencies, without losing too much
visual quality. All coefficients are quantized by a scalar quantizer. The quantization step size is
chosen by a so called quantization parameter QP which supports 52 different quantization
parameters. This is the process that loses much of the information (and quality) when an
image is processed by this algorithm.

Entropy Coding Schemes: The entropic coding is a special form of compression

without data loss. H.264/AVC specifies two alternative methods of entropy. These methods
are used to codify coefficients and motion vectors. The encoding used for this task are based
on VLC (Variable Length Coding) adaptative, of this concept is born the CAVLC (Context
Adaptive Variable Length Coding) and CABAC (Context Adaptive Binary Arithmetic Coding).

Adaptative Deblocking Filter: In block-based video compression technology, blocking

artifacts are obvious because of the luminance and chrominance discontinuities which are
caused by block-based motion compensation. Filtering the block edges has been shown to be a
powerful tool to reduce the visibility of these artifacts.

The filter described in the H.264/AVC standard is highly adaptive. Several parameters
and thresholds and also the local characteristics of the picture itself control the strength of the
filtering process. All involved thresholds are quantizer dependent, because blocking artifacts
will always become more severe when quantization gets coarse.

The filter is adaptive on three levels:

e On Sample level: It is important to distinguish between true edges in the image

and those created by the quantization of the transform-coefficients. True edges
should be left unfiltered as much as possible.

e On Slice level: The global filtering strength can be adjusted to the individual
characteristics of the video sequence.

e On block edge level: The global filtering strength is made dependent on

intra/inter prediction decision, motion differences, and the presence of coded
residuals in the two participating blocks. From these variables a filtering-
strength parameter is calculated, which can take values from 0 to 4 causing
modes from no filtering to very strong filtering of the involved block edge.

Memory: Where stored the macroblocks and can be used to predict future
macroblocks.

-33-

Motion Estimation: Is the process of determining motion vectors that describe the
transformation from one 2D image to another; usually from adjacent frames in a video
sequence. (This process will be widely explained in the next point).

Once explained the operation of each of the blocks that appear in the diagram, the
operation of the encoder is the following:

The input image is divided into macroblocks and each of these macroblocks is what we
introduce into our encoder.

Each macroblock is introduced in the block of motion estimation where a
displacement vector is estimated and transmitted for each macroblock (motion data) that
refers to the corresponding position of its image signal in already transmitted reference image
stored in memory. Vectors are introduced in the block of motion compensation that with this
and the reference image stored in memory calculates the prediction of the current
macroblock. The motion data calculated in motion estimation is also entropy coded and sent
to the decoder.

The difference between the original and the predicted macroblock is called prediction
error and is transformed, quantized, entropy coded and sent to the decoder. The prediction
error has smaller energy than the original pixel values and can be coded with fewer bits,
because of this is sent the prediction error instead of the original macroblock.

In order to reconstruct the same image on the decoder side, the quantized coefficients
are inverse transformed and added to the prediction signal. Once this is done, the macroblock
is introduced in the deblocking filter to reduce the visibility of blocking artifacts. The result is
the reconstructed macroblock that is also available at the decoder side. This macroblock is
stored in the memory where can be used to predict future macroblocks.

With respect to the block diagram H.264/AVC introduce the following changes:

e The Discrete Cosine Transform (DTC) used in former standards is replaced by an
integer transform.

e An adaptive filter deblocking filter is used in order to reduce the block-artifacts.

e In H.264/AVC a prediction scheme is used also in Intra mode.

e H.264/AVC allows storing multiple video frames in the memory, whereas in previous
standards the memory contains only one video frame.

-34-

3.1.3. - Video Decoder

A decoder is a device which does the reverse of an encoder, undoing the encoding so
that the original information can be retrieved. The same method used to encode is usually just
reversed in order to decode.

The following figure shows a generalized diagram of a video decoder with motion
compensation:

[CQantized Coeffide nts |

Decoded Macroblodk

——

Intra-Frame predicticn

MC prediction

Motion Data

Figure 3.10.Video decoder with motion compensation

The decoder receives the motion data and the quantized coefficients, the entropy
decoder decodes the quantized coefficients and the motion data, which is used for the motion
compensated prediction.

As in the encoder, a prediction signal is obtained by intra-frame or motion
compensation prediction.

The prediction signal obtained is added to the inverse transformed coefficients. Once
this is done, the macroblock is introduced in the deblocking filter to reduce the visibility of
blocking artifacts. After deblocking filtering, the macroblock is completely decoded and stored
in the memory where can be used to predict future macroblocks.

3.2. - Motion Estimation

This point, presents the Motion Estimation algorithm with Three Dimensional
Recursive Search (3DRS) as such algorithm. After that, an scheme of operation of motion
estimation is presented, and finally, and example of motion estimation is explained.

-35-

3.2.1. - Introduction

Motion estimation is the process of determining motion vectors that describe the
transformation from one image to another; usually from adjacent frames in a video sequence.

The basic assumption of motion estimation is that, consecutive frames of video will be
similar except for changes induced by objects moving within the video frames.

Motion estimation extracts motion information from the sequence of video. The
motion is represented by a motion vector (x,y). This vector indicates the displacement of a
pixel or a pixel block from the current location due to motion. Applying the motion vector to
an image to get the next image is called Motion compensation. The combination of motion
compensation and estimation is a key part of video compression.

There are some techniques of motion estimation, as pel-recursive techniques, which
generate motion vector for each pixel or phase plane correlation technique, which generate
motion vectors via correlation between reference frame and current frame. But the most used
is Block Matching Algorithm.

3.2.2. - Block Matching Algorithm

Block Matching Algorithm is the most used motion estimation algorithm. This
algorithm (BMA) calculates a motion vector that is applicable to all the pixel in the block, i.e.,
calculates a motion vector for a block of pixels. Reducing thus the computational requirements
and also results in a more accurate motion vector since the objects are typically a cluster of
pixels.

Here are some figures to explain the functionality of the algorithm:

4| Search Region !

-~~~ =T==-=-="=====7=—-<— 1
1 1
1 1
1 1
1 1
| I Motion Vector I ! I Curl'rent Blf’Ck I
i : DToT
: | pood
i - i g 00 ic::j
1 2 = | 00
i pood
I cooca I Reference Block I
! bonod :
Reference Frame Current Frame

Figure 3.11.Block matching algorithm

-36 -

The Current frame is divided into blocks of pixels and motion estimation is performed
for each pixel block (as explained previously).

Motion estimation is performed by identifying a pixel block from the reference frame
that best matches the block to be coded. The reference block is generated by displacement
(this displacement is provided by the motion vector, which consists of a pair(x,y) of horizontal
and vertical displacement values)from the location of the block to be coded in the frame of
reference.

The reference pixel blocks are generated only from a region that defines the boundary
for the motion vectors and limits the number of block to evaluate. This region is called search
area. The height and width of search area is dependant on the motion in video sequence.
Bigger search area require more computation due to increase in number of evaluate
candidates. The available computer power determines the search area.

The choice of block size also determines the trade off between required computation
and accuracy of motion vectors. Smaller block size can accurately describe motion of smaller
objects but will need higher computation. A block size too small may not contain sufficient
texture, therefore, it may not be possible to accurately predict block matching.

There are various criteria for calculating block matching. The most popular are listed
below:

e Sum of Square Error (SSE) = Y X=V Zizllv(C(x, y) — R(x,y))?
SSE provides a very accurate block matching, however requires many computations.

. Sum of Absolute Difference (SAD) = YX=N ¥Y=V|C(x,y) — R(x,)|

SAD provides fairly good match at lower computational requirement. Hence it is widely
used for block matching.

We have assumed that the block can be found by an integer number of pixels. In
practice, the displacement of an object between two subsequent frames in a video is not an
integer number of pixels. Hence, modern coding standards employ also sub-pixel grid, in which
motion vectors may point to candidate blocks placed at half-pixel or sometimes quarter pixel
locations. The reference block at sub-pixel grid is generated using either bi-linear interpolation
or a more sophisticated six-tap filter as used in H.264 standard. Figure 3.7 shows a pixel block
on a half pixel resolution grid.

Normally, the integer motion vector is further refined to first half pixel by testing the
eight neighbouring half pixel locations and further to quarter pixel by testing the neighbouring
eight quarter pixel locations. Figure 3.8 presents a quarter resolution pixels.

-37 -

In the application used in the project it is possible to point to candidate blocks placed
only at half-pixel and we will have the following cases:

e FH: Average vertical (green circle).

e HF: Average horizontal (blue circle).

e HH: Average vertical and average horizontal (yellow circle).
e FF: copy (red circle).

These cases are presented in Figure 3.9.

To find the pixel block from the reference frame that best matches the current block,
we must do a search of candidates. This search can be made with several algorithm, we are
going to explain Three Dimensional Recursive Search (3DRS), since it will be used in the
application.

3.2.3. - Three Dimensional Recursive Search

Three dimensional recursive search (3DRS) is one such algorithm. The algorithm has
two assumptions:

e Objects are larger than a block size

e Objects have inertia

Taking into account the first assumption the neighbouring blocks motion vectors can
be used as candidates for the current block. Here could appear a problem as for neighbouring
blocks ahead in raster scan, there is no motion vectors calculated yet. Here is where we apply
the second premise and motion vectors from previous frame are for this blocks. In my
application, for the search of candidates (motion vectors candidates) through 3DRS, the
algorithm that will be used is the explained below.

Bearing in mind that x is the coordinate x of the position of the macroblock to be
coded and y is the coordinate y of the position of the macroblock to be coded, the candidates
will be sought as follow:

Candidatel: MV(x-1, y-1)

Candidate2: MV(x+1, y+1)

Candidate3: MV(x+1, y-1)

Candidate4: MV(x+0, y-1)

Candidate5: MV(x-1,y-1) +(Random_x, Random_y)
Candidate6: MV(x+1, y+1) + (Random_x, Random_y)
Candidate?: MV(x+1, y-1) + (Random_x, Random_y)

-38 -

Candidate8: MV(x+0, y-1) + (Random_x, Random_y)

NOTE: From the fifth candidate, the motion vector will be increased by a random to
calculate the motion vector of that block.

N\
-

Figure 3.12.Motion Vector candidates without random
In Figure 3.12 is marked in red color the macroblock to be coded and in blue color the

macroblocks whose motion vectors (without random) can be used as candidates for the
current macroblock (found by 3DRS).

:

X
—_—

Figure 3.13.Motion Vector candidates without and with random

-39-

In Figure 3.13, the macroblock to be coded is marked in red color and in blue color the
macroblocks, whose motion vectors without and with a later random, can be used as
candidates for the current macroblock (found by 3DRS).

If any of the blocks chosen by 3DRS is outside of the image, the motion vector that
takes will be:

e Exit at the top: the motion vector of the down block.
e Exit at the bottom: the motion vector of the top block.
e Exit on the side: the motion vector of the next block.

Example:

ar

Figure 3.14.Blocks chosen by 3DRS are outside of the image

e The motion vector of the green block will be the motion vector of the block number 1.
e The motion vector of the yellow block will be the motion vector of the block number 1.
e The motion vector of the orange block will be the motion vector of the block number 2.

When there are two equals candidates, two motions vectors equal, we use only once this
motion vector within the motion compensation, therefore we have a candidate less.

3.2.4. - Scheme of operation of motion estimation

Figure 3.15 shows the scheme of operation of motion estimation:

-40 -

Motion Estimation

Macroblock
PO Y T Motion Vector
noos ot MC o Calc:laﬂon

Figure 3.15.Scheme of operation of motion estimation

The steps will be as follow:

6. The macroblock (to be coded) of the current image is introduced.

7. ltis estimated the first motion vector in the current image through 3DRS.

8. With the motion vector of the block calculated and the reference image, through
motion compensation, is locate the candidate in the reference image.

9. Through the subtraction of the macroblock of the current image and the candidate
located in the reference image, is obtained the SAD.

10. Repeat steps 2 through 4 for 8 candidates, to finally stay with the motion vector of
the candidate with the lowest SAD.

3.2.5. - Example of motion estimation

Figure 3.16 shows an example of a frame with a landscape and a car. The second half
of this figure is an example of a possible next frame, where the car has moved towards the
tree.

Frame 1l Frame 2

Figure 3.16.Frame and next frame of an image

-41-

Then in the frame 2 is marked in red color the macroblock to be coded and in green
color the macroblocks (found by 3DRS) whose motion vectors (4 without random and 4 with
random) can be used as candidates for the current macroblock (for macroblocks ahead in
raster scan, there is no motion vectors calculated yet, then assuming that the objects have
inertia, the motion vector for previous frame are for these macroblocks).

Frame 2

Figure 3.17.In red color is marked the macroblock to be coded and in green color the macroblocks whose
motion vectors (without and with a random) can be used as candidates for the current macroblock.

Then place the same macroblock of the current picture in the image of reference and
with the motion vectors calculated, the candidates (with motion compensation) are obtained.

Frame 1l Frame 2

Figure 3.18.In frame 1 the candidates are obtained

Once this is done, from SAD calculated for each candidate, we rule out candidates with
the highest SAD, we stay therefore with the motion vector of the candidate with the lowest
SAD.

-42 -

The selected candidate will be the following:

Frame 1

Figure 3.19.Selected candidate

-43 -

Chapter 4

Proposed enhanced DMA unit

This section introduces the DMA processor interface that will be used to introduce the
improvements in the project. After that, the DMA proposals for the ‘Enhanced DMA Unit’ will
be presented.

4.1. - Introduction

Nowadays because of the wide variety of applications such as current video
applications, multimedia cell phones, high-definition interactive television... are necessary
continuous improvements requiring sophisticated multimedia operations, which imply a high
demand of processing power.

Because of this and to achieve better performance, the processors tend to behave less
linearly and more in parallel. Due to the capability of exploiting parallelism in multimedia
applications, VLIW architecture is being very used in the last years.

Using subword parallelism a VLIW architecture can achieve a significant improvement
in performs. In subword parallelism, we pack multiple subwords into a word and then process
the whole words.

Therefore data-parallelism needs a way to expand data into larger containers for more
precision in intermediate computations and data alignment before or after a certain
operations for subwords.

Most SIMD processors provide access to only contiguous data in memory, with strong
alignment restrictions because they have limited memory architecture. These architectures,
either do not provide any hardware support for unaligned accessed or provide it but with
degrade results. Therefore the programmer usually ends doing the alignment in software
which, implies an extra-overhead not having an efficient support for unaligned accesses and
that degrade the performance significantly.

For example there are instructions like MIX, permute, or Load+ Alignment but these
instructions subject the CPU to a heavy overhead.

In applications like video coding and decoding that use ME and MC algorithms, it is not
possible to avoid unpredictable unaligned memory references. This is because to identify a
pixel block for the reference frame that best matches the block to be coded, the reference
block is generated by displacement from the location of the block to be coded in the frame of

-44 -

reference. This displacement is performed using the motion vector and can be arbitrary and
therefore, that results in a lot of unpredictable unaligned accesses.

In this type of applications, current software optimizations become unsuccessful
because the instructions that are necessary for doing the data realignment in software subject
the CPU to a heavy overhead.

Knowing that DMA is an essential feature of all modern computers, as it allows devices
to transfer data without subjecting the CPU to a heavy overhead, a solution would be to create
a ‘Enhanced DMA Unit’ capable of performing the alighment of data without subjecting the
CPU to a heavy overhead.

The instructions mentioned above will remain used, because once the data is in
internal memory, these instructions will be responsible for performing any alignment required.
But in the other cases will use an 'Enhanced DMA Unit' because thus will be removing code
and therefore saving processing cycles.

The idea would be that this 'Enhanced DMA Unit' in addition to the alignment of data
can make padding of data.

For example in applications like video coding and decoding that use ME and MC
algorithms, to search the block of the reference frame that best matches the block to be
coded, the search is performed only in a region known as the search area, then when a
candidate (to be a pixel block from the reference that best matches the block to be coded)
goes beyond this search area, it is necessary to make padding of data.

Perform these extensions with DMA Unit also would reduce considerably the overhead
of the CPU. Moreover it would be also interesting that this 'Enhanced DMA Unit' was able to
store several transmission in a queue, allowing to perform one transfer after the other without
needing to wait in order to configure the transfers. Thus also would reduce considerably the
overhead of the CPU.

4.2. - DMA processor interface

This section presents the characteristics of the DMA Unit that will be used to introduce
the improvements.

- 45 -

4.2.1. - Processor interface

The DMA Unit used is a 2D-1D that conducted the exchange of data between an
external memory (SDRAM) and an internal memory (mem).

DMA transfer between external memory and local data and instruction memory is
performed through the 64bit DMA interface via the BUS AHB bus.

In a register-based DMA, the processor directly programs the DMA control registers to
initiate a transfer. The DMA use the followings register:

DMA Registers

With this register we will indicate if we want in SDRAW to read or write (8 bit). 1: Read to SDRAM; 0: Write to SDRAM
External base address (32 bit)

Segment length (64 bit words; 12 bit]

(Offset hetween segments (64 bit words; 12 bit)

{Number of segments (5 bit)

|Intema| base address (12 bit)

|I)MAdata transfer start 1bit)

Table 4.1.DMA Registers

DMA transfers are initiated by writing to DMA_DATA_CTRL_START a ‘1’ for data
transfers. The transfer direction is configured by writing ‘1’ or ‘0" in the bit 0 of
DMA_TRANSFER_CTRL (‘1’: read from extern; ‘0": write from extern). A busy transfer is
indicated by flags. The flag is called dma_data_status, the flag is ‘1’ while the transfer is being
made and when the transfer ends the flag is set to ‘0’. DMA also will be working internally with
two pointers one for the external memory (pointer_to_sdram (size configurable)) and the
other one for the internal memory (pointer_to_mem (size configurable)).

4.2.2. - Example

To better understand the meaning of these registers, | will present an example. The
configuration of the registers will be as follows:

e DMA_TRANSFER_CTRL: 0x001

e DMA_EXT_BASE_ADDR: 0x060 *NOTE

e DMA _SEGMENT_LENGTH: 0x003

e DMA_GAP_LENGHT: 0x00a

e DMA SEGMENTS: 0x002 (There are 3 segments because there are segment 0)
e DMA_MEM_ADDR: 0x000

e DMA_DATA_CTRL_START: 0x001

- 46 -

*NOTE: when our pointer takes the direction of SDRAM (DMA_EXT_BASE_ADDR) is not going
to take every bit, it will leave the first three bits without take (to be explained in later), that is,
it will take the bits from 3 onwards. Therefore the 0x060 (96 decimal) will be 1100000 in
binary, if remove the first three bits we stayed with 1100 that is 0x00c in hex. So the base
direction of our SDRAM will be 0x00c.

SDRAM contents will be as follows:

0x00 0x01 0x02 0x03 O0x04 Ox05 O0x06 Ox07 Ox08 Ox09

OxDa Ox0b OxOc Ox0d Ox0e OxO0f Ox10 0x11 O0x12 0Ox13

0x14 0x15 Ox16 O0x17 0Ox18 0x19 Oxla Oxlb Oxlc Ox1d

Oxle 0x1f 0x20 0Ox21 0x22 0x23 Ox24 0x25 O0x26 0x27

0x28 0x29 0x2a Ox2b 0x2c O0x2d Ox2e Ox2f 0Ox30 0Ox31

0x32 0x33 0x34 0x35 0x36 Ox37 0x38 0x39 0x3a 0x3b

Figure 4.1.SDRAM contents

The data are taking from the direction 0xOc and will have to take 3 rows of data and
the length of the rows will be 3, the offset between segments will be 10.

Ox00 0Ox01 Ox02 0x03 0x04 Ox05 Ox06 O0x07 Ox08 Ox09 GAP

Ox0a Ox0b Ox0c Ox0d OxOe OxO0f Ox10 Ox11 0x12 0x13
0x14 0x15 0x16 O0x17 0x18 0x19 Oxla Oxlb Oxlc O0x1d
Oxle Ox1f 0x20 Ox21 Ox22 0x23 0x24 0x25 O0x26 0x27
0x28 0x29 0OxZa OxZb Ox2c 0Ox2d Ox2Ze Ox2f 0x30 0Ox31

0x32 0x33 0x34 0x35 0x36 O0x37 O0x38 0x39 O0x3a 0x3b

Figure 4.2.GAP

MEM contents will be as follows:

-47 -

0¥000 -= 0X0c
ox001 -= 0Xod
0X002 -= 0X0e
0X003 -= 0Xl6
o¥ood4 -= 0X17
0X¥005 -= 0X18
0¥00e -= 0X20
0X007 -= 0OXZ1

0X008 -= 0X22

Figure 4.3.Mem contents

4.3. - Alignment process

This section studies the alignment process and presents a DMA capable of performing
the alignment process.

4.3.1. - Introduction

A memory reference is called aligned when it accesses positions that match with the
memory access granularity of the processor, when that does not happen is called misaligned
(or unaligned).

Most SIMD processors have a limited architecture and cannot access an unaligned
memory position and if they can, is with a big performance penalty. To access an unaligned
position, must be done a realignment process. The realignment process is shown in Figure 1.3.

That process consists in:

e To read the aligned memory word that is located before the unaligned position
and discards the unnecessary bytes.

e To read the aligned memory word that is located after the unaligned position
and discards the unnecessary bytes.

e To merge the necessary bytes of the two previous word.

-48 -

In current SIMD extensions the level of support for unaligned accesses includes
variations from hardware mechanisms, instructions to do the re-alignment in software and
system exceptions. The only one that includes both hardware support and unaligned
exceptions is the Intel’s SSE extension. The initial design only provides support for aligned
accesses with the instruction MOVDQA (Move Aligned Double Quadword). The SSE2 extension
with the instruction MOVDQU (Move Unaligned Double Quadword) that was implemented
using two 64-bit loads (or stores) and was based on microcode, allows to load and to store
non-aligned 128 bit words. But the SSE2 extension results in big latencies and big performance
penalties for unsigned accesses. Then to solve the mentioned problems the LDDQU (Load
Unaligned Integer 128 bits) instruction was introduced in SSE3 extension. This instruction
performs a 32 byte load and then performs a shift to extract the corresponding 16 bytes of
unaligned data.

This kind of alignment of the data described above could be called ‘Load + Alignment’
and subjects the CPU to a heavy overhead because it is necessary to make the load data in two
different registers, then the operation of alignment and finally another load operation in the
final register.

In addition to the manner described to perform the alighment, there are two more
instructions that allow us to make the alignment of data:

o MIX: These instructions take subwords from two registers and interleave alternate
subwords from each register in the result register. Mix left starts from the leftmost
subword in each of the two source registers, while mix right ends with the rightmost
subwords from each source register. Figure 1.1 illustrates this for 16-bit subwords

[1].

o Permute: The permute instruction takes one source register and produces a
permutation of that register’s subwords. With 16-bit subwords, this instruction can
generate all possible permutations, with and without repetitions, of the four
subwords in the source register. Figure 1.2 shows a possible permutation. To specify
a particular permutation, we use a permute index. The instruction numbers
subwords in the source register starting with zero for the leftmost subword. A
permute index identifies which subword in the source register the instruction places
in each subword of the destination register [1].

The problem with all these instructions is that subject the CPU to a heavy overhead
because they perform data realignment in software. That is a problem for applications like
video coding and decoding that use ME and MC algorithms, and they need continuous access
to unaligned memory references (to identify a pixel block for the reference frame that best
matches the block to be coded, the reference block is generated by displacement from the
location of the block to be coded in the frame of reference. This displacement is performed
using the motion vector and can be arbitrary and that results in a lot of unpredictable
unaligned accesses).

-49 -

Therefore the proposal is to create a DMA capable of performing the alighnment of
data.

4.3.2. - DMA with alignment

To make the alignment of the data on the DMA Unit, the DMA Unit will be
implemented as follows:

The directions point to a data of 64-bit. Due to there are subword parallelism, this
information is in turn divided into several smaller data (8-bit), particularly in 8 data. That's, the
directions are pointing to a words that are composed of 8 subwords. Figure 4.4 illustrates it:

Figure 4.4.Words composed of 8 subwords

Through the alignment is possible to point to any subword, and from that subword
take a whole word. Figure 4.5 shows an example of alignment:

[T [1
5

N O | | I
0 1 2 3] 4 7 o 1 2

6 1

Figure 4.5.Example of alignment

The idea will be that of the direction that will point the data of 64 bits, the first three
bits will be used to perform the alignment, that is, with these three bits will be indicated
whether the word is aligned, or if is necessary to take the 64-bit word from a determined
subword. Figure 4.6 illustrates that:

-50-

=

... 00000000

-.00000001

-.00000010

..00000011

-.00000100

00000101

-.00000110

IOEO0EDE

<

..00000111

o
o
@

>

- 00001000

...00001001

.. 00001010

..00001011

.. 00001100
00001101

.. 00001110

-

JUEULSEDE

00001111

Figure 4.6.The first three bits of the direction will be used to perform the alignment

-51-

As can be seen, the numbers of black color remain the same for the 64 bits of the
aligned word, and the first three bits (marked in red) indicates the subword of the word to be
pointing. For example if the address is ...00000101, from that subword will have to take 64-bit:

e OO0 OO0 00

- Q000000 L

- 00000010

w000 001 1

e QOO OO0

w0010 1

OO0 Q110

00000111
64 hits

e QOO0 00D

wea DOOO 100 1

we= DD 10D O

= D000101 1

00001100

== 00001101

e OO0 111D

QURLUNEE gOMOORDN

--00001111

Figure 4.7.Example of alignment

To implement this, is necessary to create an internal register of three bits in the DMA
Unit in which will be stored the last three bits of the address at which wants to point.

bit[2:0] int row reg

int row reg = dma ext base addr reg([2:0]

With the pointer that pointing to the SDRAM | will always point to addresses of aligned
data, therefore this pointer should not take the first three bits of the direction that | have:

-52-

pointer to sdram =

SDRAM W =

constant (configurable)

dma ext base addr reg[SDRAM W-1+3:0+3]

Figure 4.8 shows how the pointer always point to addresses of aligned data:

i i L T T R

- 00D D00 L

- 000D DOL 0

- OO0 D01 L

OO DO

OO0 010 L

o OOO 011 O

- 0000011 1

wes DOOOL0 00

== 0000100 1

--- 00001010

- 00001011

== 00001100

- 00001101

- 00001110

-- 00001111

|

GUECURCE pOROOAREn

|

pointer_to_sdram

pointer_to_sdram

Figure 4.8.Pointer always point to addresses of aligned data

With the first three bits of data, as explained above, will be indicated the subword
within the word that wants to point.

When these three bits are 0 mean that is not necessary to do alignment of data,
because the word of data that wants to take is aligned. With any combination of these three

bits that isn’t 000, will be necessary to perform alignment of data.

For that will be created three internal registers in the DMA:

-53-

bit[63:0] int auxl reg
bit[63:0] int aux2 reg

bit[63:0] int final reg

Then when int_row_reg has the three bits to zero, will not have to perform alignment
of data and the implemented code will be the follow:

moaidk mem.mem [pointer to mem] = moaidk sdram.sdram [pointer to sdram]

Otherwise, we will have to make alignment of data and the implemented code will be the
follow:

int auxl reg = moaidk sdram.sdram[pointer to sdram];

int aux2 reg moaidk sdram.sdram[pointer to_sdram +1];

int final reg[63:8*int row regq] = int auxl reg[((8-int row reg)*8)-1:0];
int final reg[(8* int row reg)-1:0]= int aux2 reg[63: (8- int row reg)*8];
moai4k mem.mem [pointer to mem] = int final reg;

As can be seen, in the case of non alignment, the data indicated by the pointer of the
SDRAM is copied directly into the address indicated by the pointer of the internal memory.

In the case of alignment, first copy the aligned memory Word that is located before the
unaligned position in an internal register (int_aux1_reg), second copy the aligned Word that is
located after the unaligned position in other internal register (int_aux2_reg). Then in other
internal register (int_final_reg) will be stored the final results, that’s, the necessary data of the
two words that had been stored in the registers.

The content of this register is what will be stored into the address indicated by the
pointer of the internal memory. Figure 4.9 shows an example:

In int_row_reg there is 2 in decimal (int_row_reg = 010) hence it is necessary to
perform alignment. The operation done is the follow:

auxt | 7] [N NN BN [[T | auxz

int_row_reg 47 : 0 bit 63 : 48 bit

Figure 4.9.Example of alignment using int_row_reg

-54-

Of int_aux1_reg selects the bits from 0 to 47, since it would be:

int auxl reg[((8-2)*8)-1:0] = int auxl reg[47:0]
And of int_aux2_reg selects the bits from 48 to 63, since it would be:

int aux2 reg[63:(8-2)*8] = int aux2 reg[63:48]

The result is stored in the final register:

Tl - - |

63 : 16 bit 15 : 0 bit

Figure 4.10.Final register

The final register stores the bits from 0 to 47 of int_aux1_reg, in the bits from 16 to 63
of int_final_reg, since it would be:

int final reg[63:8*2]

int _auxl reg[((8-2)*8)-1:0]
int final reg[63:16] = int auxl reg([47:0]

The final register stores the bits from 48 to 63 of int_aux2_reg, in the bits from 0 to 15
of int_final_reg, since it would be:

int final reg[(8%*2)-1:0]

int _aux2 reg[63:(8-2)*8]

int final reg[15:0] = int aux2 reg[63: 48]

Performing the alignment in the DMA, much better results will be obtained because
the CPU is not subject to a heavy overhead.

With the instructions described above, it was necessary to load the data in memory,
later perform the alignment in software and finally load the aligned data into another register.
Therefore three registers are being used and the CPU is performing work.

Performing the alignment in the DMA, the alignment is performed while loading the
data, and the data are loaded into memory already aligned. In this way, all the work of
alignment is being performed in the DMA without interrupting the CPU and also is being used
only a register of memory (where the results will be stored in the desired order).

In applications like video coding and decoding that use ME and MC algorithms, this
mode to perform the alignment of data, can improve significantly the performance.

-55-

Using ME and MC algorithms it is not possible to avoid unpredictable unaligned
memory references. This is because to identify a pixel block for the reference frame that best
matches the block to be coded, the reference block is generated by displacement from the
location of the block to be coded in the frame of reference. This displacement is performed
using the motion vector and can be arbitrary, therefore that results in a lot of unpredictable
unaligned accesses. In point 3.2.5 there is an example of motion estimation.

Whenever that is necessary to situate a candidate in the reference image, the
operation described above will be performed, and that results in a lot of unaligned accesses.

Performing the alignment of data in the DMA in this type of applications, a lot of work
to the CPU is being saved and besides if the CPU doesn’t have to do this work, CPU can
perform other tasks while the DMA makes the alignment and therefore the performance will
be much better.

4.4. - Padding process

This section introduces the concept of padding and presents the proposal of a DMA
capable of performing the padding process.

4.4.1. - Introduction

In applications like video coding and decoding that use ME and MC algorithms, when
we want to search the block of the reference frame that best matches the block to be coded,
we search only in a region known as the search area, then when a candidate (to be a pixel
block from the reference that best matches the block to be coded) goes beyond this search
area, it is necessary to make padding of data.

Figure 4.11 clarifies the need to use padding in video applications:

-56 -

Figure 4.11.Frame with the need to use padding

In Figure 4.11, it can be seen outside of the search area a part of one candidate (the
yellow block), which means that for draw this candidate, is necessary to make a padding of
data. In this case, the padding of data is carried out by the top, that is, the contents of the last
line of data that is within the search area, must be extended upwards.

There are eight different cases where there is a need for padding as can be seen in
Figure 4.12:

Figure 4.12.Cases that need to do padding

e Horizontal padding right (brown block).

e Horizontal padding left (gray block).

e Vertical padding upwards (yellow block).

e Vertical padding downwards (orange block).

e Vertical padding upwards and horizontal padding right (blue block).
e Vertical padding upwards and horizontal padding left (green block).

-57 -

e Vertical padding downwards and horizontal padding right (purple block).
e Vertical padding downwards and horizontal padding left (pink block).

The idea would be that the 'Enhanced DMA Unit' in addition to the alignment of data
can make padding of these, because would be reduced considerably the overhead of the CPU.

4.4.2. - DMA with padding

To make the padding of the data on the DMA Unit, it would be implemented as follow:
It is necessary to implement two new registers in the DMA Unit:

e X_EDGE: To indicate the number of words those are outside of the image. If it is
positive means that the words are outside of the image to the left side, if it is
negative means that the words are outside of the image to the right side.

e Y_EDGE: To indicate the number of segments those are beyond of the image. If
it is positive means that the segments are outside of the image for the top, if it
is negative means that the segments are outside of the image from the bottom.

Y_EDGE = >0

-
X_EDGE < 0
X_EDGE > 0

Reference Frame

Y_EDGE <0

Figure 4.13.DMA registers

There are eight different cases where there is a need for padding, which will be
explained in three blocks.

CASE1: The block is completely within the image, the block is outside of the image for
the top or the block is outside of the image from the bottom.

-58 -

Without alignment:

moaidk mem.mem[pointer to mem] = moaidk sdram.sdram [pointer to sdram +
(int gap length reg* int yedge)];

With alighment:

int auxl reg = moaidk sdram.sdram [pointer to sdram + (int gap length reg*
int yedge)];
int_aux2 reg = moaidk sdram.sdram [pointer to sdram + (int gap length reg*

int yedge)+1];

int final reg [63:8*int row reg] = int auxl reg [((8- int row reg)*8)-1:0];
int final reg [(8* int row reg)-1:0] = int aux2 reg [63: (8- int row reg) *8];
moai4dk mem.mem [pointer to mem] = int final reg;

e If the block is completely within the image, so it is not is necessary to do the padding. It
would be the following case:

O

Figure 4.14.The block is completely within the image

The variable int_yedge will be zero, so the code is like the explained in the previous
case.

e If the block is outside of the image for the top, it is necessary to do the padding. It would

!

be the following case:

Y edge

Figure 4.15.The block is outside of the image for the top

-59.-

In this case, it will be necessary to copy the content of the first segment which is within
the image, in the other segments that are outside of the image. So the pointer moves
int_gap_length_reg* int_yedge and lies within the image.

When the DMA Unit arrived at the end of a segment, int_yedge= int_yedge-1 until it is
in the image.

e If the block is outside of the image from the bottom, it is necessary to do the padding. It
would be the following case:

Figure 4.16.The block is outside of the image for the bottom

In this case, it will be necessary to copy the content of the last segment which is within
the image, in the other segments that are outside of the image.

When int_yedge is negative, this variable will change its value to zero. The DMA will
begin transmitting lines that are within the image, and when it has no more lines within the
image, the DMA will have to re-transmit the contents of the last line. Therefore that point will
be re-pointer to the last line in the image (int_gap_length_reg = 0).

pointer to sdram = int _ext base addr reg [SDRAM ADDR W-1+3:0+3] +
int gap length reg

int ext base addr reg [SDRAM ADDR W-1+3:0+3] = int ext base addr reg
[SDRAM ADDR W-1+3:0+3] + int gap length reg

CASE 2: The block is outside of the image to the left side, the block is outside of the
image to the left side and is outside of the image for the top, or the block is outside of the
image to the left side and is outside of the image from the bottom.

e If the block is outside of the image to the left side, it is necessary to do the padding. It
would be the following case:

-60 -

X edge

Figure 4.17.The block is outside of the image to the left side

In this case, it will be necessary to copy the content of the first subword which is within
the image in the other words that are outside of the image. So the pointer moves int_xedge,
lies within the image and copy the first word.

int new reg = moaidk sdram.sdram [pointer to sdram + (int gap length reg*
int yedge) + int x edge]

In this case the variable int_yedge will be zero, therefore the pointer moves
int_xedge. The DMA will store the last 8 bits of this register in another, because these data are
those which will have to copy in all subword of the words that are out of the image.

int seg new reg = int new reg [63:56]

Here are two cases:

o Only one word is outside of the image and it is necessary the alignment.

(NN NENE

Figure 4.18.The block is outside of the image to the left side and only one word is outside of the image

-61-

In this case the DMA will have to copy the content of the first subword
which is within the image in all subwords, until begins the word that is
within the image. When the block is within the image, the DMA will copy
the subword that have to copy of the first word which is within the image,
to complete the word.

for (i = int _row _reg; 1i<8; i++) {
int def reg [7+i*8: i*8] = int seg new reg;
}
int final reg[63:8*int row regl=int def reg[63:8*int row req]
int final reg[(8*int row reg)-1:0]=int new reg[63: (8-
int row reg)*8]

moaidk mem.mem [pointer to mem] = int final reg

The variable int_xedge will be zero, because there are no more words
outside of the image.

o There are more than a word that is outside of the image or only one word is outside
of the image and it is not necessary the alignment because the word is aligned.

Figure 4.19.The block is outside of the image to the left side and only one word is outside of the image
(this word is aligned) or the block is outside of the image to the left side and more than a word is outside
of the image.

The DMA Unit do not care if there is alignment to do or not when there
is more than a word outside of the image, because it will have to copy the
content of the first subword which is within the image in all subwords of
the words. If only one word is outside of the image and is not necessary
the alignment because the word is aligned, also the DMA Unit will have to
copy the content of the first subword which is within the image in all

-62-

subwords of the word. After this, int_xedge is decremented by 1 because
there is a word less to transmit.

for (i = 0; 1i<8; i++) {
int def reg [7+1i*8: i*8] = int seg new reg;
}

moaidk mem.mem [pointer to mem] = int def reg;

e If the block is outside of the image to the left side and too is outside of the image for the
top, is necessary to do the padding. It would be the following case:

Figure 4.20.The block is outside of the image to the left side and for the top

The code and the cases will be the same as in previous case, only that in this case the
variable int_yedge will not be zero, so the pointer moves (int_gap_length_reg* int_yedge) +
int_xedge, and lies within the image.

int new reg = moaidk sdram.sdram [pointer to sdram + (int gap length reg*
int yedge) + int x edge]

When the DMA Unit arrived at the end of a segment, int_yedge= int_yedge-1 until it is
vertically in the image.

e The block is outside of the image to the left side and too is outside of the image from the
bottom, is necessary to do the padding, would be the following case:

-63 -

Figure 4.21.The block is outside of the image to the left side and for the bottom

The code and the cases will be the same as in previous case, when int_yedge is
negative, this variable will change its value to zero therefore in this case, the variable
int_yedge will be zero, so the pointer moves int_xedge.

int new reg = moaidk sdram.sdram [pointer to sdram + (int gap length reg*

int yedge) + int x edge]

The DMA will begin transmitting lines that are vertically within the image, and when it
has no more lines within the image, it will have to re-transmit the contents of the last line.
Therefore that point will be re-pointer to the last line in the image (int_gap_length_reg = 0).

pointer to sdram = int ext base addr reg [SDRAM ADDR W-1+3:0+3] +
int gap length reg
int ext base addr reg [SDRAM ADDR W-1+3:0+3] = int ext base addr reg

[SDRAM ADDR W-1+3:0+3] + int gap length reg

CASE 3: The block is outside of the image to the right side, the block is outside of the
image to the right side and too is outside of the image for the top, or the block is outside of the
image to the right side and too is outside of the image from the bottom.

e The block is outside of the image to the right side.

-64 -

Figure 4.22.The block is outside of the image to the right side

When the block is outside of the image to the right side, the DMA Unit will have to
transmit the words of the block that are within the image and when the block is outside, the
DMA Unit will have to copy the content of the last subword which is within the image in the
other words that are outside of the image.

To see the number of words that the DMA Unit should transmit before the block leave
out, and therefore to copy the content of the last subword which is within the image in the
other words that are outside of the image, it is necessary to create a variable to indicate and
that only be update when changing line.

if (pointer to sdram = int ext base addr reg [SDRAM ADDR W-1+3:0+3]) {

int seg in = int segment length reg aux + int xedge aux;

The number of words of the line (or segment) minus the number of words that are out
of the image gives the words that are inside (int_xedge in this case is negative).

Here are two cases:

o The words are still in the picture horizontally or there is a word of the block that is
half within half outside of the image horizontally.

Without alignment: there is a word of the block that is completely inside of the image

horizontally or more than one word.

- 65 -

Figure 4.23.The block is outside of the image to the right side and there is a word of the block that is
completely inside of the image horizontally or more than one word.

moaidk mem.mem[pointer to mem] = moaidk sdram.sdram [pointer to sdram

+(int gap length reg* int yedge)];

In this case int_yedge is zero. Each time that the DMA transmits a word, the
number of words inside the image is decremented a unit.

With alighment: Here are two cases.

» There is only a word of the block inside of the image; the word is half within
half outside of the image horizontally.

Figure 4.24.The block is outside of the image to the right side and there is only a word of the block inside
of the image; the word is half within half outside of the image horizontally

The DMA Unit begins transmitting the subword that are within the
image until it leaves out, in this moment the DMA Unit will have to copy the
content of the last subword which is within the image in all subwords that are

outside of the image.

- 66 -

int new reg = moaidk sdram.sdram [pointer to sdram +

(int gap length reg*int yedge)]

int seg new reg = int new reg [7:0]
for (i = 0; i<int row reg;i++) {
int def reg [7+i*8: 1i*8] = int seg new reg;
}
int final reg [(8* int row reqg)-1:0] = int def reg [7+

(int _row reg-1)*8:0];
int final reg [63:8*int row reg] = int new reg [((8-
int row reg)*8)-1:0];

moaidk mem.mem [pointer to mem] = int final reg;

In this case int_yedge is zero. Each time that the DMA transmit a word,
the number of words inside the image is decremented a unit.

» There is more than a word of the block inside of the image.

Figure 4.25.The block is outside of the image to the right side and there is more than a word of the block
inside of the image

The DMA will perform the alignment as usual.

-67 -

int auxl reg = moaidk sdram.sdram [pointer to sdram +
(int gap length reg*int yedge)];
int aux2 reg = moaidk sdram.sdram [pointer to sdram +
(int gap length reg*int yedge)+1];
int final reg [63:8*int row reg] = int auxl reg [((8-
int row reg)*8)-1:0];
int final reg [(8* int row reg)-1:0] = int aux2 reg [63: (8-
int row reqg)*8];

moaidk mem.mem [pointer to mem] = int final reg;

In this case int_yedge is zero. Each time that the DMA transmit a word,
the number of words inside the image is decremented a unit.

o The words are outside of the picture horizontally.

Figure 4.26.The block is outside of the image to the right side and the words are outside of the image
horizontally

DMA Unit does not care if there is alignment to do or not when there is more
than a word outside of the image, because the DMA will have to copy the content of
the last subword which is within the image in all subwords of the words. If only one
word is outside of the image and is not necessary the alignment because the word is
aligned, also the DMA Unit will have to copy the content of the last subword which is
within the image in all subwords of the word.

A variable, that increases one unit each time you go to transmit a word that is

outside of the image, has been created to be able to point to the last word that is
within the image.

-68 -

int new reg = moaidk sdram.sdram [pointer to sdram +

int _gap_length reg* int yedge) - int_a];
int seg new reg = int new reg [7:0];
for (i = 0; 1i<8; i++) {
int def reg [7+i*8: i*8] = int seg new reg;
}
moaidk mem.mem [pointer to mem] = int final reg;

int xedge = int xedge +1;

In this case int_yedge is zero. Each time that the DMA transmit a word, the
number of words outside the image is incremented a unit because int_xedge in this
case is negative.

e If the block is outside of the image to the right side and is outside of the image for the top,
is necessary to do the padding. It would be the following case:

Figure 4.27.The block is outside of the image to the right side and also for the top

The code will and the cases will be the same as in previous case, only that in this case
the variable int_yedge will not be zero.

When DMA Unit arrived at the end of a segment (or line), int_yedge= int_yedge-1 until
it will be vertically in the image.

e If the block is outside of the image to the right side and too is outside of the image from
the bottom, is necessary to do the padding. It would be the following case:

-69 -

Figure 4.28.The block is outside of the image to the right side and also from the bottom

The code and the cases will be the same as in previous case, when int_yedge is
negative, this variable will change its value to zero.

The DMA Unit will begin transmitting lines that are vertically within the image, and
when it has no more lines within the image, will have to re-transmit the contents of the last
line. Therefore the pointer will be re-pointer to the last line in the image (int_gap_length _reg =
0).

pointer to sdram = int ext base addr reg [SDRAM ADDR W-1+43:0+3] +
int gap length reg
int ext base addr reg [SDRAM ADDR W-1+3:0+3] = int ext base addr reg

[SDRAM ADDR W-1+3:0+3] + int gap length reg

In applications like video coding and decoding that use ME and MC algorithms,
perform these padding with DMA would reduce considerably the overhead of the CPU,
because every time that a candidate goes beyond the search area, the CPU must do extra
work, a work that will save if it is performed by the DMA. Besides if the CPU doesn't have to do
this work, CPU can perform other tasks while the DMA makes the padding.

Therefore performing the padding with DMA, the results of video applications that use
ME and MC algorithms will significantly improve.

-70 -

4.5. - Queue implementation

This section introduces the concept of queues and presents the proposal of a DMA
with a queue in order to be able to program all DMA transfers at one.

4.5.1. - Introduction

In applications like video coding and decoding that use ME and MC algorithms, when
we located the candidates in the reference frame, we must transmit several blocks, and every
time you transmit a block, it is necessary to interrupt the CPU and make it work (Register-
Based DMA) loading data for the next transmission.

Therefore it would be interesting that the DMA was able to store several transmission
in a queue, because in this way when | finish to make a transfer, will not be necessary to re-
schedule the next because that will have queued and directly will load the necessary data to
perform the next transmission. This also would reduce considerably the overhead of the CPU.

The idea would be that the 'Enhanced DMA Unit' in addition to the alignment of data
and make padding of data, can store several transmissions in a queue, because so the DMA
would reduce considerably the overhead of the CPU.

4.5.2. - DMA with queue

A DMA Unit capable of storing several transmissions in a queue has been
implemented. When a transfer finishes, it will not be necessary to schedule in the application
code the configuration of the next transfer because that will have queued and directly will load
the necessary data to perform the next transmission.

To implement the DMA Unit a new register has been created in the DMA Unit:

e DMA_READ_OUT: It is a register of one bit. When the user wants to know if the DMA has
finished with a determined transfer or if it is still transmitting a determined transfer. This
register can be used to increment an internal read pointer.

Moreover to implement the DMA are necessary three internal pointers:

e Write: Indicates the number of transmissions written. It is incremented whenever the data
of a new transmission (a new block) are written.

e Read: Indicates the number of transmission of which the user wants to know the state. It is
incremented whenever that the register DMA_READ_OUT is high.

-71-

e Transfer: Indicates the number of the actual transmission. It is incremented whenever a
transmission of a block has finished.

When one of these variables reaches the limit of the queue, is set to zero, and the registers
that use this variable as index, are overwritten.

To better understand the mode of operation, herewith is shown the Figure 4.29:

DMA Transmission

DMA Transmission

DMA READ OUT=1 because the user need to know when the second transmission has
finished for an operation that makes in the future.

DMA Transmission

OPERATION
read(
transfer0
write 0
} read0
Int_data_status[0]=1 The data of a new transmission (a
new block) are written
Int_data_status [0]=1 e The data of a new transmission (a
new block) are written
Int_data_status [0]=0 The transmission of a block has
finished
Int_data_status [1]=1 cransfert The user wants to know the state of
'-1 N the next transmission
write 2

Int_data_status[1]=1 - The data of a new transmission (a

new block) are written

Figure 4.29.Mode of operation of the queues

-72 -

To better understand the use of DMA_READ_OUT, herewith is shown the Figure 4.30:

—»> Subroutine DMA 0
—»Subroutine DMA 1
Subroutine Calculo 1

Int data status[0] = 0

- Subroutine Calculo 2 Is necessary to have performed Subroutine_DMA_O to

make this Calculo_2

Write DMA READ OUT, 1
Int data status[1] = 1
Int data status[1l] = 0
~ Subroutine Calculo 3 Is necessary to have performed Subroutine_ DMA 1 to

make this Calculo_3

Figure 4.30.Use of DMA_READ_OUT

In applications like video coding and decoding that use ME and MC algorithms, a DMA
Unit that can store several transmissions in a queue, reducing considerably the overhead of
the CPU.

-73 -

Chapter 5

Evaluation of the proposed enhanced
DMA Unit

This section presents an evaluation of the proposal DMA Unit using Motion Estimation
algorithm. The design of the exploration space, the characteristics of the application (motion
estimation) and the results are explained in this section.

5.1. - Design Space Exploration

In this section it is explained the system environment and the motion estimation
algorithm, indicating the reasons why it has been chosen as application.

5.1.1. - System description

The system with which works this project is the following:

SDRAM
Moaidk
Local SDRAM
Mem DMA — Controller |—
Bus AMBA

Figure 5.1.System

The project works with the ‘Enhanced DMA Unit’, which is inside the Moaidk
processor.

-74 -

There are three profiles of the DMA Unit that will be analyzed:

e Basic Profile, is the basic DMA Unit.
e Advanced Profile 2, is the Basic Profile with alignment and padding.

e Advanced Profile 3, is the Advanced Profile 2 with queues.

The ‘Enhanced DMA Unit’, communicates with the external memory (SDRAM)
through the bus AMBA.

With the aim of obtaining results more realistic, latency will be introduced into the
external memory controller. Therefore it will be a latency each time a line of a block of data is
transmitted. The results will be obtained with different values for this latency.

5.1.2. - Motion Estimation task

Using the ‘Enhanced DMA Unit’ proposed and the motion estimation algorithm as an
application, the advantages of this DMA Unit will be demonstrated.

The motion estimation algorithm has been selected for the following reasons:

e With motion estimation algorithm, it is not possible to avoid unpredictable
unaligned memory references, which result in lot of unpredictable unaligned
accesses.

This is because to identify a pixel block for the reference frame that
best matches the block to be coded, the reference block is generated by
displacement from the location of the block to be coded in the frame of
reference. This displacement is performed using the motion vector and can be
arbitrary.

In applications like video coding and decoding that use ME algorithm,
current software optimizations become unsuccessful because the instructions
that are necessary for doing the data realignment in software subject the CPU
to a heavy overhead.

e With motion estimation algorithm, to search the block of the reference frame
that best matches the block to be coded, the search is only in a region known as
the search area, then when a candidate (to be a pixel block from the reference
that best matches the block to be coded) goes beyond this search area, it is
necessary to perform padding.

-75 -

In applications like video coding and decoding that use ME algorithm, if
in addition to the alignment of data, padding of these is made, would be
reduced considerably the overhead of the CPU.

e With motion estimation algorithm, when the candidates are located in the
reference frame, the DMA Unit must transmit several blocks, and every time
you transmit a block, it is necessary to interrupt the CPU and make it work
(Register-Based DMA) loading data for the next transmission.

In applications like video coding and decoding that use ME algorithm, it
is interesting that the DMA Unit was able to store several transfer
configuration in a queue, because in this way when a transfer finishes, it will
not be necessary to configure the next transfer because this configurations
was stored in a queue before, then the DMA can directly start the next
transmission. This, in addition to the alighnment of data and padding of data,
would reduce considerably the overhead of the CPU.

Consequently, with this ‘Enhanced DMA Unit’, the results of video applications that
use ME algorithm will be significantly improved.

The motion estimation algorithm has been programmed in assembly language. The
structure of the code is shown in figure 5.2.

As can be seen in Figure 5.2, every time the DMA Unit must send something, at the
same time other tasks are being executed. Thus, the algorithm is stopped the shortest time
possible.

Once the first candidate has been obtained, the algorithm goes into a loop. Just enter
into the loop, the next candidate is requested, and at the same time another tasks are being
executed on the current candidate. This loop is repeated until there are no more candidates.

The algorithm has been implemented in this way because it has been proved that is
the optimal way to schedule the transfer if we have to wait to complete a transfer in order to
program the following.

-76 -

| ME_3DRS_START |

| DVMA_TR_REF |

v I

REF 16x 16 | ME_3DRS CANDIDATES |

*| WAIT_REF |

| CANDIDATES |

CAND 3 X3 l

. | WAIT_CAND |

»

{ DMA_TR_CURR |

CURR 16 x 16 ME_CHECK_LOOP1 |

» WAIT_CURR |

| ME_MBREF |

CANDIDATE1 | | MEsAD |

| ME_3DRS_REORGANIZE_CANDIDATES

.

¥ WAIT_mBREF T

| ME_MBREF |

:

| ME_MOTION_VECTORS |

CANDIDATE X+1

| ME_ALIGN + PADDING |

| ME_MC |

ME_SAD

Last

Candidate
LOOP (ME CAND X) ?/

ME_END

| NOT_SCHEDULE |

| WAIT_STORE_CANDIDATE |

Figure 5.2.Motion Estimation algorithm

5.2. -

Characteristics of motion estimation

algorithm

The characteristic of motion estimation are the following:

e Use SAD for calculating block matching.

e Employ the algorithm 3DRS to search the candidates.

e The search area is the entire image.

e Although the standard H.264/AV allowed working with multiple images of reference, the

application only works with the previous image as a reference.

e In the application is possible to point to candidate blocks placed only at half-pixel (of

course also in full position) and will have the following cases:

ASRNENEN

FH: Average vertical (green circle).

HF: Average horizontal (blue circle).

HH: Average vertical and average horizontal (yellow circle).
FF: copy (red circle).

These cases are presented in Figure 3.9.

e Really Works with blocks of 16x16, but as is possible to point to candidate blocks placed at
half-pixel, the DMA Unit will take of memory blocks of 17x17 due to half-pixel.

5.3. - Results

Using the proposed ‘Enhanced DMA Unit’ and the motion estimation algorithm as an

application, the following analysis has been made:

Basic Profile with different latencies between 15 and 55 cycles. The code used
for the motion estimation algorithm is the explained in 5.1.2.

Advanced Profile 2 with different latencies between 15 and 55 cycles. The code
used for the motion estimation algorithm is the explained in 5.1.2 but without
ME_ALIGN +PADDING, because now the alignment and padding process, it is
performed by the DMA Unit.

Advanced Profile 3 with different latencies between 15 and 55 cycles. In this
case, it will be not necessary to wait an end of a transfer to schedule the next,
with advanced profile 3 several transfers may be scheduled at the same time (in
the code explained in 5.1.2, the transfer of the reference block, the current
block and the candidates block may be scheduled at the same time). Therefore
in the code explained in 5.1.2, the WAITS only will be used in case that is

-78 -

necessary to expect a transmission, but now are not required to configure the
next transfer. In the loop, in this case, there are two candidates in the queue
while the previous candidate is performing its operations.

5.3.1. - Results of Basic Profile (BP)

For Basic Profile with a latency of 15 cycles, the results are shown in figure 5.3.

BP with Latency 15

8000

7000

6000
H ‘
g 5000 W i i [‘ 'MH‘H rw o nmwvr\ i nr ! i m WAIT

Il Il i | 1 | LD OO0

Y I | |
S 2000 —HHHIAIHGHC S LRSI R S A L B ALIGN+PADDING
g = MC
E 3000 W SAD
2

2000 = ME_3DRS

u
1000 Others

1 397 793

Number of blocks

Figure 5.3.Basic Profile with latency of 15 cycles

On the x-axis is represented the number of block, indicating the number of frames, the
graphic has a number of blocks corresponding to three frames. In the y-axis are represented
the number of cycles. In the graphic can be seen the number of cycles that each block use in
performing wait, alignment + padding, motion compensation, SAD, ME_3DRS and other tasks.
Also it can be seen the total number of cycles used for each block by identifying a block from
the reference frame that best matches the current block.

Peaks appears on the graphic because when there are two equals candidates, two
motions vectors equal, it is used only once this motion vector with the motion compensation,
therefore we have a candidate less.

Computing the average cycles which employs each of the blocks in performing each task
that is shown in the graphic, we get the following percentages of executed cycles in
performing each task with respect to the total number of cycles employees in average by each
blocks in running the algorithm:

o WAIT:9,4%

e ALIGN+PADDING: 25,1%
e MC:21,6%

e SAD:38,1%

-79 -

e ME_3DRS: 5,6%
e Others: 0,2%

The total number of cycles employees in average by each blocks in running the
algorithm is 4990 cycles.

For Basic Profile with a latency of 30 cycles, the results are shown in figure 5.4.

BP with Latency 30

9000
8000
7000 ‘
(%]
9 6000 -
g m WAIT
(8]
..6 5000 M ALIGN+PADDING
S 4000 = MC
E 3000 H SAD
2000 = ME_3DRS
m Others

1000

1 397 793

Number of blocks

Figure 5.4.Basic Profile with latency of 30 cycles

Computing the average cycles which employs each of the blocks in performing each
task that is shown in the graphic, we get the following percentages of executed cycles in
performing each task with respect to the total number of cycles employees in average by each
blocks in running the algorithm:

o WAIT:21,1%

e ALIGN+PADDING: 21,8%
e MC:18,9%

e SAD:33,1%

e ME_3DRS: 4,9%

e Others: 0,2%

The total number of cycles employees in average by each blocks in running the
algorithm is 5734 cycles.

For Basic Profile with a latency of 45 cycles, the results are shown in figure 5.5.

-80 -

BP with Latency 45

m WAIT

M ALIGN+PADDING
= MC

W SAD

= ME_3DRS

® Others

Numberof cycles

1 397 793

Number of blocks

Figure 5.5.Basic Profile with latency of 45 cycles

Computing the average cycles which employs each of the blocks in performing each
task that is shown in the graphic, we get the following percentages of executed cycles in
performing each task with respect to the total number of cycles employees in average by each
blocks in running the algorithm:

e WAIT:32,8%

e ALIGN+PADDING: 18,6%
e MC:16%

e SAD:28,2%

e ME_3DRS: 4,2%

e Others: 0,2%

The total number of cycles employees in average by each blocks in running the
algorithm is 6728 cycles.

Analysis of the results with different latencies

It is easy to appreciate in the previous graphics that when the latency increases,
increases the total number of cycles required to identify a block from the reference frame that
best matches the current block. This is due to increasing the latency is equivalent to increase
the number of cycles that each block use in performing WAIT, because when the latency
increases, is necessary to wait longer for the end of the transfers.

To observe it clearly, Table 5.1 shows the percentages of used cycles in performing
each task with respect to the total number of cycles employees in average by each blocks in
running the algorithm and the total number of cycles employees in average by each blocks in
running the algorithm for the different latencies:

-81-

BASIC PROFILE

i C N N

ALIGN+PADDING % 251 21,8 \18,6

SAD % 38,1 33,1 \28,2

0,2 0,2

Others % 0,2 : ’
[

Total number of Cycles in average

Table 5.1.Basic profile with different latencies

When the latency increases, increases the total number of cycles and the percentage
of cycles that each block use in performing WAIT.

5.3.2. - Results of Advanced Profile 2 (AP2)

Now the alighment and padding of data is performed in the DMA Unit. Therefore the
processor executes less code. Because of this, in all the graphics that appears in this section,
the alignment +padding process require O cyles.

For Advanced Profile 2 with a latency of 15 cycles, the results are shown in figure 5.6.

AP2 with Latency 15

6000

5000

4000 -

| WAIT

M ALIGN+PADDING
= MC

m SAD

3000

Number of cycles

2000
= ME_3DRS

1000 m Others

Number of blocks

Figure 5.6.Adavanced Profile 2 with latency of 15 cycles

Computing the average cycles which employs each of the blocks in performing each
task that is shown in the graphic, we get the following percentages of executed cycles in
performing each task with respect to the total number of cycles employees in average by each
blocks in running the algorithm:

-82 -

o WAIT:13,3%

e ALIGN+PADDING: 0%
e MC:28,3%

e SAD:50,6%

e ME_3DRS: 7,5%

e Others: 0,3%

The total number of cycles employees in average by each blocks in running the
algorithm is 3749 cycles.

For Advanced Profile 2 with a latency of 30 cycles, the results are shown in figure 5.7.

AP2 with Latency 30
7000
6000
» 5000 -
2
% 2000 = WAIT
‘5 B ALIGN+PADDING
2 3000 = MC
g B SAD
2 2000 = ME_3DRS
1000 H Others
0
1 397 793
Number of blocks
Figure 5.7.Advanced Profile 2 with latency of 30 cycles
Computing the average cycles which employs each of the blocks in performing each
task that is shown in the graphic, we get the following percentages of executed cycles in

performing each task with respect to the total number of cycles employees in average by each

blocks in running the algorithm:

o WAIT:30,2%

e ALIGN+PADDING: 0%
e MC:22,8%

e SAD:40,7%

e ME_3DRS: 6%

e Others: 0,3%

The total number of cycles employees in average by each blocks in running the
algorithm is 4660 cycles.

-83 -

For Advanced Profile 2 with a latency of 45 cycles, the results are shown in figure 5.8.

AP2 with Latency 45

w

2

; m WAIT

o

‘S M ALIGN+PADDING

S

g mMC

£

S H SAD

2
= ME_3DRS
= Others

1 397 793

Number of blocks

Figure 5.8.Advanced Profile 2 with latency of 45 cycles

Computing the average cycles which employs each of the blocks in performing each
task that is shown in the graphic, we get the following percentages of executed cycles in
performing each task with respect to the total number of cycles employees in average by each
blocks in running the algorithm:

o WAIT:51,9%

e ALIGN+PADDING: 0%
e MC:15,7%

e SAD:28,1%

e ME_3DRS: 4,2%

e Others: 0,1%

The total number of cycles employees in average by each blocks in running the
algorithm is 6755 cycles.

Analysis of the results with different latencies

It is easy to appreciate in the previous graphics that when the latency increases,
increases the total number of cycles used for each block by identifying a block from the
reference frame that best matches the current block. This is due to increasing the latency is
equivalent to increase the number of cycles that each block use in performing WAIT, because
when the latency increases, is necessary to wait longer for the end of the transfers.

To observe it clearly, Table 5.2 shows the percentages of used cycles in performing
each task with respect to the total number of cycles employees in average by each blocks in
running the algorithm and the total number of cycles employees in average by each blocks in
running the algorithm for the different latencies:

-84 -

ADVANCED PROFILE 2

watxk 5 w2 o
E

ALIGN+PADDING %

SAD % 50,6 40,7 \281

meso% s o ar
05 03 o1

Others % }
_---

Total number of Cycles in average

Table 5.2.Advanced Profile 2 with different latencies

When the latency increases, increases the total number of cycles and the percentage
of cycles that each block use in performing WAIT.

5.3.3. - Results of Advanced Profile 3 (AP3)

In this case, it will not be necessary to wait an end of a transfer to schedule the next,
with advanced profile 3 several transfers can be programmed at the same time.

For Advanced Profile 3 with a latency of 15 cycles, the results are shown in figure 5.9.

AP3 with Latency 15
6000
5000
4000 L ‘ I ‘\ ol ”MI
W IW IMIII l‘ MWMW Wll‘lllwf MIWINIW I|1 " AT
k] = ALIGN+PADDING
$o0o (A LR mMC
o WU LR R
? H SAD
2ooo = ME_3DRS
§ H Others
1000
0
1 397 793
Number of blocks

Figure 5.9.Adavanced Profile 3 with latency of 15 cycles

Computing the average cycles which employs each of the blocks in performing each
task that is shown in the graphic, we get the following percentages of executed cycles in
performing each task with respect to the total number of cycles employees in average by each

blocks in running the algorithm:

-85 -

o WAIT:8,6%

e ALIGN+PADDING: 0%
e MC:30,9%

e SAD:51,5%

e ME_3DRS: 8,7%

e Others: 0,3%

The total number of cycles employees in average by each blocks in running the
algorithm is 3672 cycles.

For Advanced Profile 3 with a latency of 30 cycles, the results are shown in figure 5.10.

AP3 with Latency 30

7000

6000
» 5000 | | u“ 1 Hx]m L
9
% 4000 RTINS AL ALH i i “ \ I | w Il o WAIT
‘E H H ’H ’ H ‘ ‘ H ‘ } ’ } ‘ “ 116 I “ Hl ‘h‘ ‘H ‘\‘ Il ‘U‘ ‘ L “” | \H | \\U “N “ ‘w‘ ‘U\ \U ‘H B ALIGN+PADDING
£ 3000 | | a1 - MC
g H SAD
= 2000 = ME_3DRS

H Others

1000

1 397 793

Number of blocks

Figure 5.10.Advanced Profile 3 with latency of 30 cycles

Computing the average cycles which employs each of the blocks in performing each
task that is shown in the graphic, we get the following percentages of executed cycles in
performing each task with respect to the total number of cycles employees in average by each
blocks in running the algorithm:

o WAIT:25,2%

e ALIGN+PADDING: 0%
e MC: 25,3%

o SAD:42,1%

e ME_3DRS:7,1%

e Others: 0,3%

The total number of cycles employees in average by each blocks in running the
algorithm is 4491 cycles.

For Advanced Profile 3 with a latency of 45 cycles, the results are shown in figure 5.11.

-86-

10000
9000
8000
7000
6000
5000
4000
3000

Number of cycles

2000
1000
0

AP3 with Latency 45

\ il V\‘ L]

| IHHHHHHWIHHH!"H”‘I“{‘WW”\I! ‘W}HHI“HI‘ WW'WI \ H{IWW (1] ‘l [[

1 397 793

Number of blocks

= WAIT

M ALIGN+PADDING
= MC

H SAD

= ME_3DRS

H Others

Figure 5.11.Advanced Profile 3 with latency of 45 cycles

Computing the average cycles which employs each of the blocks in performing each
task that is shown in the graphic, we get the following percentages of executed cycles in
performing each task with respect to the total number of cycles employees in average by each

blocks in running the algorithm:

o WAIT:47%
e ALIGN+PADDING: 0%
e MC:18%

e SAD:29,9%
e ME_3DRS: 5%
e Others: 0,1%

The total number of cycles employees in average by each blocks in running the

algorithm is 6325 cycles.

Analysis of the results with different latencies

It is easy to appreciate in the previous graphics that when the latency increases,
increases the total number of cycles used for each block by identifying a block from the
reference frame that best matches the current block. This is due to increasing the latency is

equivalent to increase the number of cycles that each block use in performing WAIT, because

when the latency increases, is necessary to wait longer for the end of the transfers.

To observe it clearly, Table 5.3 shows the percentages of used cycles in performing

each task with respect to the total number of cycles employees in average by each blocks in

running the algorithm and the total number of cycles employees in average by each blocks in

running the algorithm for the different latencies:

-87 -

ADVANCED PROFILE 3

warx e m2 w
o

ALIGN+PADDING %

wex ws ms

SAD % 51,5 42,1 \299

L 20 S N
o1

Others %

Total number of Cycles in average

Table 5.3.Advanced Profile 3 with different latencies

When the latency increases, increases the total number of cycles and the percentage
of cycles that each block use in performing WAIT.

5.3.4. - Comparison of the different profiles

At this point has been made a comparison between the three profiles, taking into
account the data that appears in tables 5.1, 5.2, 5.3.

If we compare the Basic Profile (Table 5.1) with the Advanced Profile 2 (Table 5.2), it
can be seen that the number of cycles dedicated to performing alignhment and padding has
disappeared, this is because now this operations are made by DMA Unit. By removing
alignment and padding, decreases the total number of cycles. Table 5.4 shows the data for a
latency of 15 cycles with BP and AP2:

BASIC PROFILE ADVANCED PROFILE 2

wArT % N

ALIGN+PADDING % 25,1 0

SAD % 38,1

Others %

Total number of Cycles in average

Table 5.4.Data with Basic Profile and Advanced Profile 2 for a latency of 15 cycles

If we compare the Advanced Profile 2 (Table 5.2) with the Advanced Profile 3 (Table
5.3), it can be seen that the number of cycles dedicated to wait has decreased. This is due to in
this case it isn’t necessary to wait the end of a transfer to configure the next one, with

- 88 -

advanced profile 3 several transfers can be configured at the same time. Because of that the
total number of cycles has decreased. Table 5.6 shows the data for a latency of 45 cycles with
AP2 and AP3:

ADVANCED PROFILE 2 ADVANCED PROFILE 3

WAIT % EEN

ALIGN+PADDING % 0 0

wex sy s

SAD % 28,1 29,9

ME_3DRS % N O —

Others % 0,1 0,1

Total number of Cycles in average

Table 5.6.Data with Advanced Profile 2 and Advanced Profile 3 for a latency of 45 cycles

In conclusion we can say that AP3 is considerably better than BP and AP2 because of
the total number of cycles is lower for all the latencies.

The Figure 5.12 shows a comparison of the three profiles at time:

Comparison between profiles

9000
8000 ;=

7000)//(/.

6000 —A—BP
5000 —k—AP2
4000 7 —B-AP3

Number of cycles

3000 T T T T T T T T 1
15 20 25 30 35 40 45 50 55

Latency

Figure 5.12.Comparison of BP, AP2 and AP3

On the x-axis is represented the latency, and in the y-axis is represented the average
number of cycles employees by each blocks in running the algorithm.

e When the latency increases, increases the total number of cycles used for each block
by identifying a block from the reference frame that best matches the current block.
This is due to increasing the latency is equivalent to increase the number of cycles
that each block use in performing WAIT, because when the latency increases, is
necessary to wait longer for the end of the transfers.

-89 -

If we compare the Basic Profile with the Advanced Profile 2, it can be seen that with
short latencies, decreases the total number of cycles with AP2 that is because it the
alignment and padding process is performed in the DMA. But with large latencies,
there is a latency where it takes more or less the same number of cycles in total for
AP2 and BP. That is because with short latencies, for example in the loop of Figure
5.2, it will take longer to perform tasks in parallel that the time required to transfer
the next candidate. Therefore, it will not be necessary to wait for the candidate and
when alignment and padding is performed in the DMA, the total number of cycles is
significantly reduced. By contrast, with very large latencies it will take a long time to
send the candidate, more than to perform tasks in parallel, therefore it will be
necessary to wait and no matter saving cycles performing alignment and padding in
the DMA.

Comparing AP2 with AP3 is easy to appreciate that AP3 uses fewer cycles than AP2
and that is more noticeable with increasing latency. With short latencies in most of
the cases do not need to wait, but with large latencies it will be necessary to wait,
and with AP2 we must wait longer. This is due to with AP2 is necessary to wait the
end of the transfer to schedule the next and with AP3 is not necessary to wait the
end of the transfers for scheduling the next.

The code for AP2 has been implemented in order to obtain the best results taking
into account that to begin a transfer must be completed the previous and because of
this, the difference between the number of cycles used by AP2 and AP3 is less
noticeable.

With AP3 besides it has been saved the time required to consider the best way to
implement the code taking into account that to begin a transfer must be completed
the previous.

In conclusion, with AP3 it has been decreased the required execution time, because it
has been removed application code (alignment and padding subroutines) and it is not
necessary to wait the end of the transfers for configuring the next. Besides with AP3,
is saved the time required to consider the best way to implement the code.

-90-

Chapter 6

Conclusions

In this work it has been analyzed the VLIW and SIMD processors, the basics of Direct
Memory Access Units and the environment of video coding standards. Motion estimation (a
particular video coding task) has been studied, analyzing the algorithm and the transfer’s
requirements.

In applications like video coding and decoding that use motion estimation, it is not
possible to avoid unpredictable unalignhed memory references. Motion estimation algorithm
searches a block that best matches with a block from the frame to be coded. This reference
block is generated by displacement from the location of the block to be coded in the frame of
reference. This displacement is performed using the motion vector and can be arbitrary and
therefore, that results in a lot of unpredictable unaligned accesses.

In this type of applications, current software optimizations become unsuccessful
because the instructions that are necessary for doing the data realignment in software subject
the CPU to a heavy overhead.

Knowing that DMA is an essential feature of all modern computers due to it allows any
device to transfer data without subjecting the CPU to a heavy overhead, the solution adopted
in this project has been to design an ‘Enhanced DMA Unit’ capable of performing the
alignment of data.

This 'Enhanced DMA Unit' in addition to the alignment process can perform the
padding process. For example in applications like video coding and decoding that use motion
estimation algorithm, to search the block of the reference frame that best matches the block
to be coded, the search is performed only in a region known as the search area, then when a
candidate (to be a pixel block from the reference that best matches the block to be coded)
goes beyond this search area, it is necessary to make padding.

Moreover this 'Enhanced DMA Unit' is able to store several transfer configurations in a
queue, in this way when the transfer finishes, it will be immediately initiated the next transfer.
Now is not necessary to wait a previous transfer in order to program a new one.

With the proposed ‘Enhanced DMA Unit’, which is inside the Moaidk processor and
communicates it with the external memory (SDRAM) through the AMBA bus, and using Motion
Estimation algorithm as an application, it has been analyzed the results obtained with three
different profiles:

e Basic Profile is a basic DMA Unit.

-91-

e Advanced Profile 2 is a Basic Profile with the inclusion of alignment and
padding process.

e Advanced Profile 3 is the Advanced Profile 2 with an additional queue to store
several transfer configurations.

With the aim of obtaining results more realistic, latency has been introduced into the
external memory controller and the results has been obtained with different values for this
latency (between 15 and 55 cycles).

We can conclude that:

e When the latency increases, it also increases the total number of executed cycles
required to identify a block from the reference frame that best matches with a
current block.

e Comparing the Basic Profile with the Advanced Profile 2, the total number of
executed cycles decreases because the alignment and padding process is done by
the DMA.

e Comparing AP2 with AP3, is easy to appreciate that AP3 uses fewer cycles than
AP2. With an AP2 DMA it is necessary to wait the end of the transfer in order to
start the next one. This “wait transfer scheduling”, which is programmed in the
instruction code, is avoid when using an AP3 DMA.

In conclusion with AP3 has been decreased the required execution time, because it has
been removed instruction code (alighnment and padding process) and is not necessary to wait
the end of the transfers for programming a new one. Moreover, with an AP3, the time
required to consider the best place in the application code to wait a previously transfer in
order to start a new one, has been saved.

To complete this project, some ideas are proposed indicating possible future modifications.

When the padding is being done, it is necessary to copy the contents of a line in all the
lines that are outside of the image, this was implemented reading all the time the same line.
Therefore, reading all the time the content of this line is not necessary and it produces an
unnecessary transfers expense that can be avoided by:

e Adjusting the size of the block to the contents of this that remaining within the
image.

e Storing this content in the local memory, and copying these lines that are equal at
this time.

-92-

The implementation of these future modifications would save a lot of resources but
will be the DMA more complex.

-93-

References

10.

11.

Ruby B. Lee, “Subword Parallelism with MAX-2", IEEE Micro, p.51-59, August 1996.

Guillermo Paya-Vaya, Javier Martin-Langerwerf, Piriya Taptimthong, and Peter Pirsch,
“Design Space Exploration of Media Processors: A Generic VLIW Architecture and a
Parameterized Scheduler”, ARCS 2007,LNCS4415, p. 154-267, March 2007.

A. Dasu and S. Panchanathan, “A Survey of Media Processing Approaches”, IEEE
Transactions on Circuits and System for Video Technology, p. 633-645, August 2002.

M. Alvarez, E. Salami, A. Ramirez, and M. Valero, “Performance Impact of Unaligned
Memory Operations in SIMD Extensions for Video Codec Applications”, ISPASS 2007,
p. 62-71, April 2007.

Analog Devices, Inc One Technology Way Norwood, “Blackfin Processor Hardware
Reference”, December 2005.

David Katz and Rick Gentile, “Using Direct Memory Access effectively in media-based
embedded applications”, www.enbedded.com, November 2007.

John L. Hennessy and David A. Patterson (2003). “Computer Architecture: A
Quantitative Approach”, The Morgan Kaufmann Series in Computer Architecture and
Design.

Milind Phadtare, “Motion estimation techniques in video processing”, August 2007.

Jorn Ostermann, Jan Bormans, Peter List, Detlev Marpe, Matthias Narroschke,
Fernando Pereira, Thomas Stockhammer, and Thomas Wedi, “Video coding with
H.264/AVC: Tools, Performance, and Complexity”, Circuits and Systems Magazine,
IEEE, p. 7-28, 2004.

Yasushi Ooi, “Motion Estimation System Design”, Digital Signal Processing for
multimedia systems, K.K. Parhi and T. Nishitani, Marcel Dekker, Chap.12, pp. 299-327,
1999.

Songnan Li, Jianguo Du, Debin Zhao, Qian Huang, Wen Gao, “An Improved 3DRS

Algorithm for Video De-interlacing” in Proc.Picture Coding Symp., Bejing, China, April
2006.

-94 -

http://www.enbedded.com/

12. John Watkinson, “The Engineer’s Guide to Motion Compensation”, 1994: Snell &
Willcox Lt.

-95-

-96 -

-97 -

-98 -

-99 -

-100 -

