
CONSTRUCTS FOR PROTOTYPING INFORMATION SYSTEMS
WITH OBJECT PETRI NETS

P. Shnchez, P. Letelier, 1. Ramos
Department of Information Systems and Computation

Valencia University of Technology
Camino de Vera, s/n, 46071 Valencia - Spain

P 3877350; Fax: 3877357
email {ppalma I letelier I iramos} @dsic.upv.es

ABSTRACT

OASIS is a Language for the Specification of Object
Oriented Conceptual Models. Object Petri Nets (OPNs)
support a full integration of object-oriented concepts
into Petri Nets. We propose a way to represent object-
oriented concepts used in the OASIS language with
OPNs as a suitable semantic model for validating
software specifications. We have developed a Basic
Execution Model for OASIS Specifications including its
main features. Communication aspects between objects
are taken into account in our proposal (triggering
mechanism and shared events). We will consider event
preconditions reducing the worlds to be reached,
attribute valuations changing the state of objects,
creation and deletion of objects, and life cycles of
objects. OPNs are an appropriate semantic foundation
over build a concurrent software engineering
environment for distributed computation because it
allows a natural representation of concurrence. We
show how the object-oriented concepts of an OASIS
Specification are represented into OPNs.

1. INTRODUCTION

OASIS [4][5] is a Formal lan&uage for the Conceptual
Specification of Information Systems. Nowadays there
is a growing interest in formal approaches to model
information systems. CMSL [9] and TROLL [l] are
languages similar to OASIS that address the system
specification in such way. 00-Method [6] is the
companion methodology for the OASIS approach.

Is important to animate the system specification by
means of a prototype automatically generated.
Experiments have been carried out using Petri Nets [7]
and Concurrent Logic Programming [2] as semantics
domains for OASIS Specifications. These efforts have
led to the establishment of a basic Execution Model [3].
This model can be used in order to animate OASIS
Specifications implemented over concurrent
programming environments. The aim of this
paper is to present the mapping between OASIS
concepts and Object Petri Nets. OPNs support a
complete integration of object-oriented concepts.

0-7SO3-4053-1/97/$10.00 ' 1997 IEEE

Inheritance, polymorphism, dynamic binding and
multiple levels of activity can also be included.

2. BASIC CONCEPTS OF OASIS

OASIS is a language for Open and Active System
Information Specification. In the object model of
OASIS, an object is an observable process encapsulating
structure and behaviour. An object is an operational unit
that has static and dynamic features. Each object has an
internal and unique identifier (Oid) that allows
identifying the object during its whole existence. Object
behaviour is characterised by the actions received, those
which the object is able to carry out, and by the actions
sent, those which it is able to request. Actions are
received and sent by interaction mechanisms between
objects.

The object properties are represented by attributes.
Thus, the state of the object in a given moment is
determined by the value of its attributes. An event is the
abstraction of a change of state. The state can change
after the occurrence of an event that modifies the values
of some attributes. An event does not have duration and
occurs in an instant of time.

Each object possesses a fixed set of events that could
affect it during its existence. The state of the object in a
given instant will depend on the events occurred in its
life until the moment during which is observed. In this
way, an object is seen as an observable process.

The attributes of the object are classified as follows:
constant if its value does not change during the life of
the object, variabb if its value can change as a
consequence of the occurrence of events. Furthermore, if
the value of an attribute is obtained from the value of
other attributes, the attribute is said derived.

Two kinds of events can be distinguished: private and
shred . Private events participate in the life of objects of
only one class, they appear only in the signature of one
class or in several classes belonging to the same
hierarchy of specialisation. Shared events are part of the
object life of more than one class. These events appear in

4260

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on February 18, 2009 at 06:21 from IEEE Xplore. Restrictions apply.

the signatures of all the classes that share them. Agents
(also called clients) activate the events and they have
that responsibility. The event requested by an agent
object to some server object(s) is called an action An
event will only he relevant in the life of an object if the
state of the ob.ject is suitable for that. Event
preconditions are formulas and they should be satisfied
in order to allow the occurrence of an event.

The objects are not isolated. In OASIS, the interaction
between objects is modelled in two forms: by events
slmnng and by triggers. Triggers introduce activity in
the society of obiects, allowing an object to act as an
agent whenever some conditions are satisfied in its state.

The values of attributes should follow some rules. These
rules are named integrity constraints. They are defined
by formulas in some kind of logic. They should be
satisfied in the states in the life of the object (static
constraints) or among certain sequences of states
(dynamic constraints). A group of events that operate as
a unit of execution of greater granularity is called a
transaction. They follow the two basic principles for
transactions: all or nothing, and not observation of
intermediate states. It is possible to construct processes
using events and transactions as atomic actions, They
allow specifying the correct sequences of actions in the
life of the objects.

A template is a set of common properties that are shared
by of several objects. A class is defined as the group of
objects that share the same template. An individual
object is called a class instance. The Society of Objects
of our object-oriented system is built from primitive,
elementary and complex classes. Objects that have only
one state constitute the Primitive Classes or domains
and always exist. In general, they undertake the domain
of the abstract data types. The Elementary Classes are
built from the primitive classes. There are attributes,
events, transactions, preconditions, integrity constraints,
triggers and process description defined and they
characterize the objects of the class.

Complex Classes can be defined from elementary ones
by applying operators between classes. The operators
that allow the construction of complex classes are
Aggregation, Association, Specialkation and Parallel
Composition. These operators are orthogonal, that is,
they are independent and they can be combined.

OASIS is a formal specification language that allows
one definition of conceptual schemas according to the
object model that has been presented. Here is an
example representing an account in a bank system.

class Account
identification

by-id:(id).
constant-attributes

id:nat;
name:string.

variable-attri butes
ba1ance:int;
numbexnat (0).

derived-attributes
good-balance:bool.

private-events var N:nat.
open new;
close destroy:
deposit(N);
withdraw(N);
pay-commission.

[deposi t(N)] balance=halance+N and number=number+l ;
[withdraw(N)] balance=balance-N and number=number+l ;
[selfipay-commission] balance=balance-100 and number=O.

good-balance=[balance>lOOOOO) .

withdraw(N) if balance>=N;
close if balance=O.

self::pap-cu"ission if (number>lO) and

valuation

derivation

preconditions

triggers

(good-balance=false).
processes

ACCOUNT = open.ACCOUNT0;
ACCOUNT0 = close +

deposit(N).ACCOUNTO +
withdraw(N).ACCOUNTO +
pay-co"ission.ACCOUNM.

end-class

This concrete syntax is formalized in dynamic logic
181 and it has been used in [5] .

Mboxo={ new] Mboxi Mbox'+'

I 1 I

ti ti+,
t .-.-.-. to

Figure 1: Object life cycle

Figure 1 shows life cycle of an object. It is shown
according to the previous concepts. Each object has a
mailbox. The change of state does not have duration and
occurs at a precise instant of time, when the actions
received in the mailbox are executed. To attend an
action means to extract it from the Mbox. The attended
actions can be admated or rejected depending on they
satisfy or not their preconditions. Hence, Accept will be
the set of admitted actions at the instant ti , then Accept'
E Mbox'.

Considering Exec' as the set of actions executed when
the state is State', then Exec' E Accept'. Therefore, an

426 1

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on February 18, 2009 at 06:21 from IEEE Xplore. Restrictions apply.

object will change from the state State' to the State'*' by
the execution of the actions included in Exec'. Intra-
object concurrence is allowed, but the set of executed
actions must not be in conflict 131. Requested actions
received by an object are called service actions. For each
action that the object must trigger, whenever it reaches
the state Stare' , it will exist another action in the mailbox
in the instant t,. Thus, the server perspective of an object
is integrated with its client perspective in a homogeneous
form of operation. These actions received by the object
due to send triggers are called trigger actions. This
means, the object must serve service actions as well as
trigger actions.
Service actions in Mbox' are represented by Mboxie,,,, .
Trigger actions in Mboi are represented by Mbox:riggers .
Therefore, it is always vue that:

i Mbox' = Mboxtriggers U Mbox:,,,,icm

At each ti , Mboxi"g8ers E Exec', because all trigger
actions must be executed. Thus, Exec' can additionally
contain subsets of accepted service actions. These
actions are in conflict neither with one another nor with
the trigger actions.

The contents of the mailbox must be updated in each ti:

(a) Trigger actions or service actions at have to be
extracted.

(b) All the new actions received until ti must be
included.

(c) The actions accepted and not executed in previous
states (because they were in conflict) must be stored
again.

We have considered all these ideas in order to define a
basic execution model including the main features of
OASIS specifications. Hence, this model allows
animating an OASIS specification accurately.

3. OBJECT PETRI NETS

The enhancements of OPNs [lo], [13], 1141, include
allowing token values to be identifiers, inheritance, test
and inhibitor arcs. Furthermore, OPNs provides
functions for evaluating the state of the net without
changing its state. The possible use of superplaces and
supertransitions makes OPNs suitable to model both
synchronous and asynchronous interaction between
objects. Each instance of an OPN class could be an
independent agent passing messages between OPN
objects through tokens. The notion of OPN superplace
permits synchronous interaction. One transition deposits
in (or extracts from) a token of the superplace. This
operation is synchronous with an internal transition of
the superplace that accepts (or produces) the token.

Both transitions can restrict the interaction by means of
the adequate guard.

4. CONCEPTUAL SCHEMAS IN OPN

An OPN class at the highest level (meaning the
Conceptual Schema) is designed to contain references to
each OASIS class. Likewise, each OASIS class is
represented by a OPN place. As shown in Figure 2,
communication between classes is performed through a
special router.

1- ~

Analyst

Schema-. ..

'put

Class A Class B

r
tget

Class A Class B

Figure 2: OPN Higest level

The analyst interacts with the running system. All
incoming events are routed to the target class. Each
event between classes is forwarded through the router,
enhancing the facilities to broadcast operations and
environment communication.

For example, CZussA (more accurately, some instance)
sends an event to another class, say CZassB. The token
extraction, by firing the tget transition, is synchronous
with the token insertion in the router class. After that,
the router class sends the same token (i.e. the event) to
ClussB. Equally, the token admittance in CZassB will be
synchronous with the token sent by the router.

5. OASIS CLASSES IN OPN

We will distinguish the OASIS class (which contains
the template, the identification of instances, etc.) from
the instances that belong to that class. Henceforth, class
and instances will designate OASIS class and OASIS
class instances, respectively. For each OASIS class (e.g.
ClussA), an OPN class (e.g. ClassA) and another one to
designate the instances (e.g. ZnstuncesA) will be defined.

Example 1: The class AcCounts in our bank
system implies two OPN classes: (1) Class-Account,
and (2) Instances-Account.

A general representation for each class is shown in
Figure 3. Few details have been shown in order to have
a more readable diagram and to emphasize the main
interactions.

4262

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on February 18, 2009 at 06:21 from IEEE Xplore. Restrictions apply.

ClasA: Event *
0 Ohj~ect-A y
0 Emntx X

boo1 oljtdcsmy= 0.-
[z1 boo1 oktother()= ...
111 boo1 ok-tnew=() ...

~ Ei*Mboxq--*-
Not-mew ... totha tnew tdestroy

[xok-toiher() .. .I [xok-tmw @..I [x.ok-tdestroy() ...I [not x.ok-tnew()]
I I+

Figure 3: Internal representation of classes.

Notes:
(a) Following notation proposed by Lakos [131, a

function is drawn with a double black square, a
single transition with a square and a single place
with a circle. Arrows reaching the class limits
represent synchronous communication. The token
type that can be received at the class level (or
offered) is named after the class name (Event in
our example).

(b) The transitions tput and tget (which redefute the
original transitions put and get for capturing and
offering tokens at the superplace, respectively)
give the synchronous communication between the
router and the classes [12]. Received events are put
in the place Mbox. The related transition will be
fired and questions like identification mechanism,
event existence, etc., will be checked. Wherever
required, functions (denoted with double black
squares) will give information about the state of
the object.

(c) The place Instances contains every class object.
Each event received at the class level is routed to
the instance level in a synchronous way.

(d) Each generated event from instances is put in the
place Mbox-out. If the target is another class, then
the event is routed through the tget transition. On
the contrary, if the target is an object belonging to
the same class, then it is forwarded once more to
the place Mbox (see the transition tautosend).

Object Creation
If an object sends an event new, two possibilities arise:
(1) the preconditions are satisfied and the event is
admitted (see ok-tnew()), and (2) the event is rejected.
The former provides the creation of objects at Instances
place (note the token type of variable y added to the
place Instances when transition tnew is fired). All active

objects are tokens of the place Inslances. Each object
has an internal activity [13] that will depend on the
OASIS specification. It is important to highlight that
preconditions associated to the event new are checked
by the class instead of the object instance, which is has
not been created yet.

Example 2: The creation event open of the
class Account will be received by the OPN class
Class-Account (through tpuf firing). Then, the transition
tnew is fired (if ok-tnew() is satisfied) and a new object
Accounl is added.

Object Destruction
If the class receives an event to remove an object then
this event is routed to the correspondent instance.
Afterwards, if the event is accepted, the instance replies
with another one, confirming the removing action. Ifthe
state of the object permits it, then (see
tdestroy-accepted) it will be moved from the place
Instances to the place Dead-Instances, otherwise it will
remain alive.

Example 3: If the event close occurs the
transition tclose will be fired (whether ok-tcZoseO is
satisfied), and it will be sent to the corresponding
instance of Account.

6. OASIS OBJECTS IN OPN

A superplace is also defined for class instances in the
same way as it was previously done. The representation
of instances is shown in Figure 4:

I t
Figure 4: Representation of instances.

Notes:
(a) The events sent from the class level (of which the

current object is an instance) are accepted through
the transition tput. Similarly, events sent from the
instance to the class are routed through the

4263

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on February 18, 2009 at 06:21 from IEEE Xplore. Restrictions apply.

transition @et.
(b) The place Atfribules contains pairs (attribute,

value) and represents (partially) the state of objects.
(c) The place Current-Event contains the selected

current event 10 process next.
(d) The place seml permits to catch only one event

each time and to wait for the following state.

Event Preconditions
Event preconditions are always checked (whether they
exist or not) by means of defined functions that test the
state of the object with tests and inhibitors arcs [I 13 (see
ok-destroy(), ok-Evenll(), etc.). If an event is accepted
then the variable attributes may change. Possible
variations of preconditions will only affect these
functions. This permits to change the system
specification in an easy way. It is possible to break
down any Boolean condition into OPN functions by
including test and inhibitor arcs.

Example 4: BaZunce=O is the precondition
associated to the event close. In Instances-Account
there is a function named ok-zcloseO that tests the
attribute balance.

Change of Object State
When an object accepts an event, the associated
valuations (coming from OASIS specification)
determine the possibility of the modification of the
attribute values. The transition teventl achieves the
actions that change the tokens representing the variables
(in place Attributes). After that, the object will probably
have a set of triggers to send. Some of those triggers
will be forwarded to the same object; others will be sent
to another instance (in the same class or another).

Example 5: The event deposit implies some
valuations, which are performed through the firing of
transition deposit.

Derived Attributes
We can express the relation between the derived and
non-derived attributes by defining OPN functions. Each
access to a derived variable needs to recalculate its
value through the function.

Example 6: The derived attribute
good-balance={balunce>lOOOOO) can be expressed
with the following LOOPN++ [I 13 function that can be
used in whatever transition:

Boolean good-balance() = exists

End exists
Var-type x -- Attributes I x.balance >100000;

Inter-Object Communication
We are interested in two kinds of communication:
asynchronous and synchronous communication. The

former gives the trisgering mechanism; the second
refers to the OASIS shared events.

Triggers: The triggering is performed by:

1. Whoever sends the trigger prepares an event token
and offers it through the ?get transition.

2. The related class gets the token and sends it to the
router class.

3. The router class forwards the event to the target
class where it is sent to the server.

The transition Calculate-Triggers gives the relevant
triggers according to the reached state (after valuations).
These triggers are offered (transition tget) to the related
class. Afterwards, the class sends the trigger event to the
router or to another instance in the same class.

Example 6: The condition (Numbenlo) and
(good-balunce=false) enables the trigger
seEf::puy-Commision. The object will put the event
pay-Commision into the place Triggers. Afterwards, it
is routed to the class Class-Account. To make it simple,
we have omitted some relevant matters, such as:

1. If the target is the same object, the trigger is get
into the place Current-Event without outgoing the
instance.

2. Transition Calculate-Triggers may need several
transitions to express the OASIS specifications.

3. Some additional features are needed to allow
calculating triggers although there were no event in
the previous state.

Shared Events: We need an object (e.g. a
coordinating object) that broadcasts toward all the
objects that have defined the shared event. Furthermore,
it must be executed following an all-or-nothing policy.
A dialogue between the coordinator and the servers is
established and the protocol that follows is similar to the
Two-Phase Commit protocol used in Distributed
Databases. We have established an algorithm to control
efficiently these kinds of events [151.

Process Specification
Possible objects lives are defined by means of a process
specification. These processes are constructed using
events and transactions as terms.

OPNs gives a natural way to represent process
specification expressed by process algebra. Each
possible state determines an OPN place. A token in such
place indicates that the object is in such state. Changes
from one state to another may be restricted with boolean
functions (restricted to current state).

A simplified OPN that implements the process section
in the example Account is shown in Figure 5 .

4264

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on February 18, 2009 at 06:21 from IEEE Xplore. Restrictions apply.

Inslances-Account:
‘Event

null n

null’ F? n ~ * C c o ” N I O

tclose

I
td-t Withdraw tpay-cmmission

null ‘DEAD

Figure 5: Representation of a process section.

Observe that the transitions included are defined in the
same way as previously done in order to indicate
acceptance of events. Thus, we can limit transitions
firing depending on the current state and on the history
of previous events. As already mentioned, condition
over variables can be included in process section. As
usually, those conditions will be expressed by OPN
functions.

7. CONCLUSION

We have shown how the main features of our Object
Oriented Conceptual Modelling Language OASIS can
be naturally and directly represented in OPNs. Object
Oriented concepts (such as classes, instances,
interaction between objects, encapsulation, etc.) have
been addressed by using the properties of the OPNs.

The support of multiple levels of activity in the OPNs
makes the design of architectures easy enough to
prototype a society of concurrent objects. Using the
execution model of OASIS as a guide, we can guarantee
an accurate animation of the OASIS specification. We
are now working to obtain LOOPN++ code
automatically from an OASIS specification. Our final
aim is to integrate this work inside a CASE tool for
system modelling supporting the OASIS model.

8. REFERENCES

[I] Hartmann T., Saake G., Jungclaus R., Hartel P., Kusch
J., “Revised Version of Modelling Language TROLL”,
Informatik-Bericht 94-03, TU Braun-schweig, 1994.

[2] Letelier P., Sanchez P., Ramos I., “Conceptos
Bhsicos de Especificaciones OASIS implementados
utilizando Programaci6n L6gica Concunente”,
Technical Report DSIC-I1/32/97, Universidad
Politknica de Valencia, 1996.

[3] Letelier P., Shchez P., Ramos I., “Un Modelo Bhico
de Ejecuci6n para Especificaciones OASIS en un Entomo
Conmente”, Technical Report DSIC-W10/97,

4265

Universidad Politecnica de Valencia, 1997,

[4] Pastor O., “Diseiio y Desarrollo de un Entorno de
Producci6n AutomCitica de Software basado en el modelo
orientado a Objetos”, Tesis doctoral (dirigida por Dr.
Isidro Ramos), DSIC-UPV, Valencia, 1992.

[5] Pastor O., Ramos I.,”OASIS versi6n 2 (2.2): A Class-
Definition LanguaEe to Model Information Systems Using
an Object-Oriented Approach”, SPUPV-95.788,
Universidad Politkcnica de Valencia, 1995.

[6] Pelechano V., Pastor O., “Case OO-Method: Un
entomo de producci6n automtitica de software orientado a
objetos”, Proc.of CIL-95, Barcelona, 1995.

[7] Sanchez P., Ramos I., “Ob.iect Petri Nets: Modelo de
Implementaci6n para OASIS”, Technical Report DSIC-
11/17/96, Universidad Politknica de Valencia, 1996.

[SI Wieringa R.J. “A Conceptual Model Specification
Language (CMSL Version 2)”, Technical Report IR-
248, Vrije Universiteit, Amsterdam, 1991.

[9] Wieringa R.J. “A Formalization of Objects using
Equational Dynamic Logic”, 2”* Conference on
Deductive and 00 Databases, pages 43 1-452, Springer-
Verlag, Lecture Notes in Computer Science 566, 1991.

[lo] Lakos C., “From Coloured Petri Nets to Object
Petri Nets”, Proceedings of 16” International
Conference on the Application and Theory of Petri
Nets, LNCS 935, Torino, Italy, Springer-Verlag, 1995.

[I 11 Lakos C., Keen C., “LOOPN++: A new Language
for Object-Oriented Petri”, Proceedings of Modelling
and Simulation, Barcelona, Society for Computer
Simulation, 1994.

[12] Keen C., Lakos C. “Information Modelling using
LOOPN++, an Object Petri Net Scheme”, Proceedings
of 4“ International Working Conference on Dynamic
Modelling and Information Systems, 1994.

[13] Lakos C., Keen C., “An Open Software
Engineering Environment Based on Object Petri Nets”,
Department of Computer Science, University of
Tasmania, 1995.

[14] Lakos C., “The Consistent Use of Names and
Polymorphism to Achieve an Elegant Definition of
Object Petri Nets”, Technical Report R95-12, Computer
Science Department, University of Tasmania, 1995.

[I51 Shchez P., Letelier P., Ramos I., “Un Algoritmo
para la Gesti6n de Eventos Compartidos de OASIS”,
Technical Report DSIC-IU3 1/96, Universidad
Politknica de Valencia, 1996.

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on February 18, 2009 at 06:21 from IEEE Xplore. Restrictions apply.

