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ABSTRACT: In this paper, neural networks are used to efficiently
calculate the multilayered media boxed Green’s functions needed in
integral equation (IE) formulations. The analysis of complex multi-
layered shielded circuits is computationally time consuming, due to
the need to calculate the multilayered-media boxed Green’s func-
tions. Using neural networks as radial basis function networks, the
boxed Green’s functions can be calculated quickly, thus greatly re-
ducing the computational time associated with the analysis of practi-
cal circuits. Once the neural network is trained with a known set of
pairs of inputs and outputs, new outputs are quickly calculated, thus
increasing the efficiency of the IE method.
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1. INTRODUCTION

Shielded microwave circuits, such as monolithic microwave inte-
grated circuits (MMICs), have attracted attention during recent
years due to their features and advantages, including low cost,
small size, and reliability. Due to the increase in the frequency
operation and the high level of integration achieved, quasi-static or

approximate analysis techniques cannot provide accurate results;
full-wave electromagnetic analysis is necessary. There are many
full-wave methods for the analysis of shielded circuits and anten-
nas. The finite-element method is a technique that has been suc-
cessfully used, but is highly time-consuming. One of the most
frequently used techniques is the integral equation method (IE)
solved using the method of moments (MoM). In this method, the
boxed Green’s functions of the multilayered media are needed to
solve the IE. The main problem of the IE is the slow convergence
behavior of the modal series used to represent the relevant boxed
Green’s functions. Although the MoM is less time-consuming than
the finite-element technique, it is still slow for developing com-
puter aided design (CAD) tools that can operate with near real-
time performance. The solution proposed in this paper to cope with
the aforementioned problem is the use of neural networks to speed
up the computation of the relevant boxed Green’s functions.

Neural networks (NNs) have been used in recent years in many
disciplines from signal processing to chemistry. As approximation
function tools and nonlinear data interpolators, NNs can be used to
solve a wide range of problems.

In this paper, the electric scalar-potential Green’s function
exact solution of the multilayered boxed media is evaluated by the
technique exploited in [1] and then compared with the approxima-
tion performed by the NN.

NNs are composed by one or more hidden layers of nodes,
called neurons, that perform a nonlinear operation. Each neuron is
connected to several other neurons. Each connection has a weight
that fixes the neuron importance in the net. The design of an NN
consists of two stages. The first is the training step, where the NN
learns from the data. In the second step, the new data are presented
to the network to check the NN’s generalization ability. Due to the
simple structure of the NN, new outputs are quickly calculated.
This ability means that these networks are able to be exploited in
problems where others methods are highly time-consuming.
Therefore, NNs are able to solve many different problems in
electromagnetism [2].

In [3-5], multilayer perceptrons (MLPs) were used to evaluate
the multilayered media Green’s function integrals in order to
transform the spectral domain. The authors called this method the
neurospectral technique. This technique is limited to the analysis
of nonshielded structures such as, for instance, a rectangular-patch
antenna printed on a dielectric substrate with infinite transverse
dimensions [5]. In [6], a kind of NN called the radial basis function
network (RBFN) was used to calculate the coefficients of the
discrete complex image method (DCIM) in layered media. In [6],
the structure analyzed was also a printed circuit on a dielectric of
infinite transverse dimensions.

In this paper, a study on the use of the RBFN for the calculation
of the boxed Green’s functions in multilayered media is carried
out. To show the feasibility of this novel technique, the RBFN is
applied in this paper to the calculation of the electric scalar-
potential Green’s function. The data used to train the NN are
calculated using the technique presented in [1] for the accurate
numerical evaluation of the multilayered-media boxed Green’s
functions. Once the NN is trained, new values of the real and
imaginary parts of the Green’s functions can be calculated more
quickly than those using the exact method, with a desired level of
accuracy. In section 2, a brief description of the method to com-
pute the Green’s functions in multilayered media is reviewed.
Then, the NN used is shown, and different training methods are
explained. Finally, the numerical results are presented, and a
discussion on the best training method for this application is
detailed.



2. GREEN’S FUNCTIONS IN MULTILAYERED MEDIA

The IE has been successfully used in the analysis of multilayered
printed circuits. The main problem of the IE is the slow conver-
gence behavior of the series used to represent the relevant boxed
Green'’s functions. If a spectral-domain formulation is used, then
they are represented by the following modal series:
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where G is the spectral-domain Green’s function, and f and & are
combinations of sinusoidal functions. One procedure to accelerate
the convergence of the series is to extract the quasi-static part of
the spectral-domain Green’s function from the dynamic part. The
dynamic part converges quickly in comparison with the quasi-
static part, and it can be summed directly in the spectral domain.
In order to accelerate the convergence of the quasi-static part, it
can be converted to the spatial domain, thus formulating an infinite
series of spatial images.

In spite of the improvement in the convergence using this
quasi-static extraction mechanism, there are situations where a
large number of terms are needed to reach the desired level of
accuracy. Therefore, suitable algorithms for series acceleration are
needed. The algorithm for acceleration used in [1] consists of the
application of the integration by parts technique to discrete se-
quences, hence, it was given the name, summation by parts tech-
nique. This algorithm is directly applied to the computation of the
shielded Green’s functions expressed with the modal series form
of Eq. (1). After some operations, the original series is expressed
in this new form [1]:
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withi =1,2,3,...,andk =1, 2, 3, .... The sums given in
Eq. (4) are obtained analytically by applying a simple geometrical

summation formula. For (i = 1), we first initialize the iterative
algorithm as
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Using the geometric summation formula, we easily obtain a
closed-form expression for all other values of the index (i):
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The final Green’s functions are calculated by making use of Eqgs.
(5) and (6) appropriately. As the observer point moves away from
the source point, the number of iterations needed to achieve the
given accuracy decreases. When the observer point is very close to
the source point, however, more iterations are needed. In this case,
the transformation to the spatial domain through a spatial-images
series has proved useful. Also, the results show that the number of
iterations in the algorithm remains constant with frequency [1].
This method can be effectively used for the accurate evaluation of
the boxed Green’s functions needed to train the NN, as described
in the next section.

3. RADIAL BASIS FUNCTION NETWORK MODEL

Radial basis function network (RBFN) is one type of layered
feedforward NN. These networks are composed of three layers,
namely, the input layer, the hidden layer, and the output layer. The
RBFN has been chosen in this paper over other kind of neural
networks such as, for instance, MLPs, due to their simple structure,
and fast training in comparison with MLPs. Furthermore, the
RBEFN, just like the MLP, has the ability to approximate any
continuous function within an arbitrary accuracy. This is the case
as long as a good choice of network parameters is taken. Overall,
this behavior can be viewed as a multidimensional nonlinear
curve-fitting [7].

The hidden layer of the network performs a nonlinear mapping,
while the output layer performs a linear one. The mapping F from
an input space of dimensionality n to an output space of dimen-
sionality m, F:R” — R, is made by the following transforma-
tion:
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where ¢, is the center of the k™ radial basis function, x is the input
data, b is a constant or bias, w, is the weight of the k'™ neuron, and
J is the number of neurons. Moreover, || - || is the Euclidean norm,
and ¢(-) is the nonlinear function used to implement the nonlinear
mapping of the hidden layer.

In our problem, the input data is a set of spatial coordinates that
represents the transverse spatial positions of the observer and
source points inside a metallic box. The remaining spatial longi-
tudinal positions (z, z') are discrete, as imposed by the multilay-
ered nature of the circuit. They are directly included in the mul-
tilayered-media spectral-domain Green’s functions [8]. With these
considerations, the input space is 4D. All source and observer
points are placed in a uniform net that discretize the cross section
of the metallic box. The output data is 2D, consisting of the real
and imaginary parts of the electric scalar-potential Green’s func-
tion calculated for each source point at each observer point.

For an optimum performance of the RBFN, the most critical
choice is the proper selection of the radial-basis centers. There are
many nonlinear functions that can be used as radial-basis func-
tions. In our case, the next Gaussian multivariate function has been
used:
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where ¢, is the center of the Gaussian function and o” is the
Gaussian variance. The centers and variances are the parameters to
be computed by the chosen training algorithm. A known set of
input and output data is delivered to the RFBN at the input in order
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Figure 1 Neural network structure

to train it. This process leads to the selection of the appropriate
centers, variances, and weights. After the training phase, the neu-
ron centers, variances, and weights will remain fixed. At the
output, each neuron is multiplied by the respective weight, and all
are summed up with the corresponding bias to obtain the final
output values (see Fig. 1).

3.1. Training Algorithms

Three different RBFN training algorithms have been tested, as
applied to the calculation of the boxed Green’s functions. The first
strategy is the fixed centers selected at random [7], which consists
of choosing the centers randomly from the training data. The
second one is a self-organized selection of centers called k-means
clustering [7]. The aim of this procedure is to put the centers in
regions of the whole input space where the most important data are
present. For these first two algorithms, the standard deviation of
each Gaussian radial basis function is the mean of the nearest
p-centers [9]:
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where « is a parameter to be set heuristically, and d_;, < d,,
<...<d., <...<d. -1 Moreover, the distance between
centers is calculated using the Euclidean norm. For both the first
and second learning strategies, we have carried out the calculation
of the weights for the linear layer using a well-known linear
algorithm, namely, the least mean square technique (LMS). LMS
is a supervised learning strategy because the values of the outputs
influence the calculation of the weights at the linear output layer.
Other techniques, such as fixed centers selected at random and
k-Means Clustering, are unsupervised procedures.

The last learning strategy investigated in this paper is the
classical orthogonal least squares (OLS) training algorithm [10]. In
this procedure, the centers are selected from an initial set of
centers, generally a subset of the input data. In our case, we have
taken the subset formed with all the training input data set as the
initial centers set. In OLS training, we first calculate the regression
matrix. The columns of the regression matrix (P) are the regressors
vectors, resulting from the evaluation of the radial basis nonlinear
function at every training input datum for a certain specific center.
The regressors matrix P is orthogonalized applying the Gram-—
Schmidt method. Then, P is transformed into a product of two
matrices, namely, W (composed of orthogonal columns) and a
triangular matrix that we call A. The RBFN operation can be
expressed as d = Pw = Wg, where d is the desired output vector.
Each step of the orthogonalization method implies the computation
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Figure 2 Shielded microstrip multilayered structure

of a column of matrix W, which implicitly becomes the selection
of a center. Finally, the neuron weights w are calculated by making
use of the triangular matrix A, in the following way: Aw = g.
When OLS is used, the variance has to be preset at the beginning
of the algorithm.

In [11], it is demonstrated that the centers set given by the OLS
classic algorithm is not the most compact solution when a non-
orthogonal basis is used. In spite of this, OLS has proved to be
useful in many applications, and as the results will show, it leads
to a better performance than the fixed centers selected at random
and the k-means clustering algorithms.

3.2. Training and Testing Data Set
The square metallic box studied in this paper, as shown in Figure
2, is divided into a uniform net of equidistributed spatial points
(see Fig. 3). The input data is a set of transverse spatial coordi-
nates, where each input vector is composed of four coordinates
containing the source (x’, y') and observer transverse positions
(x, y). Each coordinate is normalized with respect to the size of
the box. Due to this normalization, the coordinates can vary from
0to 1.

The output of the neural network for an input vector is the real
and imaginary parts of the electric scalar potential: Re(G,) and
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Figure 3 Training and testing Data: testing-source data (square points),
testing-observer data (cross points), training-source data (asterisk points),
and training-observer data (circle points). Box dimensions are 10 X 10 mm



Im(G,). The frequency and the box dimensions are set as fixed
parameters. Due to the problem symmetries, we can divide the net
into four quadrants and compute the potential for the sources
belonging to only one quadrant, thus saving computational time.
For every source point, the potential is evaluated in all the observer
points of the net, including the other three quadrants. In order to
avoid the abrupt behavior of the Green’s function closed to the
source, the singularity of the electric scalar potential is properly
extracted [1]. With the above mechanism, if the source is placed in
a different quadrant from the one where the RBFN was trained, the
potential is extracted from the symmetric source point placed at the
first quadrant.

The net depicted in Figure 3 was generated to train the RBFN.
For every source point, the electric scalar-potential Green’s func-
tion was calculated for every observer point, including the one
placed at the source. In Figure 3, the testing input points used to
check the generalization properties of the RBFN are also shown.
Both the observer and source points of the testing net are placed in
intermediate positions in relation to the spatial points of the train-
ing net.

4. RESULTS

For the calculation of the electric scalar-potential Green’s function
G,, we have taken a metallic box of dimensions 10 X 10 mm (Fig.
1). The potential was calculated for a frequency of 15 GHz (A/2
box size), and 30 GHz (A box size). The RBFNs were trained with
the three algorithms explained in the previous section, and for the
two frequencies selected.

For training each RBFN, a 12 X 12 spatial-points net was
generated. Due to the symmetry of G, the sources were restricted
to a 6 X 6 points subset (first quadrant of the box). The electrical
scalar-potential Green’s function was computed at every point of
the 12 X 12 net. Then, 5184 patterns were generated for training
the RBEN (see Fig. 3). The testing set consisted of 9625 patterns,
as shown in Figure 3. The normalized mean square error (NMSE)
was used to measure the RBEN error in the computation of the
output as follows:
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Figure 4 Normalized mean square error of the training data set for the
OLS, k-means clustering, and random selection of centers procedures
(frequency of the electric scalar potential Green’s function G, is 30 GHz)
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Figure 5 Normalized mean square error of the training data set for the
OLS, k-means clustering, and random selection of centers procedures
(frequency of the electric scalar potential Green’s function G, is 15 GHz)

In Figures 4 and 5, the NMSE values of the training data for the
RBFNs designed are displayed. In each figure, the performance of
six different RBFNs are depicted: four RBFNs are trained with
OLS and different variances, one is trained with k-means cluster-
ing, and finally one is trained with the fixed centers selected at
random algorithm. The NMSE is depicted for every five neurons,
from five neurons up to 300 neurons. The NMSE in the case of the
random centers selection is the average of ten different runs. At
each run, different random centers are generated.

For all the selection-centers procedures, it is apparent that as
the number of neurons in the hidden layer grows, there is a
corresponding reduction of the NMSE. In a practical application, a
maximum error allowed in the network can be preset before the
training begins. The network adds neurons until the threshold is
reached. For the problem treated in this paper, a proper threshold
value has been found to be 0.15.
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Figure 6 Normalized mean square error of the testing data set for the
OLS, k-means clustering, and random selection of centers procedures
(frequency of the electric scalar potential Green’s function G, is 30 GHz)
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Figure 7 Normalized mean square error of the testing data set for the
OLS, k-means clustering, and random selection of centers procedures
(frequency of the electric scalar potential Green’s function G, is 15 GHz)

In the RBFNs designed to approximate G, at 30 GHz, the best
results correspond to the OLS algorithm with variances between
0.05 and 0.1 (see Fig. 4). It can be seen that the maximum error
allowed is reached with 200 neurons. The next-best results corre-
spond to the k-means clustering and fixed centers selected at
random. In these cases, 300 neurons are needed to surpass the
preset error threshold of 0.15. The worst performance is achieved
by OLS with the extreme values of variance 0.01 and 1.

In Figure 5, the error corresponding to the RBFNs trained to
approximate G, at 15 GHz is shown. Note that high error levels are
reached by OLS with a variance of 0.01. On the other hand, OLS
with variances between 0.05 and 0.1 has a slightly better perfor-
mance than the k-means clustering and fixed centers selected at
random. Moreover, OLS with a variance of 1 reaches results
similar to those of these two last procedures. Error values below
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Figure 8 Exact potential and two 300-neuron RBFN approximation: one
RBFN was trained using OLS with ¢ = 0.1 and the other one was trained
with the k-means algorithm; the source point is placed at (4.091/a,
3.182/b); the observer points are placed in a line cut at y/b = 0.2273 and
in a line cut at y/b = 0.8636; frequency f/ = 30 GHz
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Figure 9 Exact potential and two 200-neuron RBFNs approximation:
one RBFN was trained using OLS with ¢® = 0.1 and the other one was
trained with the k-means algorithm; the source point is placed at (4.091/a,
3.182/b); the observer points are placed in a line cut at y/b = 0.2273 and
in a line cut at y/b = 0.8636, frequency f = 15 GHz

0.15 are achieved with 150 neurons if OLS with variances between
0.05 and 0.1 is used to train the network. If fixed centers selected
at random or k-means clustering is used, the maximum error
allowed is reached with 200 neurons. The variances of the neurons
in OLS are the same for all of them, and they are chosen heuris-
tically. This is the most important weakness of this procedure. But
this weakness is shared by the k-means clustering or fixed centers
selected at random strategies. In these last two techniques, another
parameter, namely, the number of nearest centers which are
needed to compute the Gaussian function variance, has to be
preset.

As seen from Figures 4 and 5, the OLS performance depends
on the initial preset variance. The extreme values of the variance
need to be avoided because they produce too flat or too peaked
Gaussian functions. However, the OLS procedure, with the appro-
priate variance values, has achieved lower NMSE levels than the
ones obtained when a random set of centers is selected, or when
k-means clustering is used. Fixed centers selected at random
usually leads to a worse performance and due to the near-linear
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Figure 10 Source placed at (4.091/a, 3.182/b), a line cut placed at
y/b = 0.8636, and a line cut placed at y/b = 0.2273



TABLE 1 Computational Time to Evaluate the Electric Scalar
Potential Green’s Function in 5184 Points with 300, 200, and
150 Neurons RBFN (Each Value is a 20 Runs Average)

300 Neurons 200 Neurons 150 Neurons

Time (seconds) 0.96 0.59 0.42
Times faster than exact 48.7 79.3 110.9
solution

dependency introduced by centers placed too close, numerical
ill-conditioning in the weights estimation problem is generated.
The resulting RBEN is always too large for a given error, or it
works poorly if a fixed number of neurons is adopted. Because of
the structure of the input data in the Green’s function approxima-
tion problem (there are no clusters in the input space), the self-
organized selection of centers in the k-means clustering procedure
does not represent a clear advantage. In spite of this, k-means
clustering allows a better selection of centers than the fixed centers
selected at random procedure.

The testing data NMSE of the RBFNs trained are depicted in
Figures 6 and 7. The results show that the RBFN generalizes well
for new inputs. The designed RBFNs are able to interpolate output
values in a correct way. Again, the OLS algorithm is the best
approximation to the electric scalar potential Green’s function G,,.

In Figures 8 and 9, it is shown qualitatively how the RBFNs
approximate the smooth variations of the exact electric scalar
potential Green’s function for a source point placed in the testing
net. In Figure 10, the source point and two observer line cuts,
where the Green’s function is calculated, are displayed. The line
cut placed at y/b = 0.2273 has been chosen to show the RBFN
performance near the source. On the other hand, the line cut placed
at y/b = 0.8636 is placed far from the source. Each line cut
consists of 50 equidistributed observer points that belong to the
corresponding line of the testing net. Therefore, both the source
and observer points are new input data to the neural network.
Although the approximation made by the k-means clustering al-
gorithm is closed to the exact solution, OLS leads to better results,
as shown in Figures 4 and 7.

Once the RBEN is trained, new outputs can be fast calculated
using the neural network. In Table 1, the time required to compute
the training data with 150, 200, and 300 neurons is shown. The
computational time consumed to calculate the exact solution was
46.8 s. The OLS training time for a 300-neuron RBFN was 817.4
s. The training time took 41.612 s for k-means clustering. Finally,
it took 14.67 s for the random selection of centers algorithm. The
computer used to carry out these simulations was a Pentium IV
with 3.06-GHz processor.

5. CONCLUSION

This paper has presented the use of neural networks (NNs) for the
calculation of multilayered-media boxed Green’s functions. Once
the radial basis function network (RBFN) is trained, new potential
values of any source point can be quickly calculated. The neural
network takes as an input the spatial coordinates of the source and
observer points, with a fixed frequency. The performances of three
different RBFN learning strategies are studied. The RBFN output
values for the training and testing data show that the network is a
good model for the calculation of the electric scalar-potential
Green’s function. The 200-neuron RBFN was nearly 80 times
faster than the exact method used to carry out the computations.
The 300-neuron RBFN was more than 50 times faster than the
exact procedure. The orthogonal least squares (OLS) algorithm
leads to the best results. The variance that allows the best perfor-

mance for this learning strategy comprises values from 0.05 to 0.1.
This leads to networks with only 200 neurons necessary to achieve
the selected error level. The results presented show that the RBFN
is a useful tool in the design CAD tools for microwave circuits,
where hundreds of Green’s functions have to be calculated. The
time saved when hundreds of Green’s functions are calculated
using the RBFN makes the training time negligible, even when
OLS is used.
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