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Abstract— In this paper, we propose and analyze a multicast
application called SOMA (SynchrOnous Multicast Applica-
tion) which offers multicast file transfer service in an asym-
metric intra-campus environment (several interconnected
wired and wireless LAN networks interconnected through
few routers).

For efficient bandwidth utilization, SOMA transmits IP
packets by using multicast addressing. We also propose a
complete multicast transport protocol involving both, the
flow and error correction algorithms. The protocol adapts
the window size and the overall application transfer bitrate
to the minimum network capacity, allowing synchronism
and reacting quickly when congestion arises at any network
router.

The application behavior has been tested by simulation in
a mixture of wired and wireless intra-campus networks, and
intensively studied by experimentation in an intra-campus
environment composed of a wired Fast Ethernet and a
wireless 802.11b Ethernet connected through an Access
Point router. In addition, we develop a mathematical
model to validate analytically the most important protocol
parameters. The methodology employed to define, analyze
and evaluate this multicast protocol is, indeed, another
contribution of the work and can be easily extended to
other multicast protocols.

Keywords: Multicast, flow and
transport protocol.
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1. INTRODUCTION

The use of multicasting within a network has many
strengths. Multicast minimizes the link bandwidth con-
sumption because no multiple unicast connections (a
connection for each receiver) are needed to send the infor-
mation. In addition, the maintenance of only a multicast
connection, instead of several unicast connections, also
reduces the sender and router processing and the delivery
delay. However, IP multicast technology adds additional
tasks to the network devices. Network elements must be
able to dynamically manage the multicast group com-
position and also they must implement adequate routing
protocols to handle IP multicast traffic.

In spite of MBone creation (a virtual multicast network
which allows multicast packets to travel through routers
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that only handle unicast traffic), IP multicast has not
become an extended Internet service. A wide range of
subjects have stalled the widespread use of IP multicast.
However, the widespread use of Ethernet standard (in-
herently multicast compliant) as the technology to inter-
connect electronic devices, the proliferation of wireless
networks based on IEEE 802.11 standard (also multicast
compliant) and the use of Linux (an open source operating
system which implements most of the network tasks) have
re-opened the scenarios where IP multicast technology
could be used. The work presented in this paper is focused
on a new I[P multicast scenario, that we have called
intra-campus scenario. Concretely, we propose, analyze,
implement and test a SynchrOnous Multicast Application
called SOMA to synchronously transfer a large amount
of data (files and hard disk partitions) from a server to
a group of clients. It is specially featured to operate in
an intra-campus environment, which is defined as several
LANs (wires or wireless) interconnected through few
routers.

To do it, the socket interface has been selected since it
offers a relatively easy tool to define and to create a layer
3 multicast communication. However, multicast transport
protocol requirements (flow and congestion control, error
correction, etc.) are more complex than in a point-to-point
one. Since TCP is a unicast oriented protocol, it cannot be
directly used in a multicast environment. Therefore, the
choice of an adequate transport protocol is the key issue in
the multicast application development. As a consequence,
the main contribution of the paper is the definition and
test a synchronous multicast transport protocol to be used
by our SOMA application in an asymmetric intra-campus
environment.

Obviously, our solution requires multicast routing fa-
cilities, but this is not a problem since involved routers
are located into our administrative domain. In spite of its
simplicity, our proposed protocol provides the main tasks
of a transport protocol: Efficient and simple flow control,
congestion control and error correction algorithms.

SOMA protocol simplicity makes possible an easy
codification and a feasible mathematical analysis of the
main key features which enables the optimization of some
parameter values. It has been written in C language using



standard Linux kernel routines.

We also describe how to capture and post-process its
generated network traffic. In particular, we have used a
Linux kernel architecture to improve the packet capture
process (LSD Linux Packet Filter) and we have modi-
fied two well-known open-source sniffers (tcpdump and
ethereal) to interpret our protocol packets.

The paper is organized as follows. Section 2 presents a
survey of multicast transport protocol evolution. Section
3 describes the prossed protocol. Section 4 analytically
obtains the key protocol parameters. Section 5 presents
our test results in a mixed wired and wireless LAN
scenario. Finally, section 6 concludes the paper.

II. RELATED WORK

The extreme complexity associated to the definition
of a unique and global multicast transport protocol that
meets the requirements of all types of multicast appli-
cations leads the designers to several approaches for the
transport protocol. The most widespread solution consists
of the definition and codification of a specific multicast
transport protocol which fits the requirements of a specific
application.

Several multicast transport protocols were proposed
to meet the requirements of delay-sensitive, real-time
interactive applications, such as RTP/RTCP [1] to support
multi-party multimedia conferencing tools, SRM [2] and
TRM [3] to support distributed whiteboard tools, etc.
These applications can tolerate a certain degree of data
loss, but they are sensitive to packet delay variance.

On the other hand, other protocols were proposed to
meet the requirements of reliable data distribution ser-
vices, such as multipoint file transfer. These applications
are not delay-sensitive, but require that the information
is entirely received, or else the transfer fails. The Muse
protocol [4] (which was developed to multicast news arti-
cles on the MBone), MDP [5] (the evolution of a protocol
used in disseminating satellite images over MBone) and
MFTP [6], RMTP [7] and TMTP [8] (other protocols
for reliable one-to-many data transmission) are examples
of this kind of protocols. Most of them are designed to
work in the MBone when the number of receivers is too
large (thousands of receivers). To reach scalability and,
therefore, to solve the feedback implosion problem, some
of them define complex hierarchical topologies and they
even introduce some non-layer 3 functionality into the
network devices.

In recent years, the IETF Reliable Multicast Transport
(RMT) group [9] has taken a different approach to de-
sign a set of multicast protocols to suit the variety of
applications and service requirements for one-to-many
and many-to-many communications. Instead of defining
and standardizing multiple protocols, they are defining
“building blocks” and two “protocol instantations” [10].
Building blocks are modular components that solve a
particular functionality common to multiple protocols.
They include, among others, forward error correction
schemes, two congestion control algorithms (PGMCC and

TFMCC) and generic mechanisms for router assistance.
Protocol instantations define how to combine one or more
building blocks to create a working protocol. The first
one is the Negative-Acknowledgment Oriented Reliable
Multicast (NORM), which describes the framework and
common components relevant to multicast protocols based
primarily on NACK operation for reliable transport. The
second one is the Asynchronous Layered Coding (ALC)
protocol, which describes a massively scalable reliable
content delivery protocol. ALC uses a multiple rate con-
gestion control building block that is feedback free. A
sender sends packets in the session to several channels
at potentially different rates and receivers just adjust
their reception rates individually by joining and leaving
channels associated with the session. ALC uses the FEC
building block to provide reliability.

As we have indicated in the Introduction section, our
objective is to define a synchronous multicast transport
protocol to be used by our SOMA application in an
asymmetric intra-campus environment. Building blocks
proposed by the RMT group are too complex since they
cover a general multicast transport scenario. Therefore,
we have recovered the first protocol design approach. We
propose a complete, compact, and also simple SOMA
transport protocol to be used by our SOMA application.

III. SOMA DESCRIPTION

SOMA is a multicast application designed for trans-
mitting synchronously large files and hard disk partitions
to a set of clients. This protocol is an extension and
enhancement of a previous work [11] to cover asymmetric
intra-campus networks. SOMA introduces a transmission
window to improve the obtained throughput. We also
implement an improved flow control mechanism that
allows SOMA to be used when unequal capacity networks
are interconnected (asymmetric networks). This is a fre-
quent situation when wireless and wired network coexist.
Moreover, in wireless networks (whose proliferation has
not doubt, nowadays), the available throughput does not
only depend on the number of applications which share
the network. In fact, it changes depending on the network
capacity, which depends on the signal to noise ratio and
other physical parameters. Therefore, it is important to
design an adequate flow control mechanism that quickly
reacts when congestion arrises.

The application employs IP multicast addressing and
implements its own transport protocol over UDP. Thereby,
port multiplexing and error checking facilities are au-
tomatically resolved by the kernel. However, due to
the UDP simplicity, the flow control and error recovery
mechanisms have to be implemented to fit the transport
layer requirements of our application. For this reason, we
alternatively refer to SOMA as an application or as a
transport protocol.

A. Overall protocol description

SOMA splits the transmission process from the server
to the multicast group of clients into two differentiated



phases. In the first one, that it is also called multicast
phase, the server multicasts a set of data packets (a
transmission window) to all clients. The clients store the
payload and, only when the last packet of the transmission
window is detected, they contend to confirm the received
set of data packets by sending an ACK packet. Although
in this phase the server never retransmits any data packet,
a client issues a NACK packet when packet losses are
detected and it also saves an error mark instead of the
packet payload. As it is described in section III-C, the
feedback information (ACK and NACK packets) received
at the server is used to resize the transmission window in a
appropriately way. The above procedure is repeated until
the file is completely transferred.

The second phase (also called unicast phase), which is
focused on error correction, starts when the entire file has
been transmitted. Each receiver re-scans its file looking
for error marks. If one error mark is found, the client
delivers a unicast REPAIR-REQUEST packet towards the
server. The server answers the client sending a unicast
REPAIR-RESPONSE packet.

Error correction tasks are relegated to a final phase
since current network technologies offer low error rates.
This assumption avoids a complex protocol design, solv-
ing infrequent packet losses during the transmission.

One of the main SOMA protocol features is syn-
chronicity. The proposed flow control algorithm, which
is explained and tested below, adapts the server transmis-
sion rate to the slowest bitrate of a participant network.
Therefore, all the clients receive the information at the
same time.

SOMA is mainly used to replicate a large amount of
information. In this scenario, the reduction of packet flows
to only one multicast data flow is the objective, and
synchronicity is thus, a consequence but not the main
concern. However, disabling the error correction phase,
the synchronicity feature converts SOMA into a useful
and simple multicast transport protocol also for on-line
applications.

B. Proposed header

The SOMA packet header consists of 4 fields:

o The Sequence Number (SN, 4 bytes long) used
mainly for packet loss detection.

o The Type Of Packet (TOP, 1 byte), which distin-
guishes a DATA, a ACK, a NACK, a REPAIR
REQUEST or a REPAIR-RESPONSE packet.

o The Payload Length (PL, 2 bytes) indicates the total
packet length in bytes.

e The Last Window Sequence Number (LWSN, 4
bytes) is used to indicate the last packet of a given
window and then to implement a effective feedback
reduction scheme.

The header is followed by the data payload. Although
theoretically the payload could encapsulate to 2'6 bytes
of data, we use a payload size of 512 bytes in our
implementation because UDP packet usually does not

exceed 512 bytes and also because 512 is the usual disk
sector size.

C. Flow control algorithm

After a data packet is sent by the server, it starts a timer
called timeout and immediately it waits until an ACK
packet for each participating LAN (not for each client)
acknowledges the window or until the timer expires. If
the timer expires before the ACKs are received, its value
is increased multiplying it by a factor of a (a > 1). But
if the window is confirmed in time, the timer value is
decreased as denoted by expression (1)

Tout = max{%, dflt_Tout} (D
Where § > « > 1 and dflt_Tout is the bottom threshold
value. The server repeats this above operation until the
file is completely transferred.

A window is only confirmed when the server receives
one ACK for each participating LAN, ensuring syn-
chronism among all multicast clients. Therefore, if one
of the networks suffers congestion, the timeout value
is increased and therefore, the data transmission rate
decreases. When congestion disappears, the timer redefi-
nition allows to increase the transfer rate again.

To improve the flow control reaction, it is convenient
that not only the timer but also the window size changes
appropriately. To accomplish this, just before sending the
next data window, the server modifies the window size as
follows:

« If the expected ACKs associated to this window have
been received before the timer expires, the server
increases the window size in one unit.

« If the timeout expires, the server decreases the win-
dow size in one unit.

o For each NACK that indicates a different packet
loss (only the first NACK indicating a particular
packet loss is considered), the server decrements the
window size in one unit.

On the other hand, the clients are waiting for data
packets. When a packet arrives, each client extracts the
sequence number and compares it with the expected
value:

« If the sequence number is the expected one, the client
stores the payload and updates the sequence number.

« If the sequence number is greater, the client detects
packet losses and sends a NACK with the sequence
number of the received data packet. Simultaneously,
it finds out the number of lost packets and it stores
an error mark for each one. Finally, it also stores the
data contained in the received packet.

« If the sequence number is smaller, the data packet is
discarded.

In addition, if the SN matches with the LWSN value,
the client competes for sending an ACK to confirm the
entire window issued by the server (see the feedback
implosion reduction below).



D. Feedback implosion reduction

To reduce the amount of ACK feedback packets in the
network, a client must wait a random period called ARTP
(ACK Random Time Period) before sending an ACK and
simultaneously, it listens if another client belonging to its
LAN is transmitting the same ACK. If the ARTP expires
and the ACK has not been received, the client generates
and multicasts its own ACK. The rest of clients will
receive the ACK but only the clients at the ACK sender
side (belonging to the same subnetwork) will disable
its own ACK transmission. The ARTP value is obtained
from a uniform probability distribution function ranging
between zero and ART P,,,,.. Thereby, only one ACK for
each participant LAN is sent to the server, independently
of the number of clients.

The effective ACK generation time is a random vari-
able defined as: ARTP = min(ARTPy,--- ,ARTP,),
where ART P; is the random time value obtained by each
client and n is the number of clients attached to the same
LAN.

As it has been described above, each random value
ART P; is uniformly distributed. Therefore, the associated
probability density function (pdf) and cumulative distri-
bution function (cdf) are given by

1
f(artpi) = Ev 0 S artpi S ARTPma:E (2)
tp;
F(artp;) = Plartp; < ARTP;) = %; 3)

For sake of simplicity, k is the maximum ARTP value.

The cumulative distribution function of the ARTP
variable can be obtained as follows:

F,(artp) = P(ARTP < artp) =

P(ARTP < artp|ART P, < artp;)P(ART P, < artp)+
P(ARTP < artp|ART Py > artp1)P(ART P, > artp;)

but

P(ARTP < artp|ART P, < artp) =1
P(ARTP < artp|ART P, > artp) = F,,_1(ARTP)

Therefore,

artp
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due to the recursive nature of equation (4) and the
polynomial form of equation (3), it can be stated that

F,(artp) =

ip
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Substituting the above equation into equation (4), the
obtained expression is also polynomical,
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An exhaustive observation of the coefficients leads us
to the Tartaglia Triangle. Then, the cdf can be expressed
in a more compact way,

Fy(artp) = En:(—l)”l (:‘) (“?) 6)

i=1
and the probability density function is
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However, due to the signal alternance of the sumatory
terms, all of them are cancelled except the first one.

Therefore,
1 n _
n+1\1/|

1) -ART Py

i=1

=k

E[ARTP] =k {1 -

:<1_

Which is clearly decreasing with the number of clients.
Figure 1 briefly summarizes the usual protocol op-
eration. The server sends a set of data packets, each
time increasing the window size until W size is reached.
At this point, the timer expires just before all ACKs
are received, probably because at some network point
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Figure 1. Window size evolution in an asymmetric network environment
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Figure 2. Flowchart of the multicast stage of the server.

congestion arises. The server reacts quickly increasing the
timer value and decreasing the window size. It is clear that
for protocol consistency, the timeout must be greater than
the mean ARTP value (ART P).

E. Formal protocol description

In above subsections, the proposed protocol has been
described in detail using natural language and narrative
description. However, in order to facility its understanding
and implementation, it is important to expose the protocol
in a formal way. Figures 2 and 3 summarize the server
and the client behavior using flowchart diagrams. It can
be seen that basic set instructions of any programming
language could be used to implement both the server and
the client.

Send ACK na

Figure 3. Flowchart of the multicast stage of the client.

The timeout timer management requires an special
attention. Most existing network protocols are designed
to send some information from a source to a receipt
and then, wait for an answer during a defined lapse
of time. Therefore, the protocol must set a timer and
wait for any one of multiple events to occur: the timer
has passed or the answer is received. To approach those
timers, most developers use the well-known OS select
function [16]. Although that function lets us specify a
resolution in microseconds, it is recommended to use it to



manage timer values of the order of hundredth of seconds.
Therefore, this function is good enough to code protocols
which timers do not require very small time values (for
instance, TCP ACK waiting time).

Fortunately, there are other solutions to code protocols
which require smaller timers. In [17], V. Oberle has
developed a module which provides precise timers for the
Linux 2.4 kernels and further. The module use the timer
of the local APIC (Advanced Programmable Interrupt
Controller) available on Pentium processors family since
P6 chips. This module provides microsecond precision
timers that are programmed with a TSC (Time Stamp
Couter) value. In order to use the interrupts generated by
the APIC, like the timer interrupt in the module, it is
needed to patch the kernel to redirect the corresponding
Interrupt Service Routine (ISR).

IV. PROTOCOL CHARACTERIZATION

The protocol behavior is strongly correlated with the
flow control performance. In particular, the maximum
window size, the steady state window size and the max-
imum throughput values are the three most important
protocol parameters.

A. Maximum window size

The transmission rate is determined by the network
capacity, the timeout timer and the window size. The
proposed flow control algorithm modifies the last two
parameters to reach an optimum transfer rate.

If there is no congestion, the server increases the
window size up to its maximum value (supposing also an
error-free transmission channel). To simplify, but without
loss of generality, it is supposed that there is only one
LAN with capacity C bps. Let us also suppose that the
file size is large enough to assume that the transmission
is performed by the maximum window size. Under these
conditions, the total transfer time can be calculated as

_ FileS DataPS
~ PayloadS C

FileS ——0  AckPS
JrPayloozdS -W (ARTP * c > (19)

Where FileS is the file size, Payloads is the data packet
payload size, DataPS and AckPS are the data and ACK
packet sizes respectively, ART P is the ARTP mean value
(that is, the time interval between the reception of a data
window and the generation of the corresponding ACK
packet), and W is the maximum window size.

The first addend is the time needed for the server to
transfer the file and the second one is the average time
required by the clients to issue the ACK packets. It is
obvious that a high maximum window value enables a
faster transmission rate, but at the same time the protocol
has fewer opportunities to react to network congestion.

By simply operating in (10), the transfer time reduction
due to the use of a window size W5 instead of W7 (W5 >

W1) is equal to

FileS AC/CPS W2 — W1
PayloadS C WiWs

If an appropriate window size W is selected, an alter-
native window size Wy (where Wy >> W;) does not
provide a remarkable transfer time reduction since
. Wy — W, 1
lim —— 11— (12)
W2—oo W2W1 W1
For example, the transfer time reduction when a max-
imum window size of 100 is used instead of a maximum
window size of 1 is

FileS
PayloadS

That is a notable transfer time reduction. However, the
transfer time reduction when a maximum window size of
1000 is used instead of a maximum window size of 100
is only

(ARTP+ (11)

.0.99  (13)

(ARTP | AckPS )

FileS ——_  AckPS
W (ARTP + C’) -0.099 (14)

Therefore, there is an optimum maximum window
size value from which the transfer time reduction is not
fundamental, but it reduces the server opportunities for
detecting and reacting to network congestion.

According to (11) and (12) we choose a maximum
window size of 100 data packets (rule of thumb) since
it achieves a fast data transmission rate, a quick response
when congestion arises, and it avoids protocol starvation
(that is, it enables to fairly share the network capacity
with other flows).

B. Window Size Convergence

In a general scenario, the proposed flow control mecha-
nism increments the transmission window size and modi-
fies the timeout timer value during the multicast trans-
mission until a steady state situation is reached. This
steady state window size value, that is obtained according
to certain network conditions, is strongly correlated with
the throughput. In this section we derive a mathematical
expression to this parameter.

In our analytical model, we must assume some simplifi-
cations to reduce the extremely complex general situation,
which, however, does not invalidate the generality of
our analysis. We assume that the intra-campus network
consists of unequal capacity LAN networks (some of them
working at C; and the others at C, where C; >> C5)
connected through multicast routers. We also assume that
there are no other applications using the network and
that the server is reasonably situated at one of the fastest
LANSs.

Congestion may arise in routers interconnecting LANs
with different capacities. Those routers can be modeled
as a pair of buffers serving packets at C; and Cy Mbps
respectively.

Supposing an initial window size of one (see figure
1), the server sends only one data packet to the network



and it waits for ACK packets (one ACK packet from
each interconnected LAN with clients). The last ACK
packet received at the server is the ACK going through
the path formed by the highest number of C networks
(it is composed of No1 LANs at C; Mbps networks and
by Nco LANs at Co Mbps). When all ACK packets have
arrived, the window size is increased by one unit and the
next data window is issued. For a W window size, the
server will receive the last ACK packet approximately at

W - DataPS
Cy

DataPS

DataPS+
Cs

Cy

AckPS N AckPS N

o + +Ng2 702 ~
_w- DataPS DataPS
~ Cy Cy

where LAN; to LAN; buffer delay can be neglected
because the service rate at the other side is very high (Cy
Mbps).

The server will detect congestion when all the ACK
packets do not arrive in time, that is, when the timeout
timer expires before all the ACK packets arrives to it.
Therefore, the window size just before congestion is de-
tected (W) can be obtained when equation (15) slightly
matches with dfit_Tout:

W — (dflt,Tout - ARTP)
= DataPS

It can be noticed that for each C network added to the
critical path, the W value is decremented in one unit.

At this time, the server increases the window size
again and it sends the next data block. Now, congestion
is declared since the timer expires before the last ACK
packet arrives. Therefore, the flow control multiplies the
timer by «a and decreases the window in one unit. In
this new situation, it can be guaranteed that the server
assumes the congestion has disappeared, since o > 1.
Once again, the window is increased and the timer is
divided by 3. But since 3 > « > 1, the timer value
reaches its default value again and then congestion comes
back. This behavior is continuously repeated. Therefore,
the window size reaches a steady-state value slightly
oscillating around Wr.

+ (Ne2 — 1) c1

ARTP + Noy

+ (Ngg — 1) +ARTP (15)

+Cy— (Ne2 — 1)J (16)

C. Maximum throughput

SOMA transport protocol obtains the maximum
throughput and the maximum window size (W,,,4,) when
it is the only running application using network resources
and there is no congestion at any router. In that situation,
the time interval between two consecutive data windows
is restricted by the ARTP mean value (9) and not by the
timer (dflt_Tout >> ART P,,,.). Therefore, in this case
the maximum throughput is bounded by

Wnas - DataPS
Wnas - DataPS
C

a7
+ ARTP

Where C'is the network capacity in bps at the server side.

However, if congestion arises at some network point,
the timeout timer restricts the time between data blocks
and the window size reaches its steady-state value. There-
fore, the maximum throughput is bounded by

(Wr +1) - DataPS

(Wr +1) - DataPS
C

(18)

~+ dflt_Tout

V. CAPTURING AND PROCESSING SOMA TRAFFIC

There are several solutions to capture real traffic in
a network. The first one is to use a hardware protocol
analyzer. They are able to capture frames and to get
some traffic figures in real time. The capture can also
be stored in a file to obtain more statistical parameters by
subsequent processing. The equipment price and a very
limited adaptation to new emerging network technologies
are the main drawbacks of this solution.

Other solution is to use a software network sniffer
running in a computer. Many companies (Cisco, HP,
Nortel Networks, etc.) add this feature to their network
management tools. However, the software cost and the
limited traffic analysis characteristics are the main draw-
backs in this case.

However, there is another solution: The freeware snif-
fers like ethereal [13] and fcpdump [14] (the first one is a
GUI network sniffer and the second one is a line-oriented
sniffer). This is the best solution in most of the situations.
Their features are comparable to hardware solutions and
they require a low investment. Furthermore, this option
can adapt to any network technology since, nowadays,
there are many network interfaces (Frame Relay, ISDN,
ATM) available to PC at competitive prices. We have
chosen tcpdump and ethereal sniffers to evaluate our
proposed protocol.

Working with open-source sniffers allows us to easily
improve the protocol analysis capabilities. The software
can be modified to be able to identify a SOMA packet
and to show the packet fields in an adequate format. Ethe-
real is a multiplatform software written in C language.
Amongst other libraries, ethereal uses the packet capture
and filtering library libpcap (Packet CAPture LIBrary),
the graphical user interface gtk+ and the glib library
which allows the sniffer to generate and manage a proto-
col stack similar to the recommended OSI model. Adding
a new protocol to the protocol supported set requires
the codification of a new dissector (a C language file
which name must be packet_soma.c; that is, the reserved
word packet_ followed by the new protocol acronym). The
dissector encodes the new protocol definition, its header
fields, its names and the format they must be shown in
the result window. Moreover, the new dissector must be
registered to the lower level dissector, and then glib library
is able to insert SOMA protocol into the global protocol
stack. In our case, SOMA packets are encapsulated into
UDP packets, and therefore, the lower dissector is the
specific UDP dissector.
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Figure 4. Operating System with and without Packet Filter. With a
Packet Filter, each application establishes a kernel level filter. Each
packet filter decides whether a packet is to be accepted and how many
bytes of each packet should be saved. Without Packet Filter, all packets
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Like ethereal, tcpdump is an open-source sniffer written
in C that uses the libpcap library. However, the capture
information is shown in console mode. This feature allows
to capture traffic using computers without a graphical
interface (i.e. X Server). This fact allows to save system
resources and therefore to improve the traffic capture
process.

Tcpdump adaptation implied different modifications.
First, the predefined display format has been completely
redefined. Original fcpdump displays the packet infor-
mation in a tree structured format, where each protocol
information is printed in a different line. Our customized
tepdump displays all the packet information in only one
line (for post-processing purposes, as it is explained later).
Second, as ethereal, tcpdump must be able to detect and
interpret a SOMA packet. For that, the UDP protocol
module (print_udp.c) has been modified to determine the
port number associated to a SOMA packet. Then, if
a UDP port number of a received packet matches the
SOMA port number, print_udp.c calls the print_soma()
function, coded in print_soma.c which analyzes and prints
the SOMA header.

As well as adapting open-source sniffers to interpret our
protocol, we use the Linux Packet Filter (LPF) inspired by
the BSD Packet Filter (BPF) [12], a kernel architecture for
packet capture. The BPF has two main components: The
network tap and the packet filter. The network tap collects
copies of packets from the network device drivers and
delivers them to listening applications. The filter decides
if a packet should be accepted and, if so, how much of it
to copy to the listening application.

Figure 4 illustrates how the operating system manages
the incoming packets in both cases: with and without
a Packet Filter. When a packet arrives at a network
interface, the link level device driver normally sends it up
to the system protocol stack. But when BPF is listening

on this interface, the driver first calls BPF. BPF feeds the
packet to each participating process filter. For each filter
that accepts the packet, BPF copies the requested amount
of data to the buffer associated with that filter. The device
driver then regains control.

The main advantage of the BSD Packet Filter is that
it discards unwanted packets as early as possible and
therefore it minimizes the packet copies across the kernel
buffers.

Once traffic is captured and stored, information from
packet header must be processed to extract the desired
statistical figures. For that, we have use awk, a powerful
pattern scanning and processing language. Awk scans
input lines, line by line, to see if a line matches a set
of patterns or conditions specified in a program. If a line
matches a certain pattern, a specified action is carried out.

The high processing rate offered by the awk language
has determined this election. Awk functions and pro-
gramming philosophy are very similar to C language.
Multiple arithmetic calculations can be programmed in an
extremely easy way, and therefore many protocol figures
and parameters can be obtained efficiently and quickly.

VI. TEST RESULTS DISCUSSION

In this section, we evaluate SOMA in a real situation.
It should be noticed that our analytical study is focused
on a transport layer but test experiments are obviously
the result of all OSI layers integration, from the physical
layer up to the transport one. Particularly, in section IV
we have not taken into consideration the MAC, LLC,
IP and UDP protocols and sub-layers. Moreover, SOMA
runs over a multi-task OS, which has non real-time
facilities (Linux kernel 2.4). Therefore, although we try
to minimize the computational load in each computer
(unnecessary processes, like cron, are killed), sometimes
the kernel may give priority to other processes instead of
SOMA. Both effects, the OSI layers integration and the
multi-task OS may cause that the test results reveal some
smaller differences with the analytical ones.

The intra-campus environment is formed by two LANs
of extremely unequal capacities, a wired Ethernet LAN
at 100 Mbps and a wireless LAN 802.11b at 2 Mbps,
both connected through a wireless access-point router (see
figure 5). The access-point router is a Linksys WRT54G,
co-sponsored by Cisco Systems. We changed its firmware
by a stable and configurable Linux OS called OpenWrt
[15].

To verify that the analytical results obtained in section
IV fit well enough with the test results, the same intra-

802.3
(100 Mbps)

802.11b
(2 Mbps)

Figure 5. Router model. Delay from LAN> (802.3) to LAN; (802.11b)
network is negligible
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Figure 7. Instantaneous throughput evolution for different dflr_Tout values: 80, 100 and 120 ms

campus environment is used: the clients are situated in
both LANs and the server is situated in the wired network.

Our test intra-campus network forces congestion since
the wireless LAN capacity (2 Mbps) is fifty times lower
than the wired network capacity (100 Mbps).

Figure 6 shows the evolution of the transmission win-
dow size when a 10 MBytes file is transfered to a group
of clients (4 clients are attached to the wired network and
4 clients are attached to the wireless one) for different
dfit_Tout values: 80, 90, 100, 110 and 120 ms. According
to expression (16), the window size should oscillate
around 29, 32, 36, 39 and 43 packets respectively. To
obtain these values it is assumed that: (a) The ARTP
is 120 us, which is calculated using (9) when n=4 and
the ART P4, is 600 ps. (b) The effective wireless
LAN capacity at the transport layer is around 1.55 Mbps
instead of the theoretical 2 Mbps due to the OSI layers
integration.

As it can be observed, the analytical values fit well
enough with the experimental ones and the window
size always remains around its steady state value (Wr).
Sometimes the window size slightly decreases due to
sporadic packet losses at the wireless LAN side and also
because of background control applications packets, such
as BPDU spanning-tree, which overload the access point
buffer capacity.

Additionally to the model validation using experimental
results, we have validated our window size convergence
study in more complex scenarios using the Opnet sim-
ulator. Each possible scenario is formed by several C
and Cs networks so that the last ACK packet received
at the server goes through a path formed by Ng; and
Nco networks. Table I presents the Wr value obtained
by simulation and theoretically (16) when the value Noo
varies among 1 and 4.

It can be observed that simulated results validate the

TABLE 1L
W VALUES OBTAINED THEORETICALLY AND BY SIMULATION (IN

PARENTHESIS), SUPPOSING A WIRELESS LAN CAPACITY C2 OF 1.55
MBPS AND ART P=120 uS

dfit_Tout
N¢, 80 ms 90 ms 100 ms 110 ms 120 ms
1 29 (29)] 33 (33)| 37 (37)| 40 (40)| 44 (44
2 28 (28)] 32 (32)] 36 (36)] 39 (39) 43 (43)
3 27 @27)] 31 @3] 35 (35] 38 (38)] 42 42
4 26 (26)| 30 (30)| 34 (33)| 37 (37)| 41 (41

analytical study. In addition, the case Ngo = 1 (the
scenario studied experimentally) fits good enough with
the experimental results showed in figure 6.

Returning to test experiments, figure 7 represents the
instantaneous throughput. Irrespective of the dflt_Tout
value, the server throughput slightly oscillates around 1.55
Mbps. Therefore, the proposed flow control algorithm is
able to adapt the server transmission rate to the slowest
network capacity using a unique flow, maintaining syn-
chronism among all clients and avoiding congestion.

This test result can be corroborated analytically by
introducing the value of W (16) in (18) when Ngo = 1.
Always assuming that mean ARTP value is negligible, the
throughput can be approximated by

dfitTout - Cy + DataPS
dflt_Tout - Co + DataPS
Ch

Where Cy << Cy and DataPS << dflt_Tout - Cy

In the next experiment, our protocol is evaluated in a
single congestionless wired LAN. Figure 8 depicts the
window size evolution and the instantaneous throughput.
In this scenario the window size reaches its maximum
value limited by the protocol (W=100) and the maxi-
mum experimental throughput is around 97 Mbps, which
approximately matches the theoretical result (97.4 Mbps,

~ Cy. (19)

+ dflt_Tout
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Figure 9. Window size evolution in a mixed wired and wireless intra-
campus. The wireless LAN terminals join the file transfer approximately
in the middle of the transfer

from equation 17). Again, the flow control is able to adapt
the transmission to the maximum network capacity.
Finally, figure 9 illustrates the window size evolution
in the same scenario but in a different experiment. At
the beginning only wired clients participate in the file
replication process. As it can be seen, the window size
reaches its maximum value (W=100). But approximately
in the middle of the transfer, the wireless terminals join
the file transfer. As it can be appreciated, the SOMA flow
control is able to quickly adapt to the new situation by
resizing the window (and also the timer, although it is
not shown) synchronizing both networks and avoiding
congestion. If the router buffer is not high enough, some
data packets could be lost during the transition period,
which will be recovered in the error correction phase. To
minimize this effect, the response time of our proposed
protocol is an important factor since the wireless channel
capacity is strongly dependent on physical parameters.

VII. CONCLUSIONS

SOMA is a multicast application for fast file replication
in an intra-campus environment (several LANs intercon-
nected through few routers). One of its most remarkable
aspects is its own transport protocol definition focused
mainly on flow control which is designed to work fine
in an asymmetric intra-campus scenario, formed by LAN
networks with different capacities (probably a mixture of
wired and wireless LANS).

The proposed flow control algorithm is able to quickly
react under congestion, resizing adequately the window

size and the time between data blocks to maximize the
throughput and to minimize the lost packet probability.
Additionaly, the protocol also implements a mechanism
to restore the lost data packets. The proposed error cor-
rection algorithm allows the free-error networks (networks
whose clients have completely received the transfered file
during the multicast phase) to finish the communication.

The main protocol parameters have also been charac-
terized analytically. Some of them are the mean ARTP
value, the maximum window size, the steady state win-
dow size and the maximum throughput. In addition, the
mathematical study has been validated with real traces
in a intra-campus environment composed of a wired
Fast Ethernet network and a wireless 802.11b Ethernet
connected through an access point router. It has been
neccesary to adapt open-source sniffer tools (tcpdump and
ethereal) to capture the real SOMA traffic traces. To be
able to extract the protocol performances from the traces,
we have developed some scripting tools as well.

Although the proposed transport protocol is used in
SOMA for file transfer, its synchronicity and simplicity
makes it interesting for other type of applications, like
on-line applications. The metodology employed to define,
analyze, and evaluate this multicast protocol is, indeed,
another contribution of this work and it can be easily
extended to other multicast protocols.
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