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Abstract—1In this paper, we propose an alternative configuration
for the design of bandpass inductive filters using transversal
topologies. The structure is based on the use of a dielectric post
asymmetrically placed on a cavity resonator. The input and output
windows will couple energy to the TE,>- and TEo3-mode res-
onators at the same time, therefore obtaining the transversal
topology. The proposed configuration is very compact, and allows
to implement transmission zeros for maximum selectivity in an
easy way. Results are validated with Ansoft’s finite-element High
Frequency Structure Simulator tool, and with an integral-equation
technique to demonstrate the validity of the proposed structure.

Index Terms—Dielectric posts, doublet topology, inductive fil-
ters, transmission zeros, transversal filters, waveguide filters.

I. INTRODUCTION

ILTER DESIGN is one of the most interesting fields in mi-
F crowave engineering. A wide number of different topolo-
gies allows to obtain specific responses for a wide range of appli-
cations. Inductive filters constitute a strategy of special interest
due to their simplicity and easy manufacturing processes asso-
ciated with these configurations [1]. In this line, several studies
have been developed in the past to improve the electrical charac-
teristics of inductive waveguide filters. For instance, microwave
filters with inductive windows were explored in [2] for space
applications. In addition, inductive filters with metallic and di-
electric posts have been studied in detail in [3]—[5]. Elliptic re-
sponses were also investigated, for the first time, combined with
inductive topologies in [6]. The work presented in [6] is, in fact,
very interesting since it constitutes the first attempt to imple-
ment transversal filters with inductive waveguide topologies.
In this sense, it is well known that transversal filters have sev-
eral advantages over other inline topologies. The main one is
that a maximum number of transmission zeros can be imple-
mented for a given order of the filter. Another advantage is that

compact topologies can usually be implemented due to the rel-
atively easy coupling routing scheme used. Apart from the ad-
vantages of transversal filters, this topology is known to be more
sensitive to mechanical tolerances. This can be a drawback for
certain high-precision applications, which, in general, can be
overcome by introducing tuning elements in the final filter struc-
ture.

Synthesis methods for transversal filters were first presented
in [7]. Since then, several topologies were proposed, both in
printed [8] and waveguide [9] technology. However, the imple-
mentation of transversal filters using inductive waveguide struc-
tures was only proposed in [6]. In that study, the use of the
modes TE102 and TE201 was proposed as the fundamental res-
onances of the filter. The main drawback of this structure is that
the volume of the resonant cavity need to be increased (larger
cavity width) in order to allow for the propagation of the higher
order TE20 mode of the waveguide.

In this paper, we present an alternative method for the imple-
mentation of transversal filters using inductive waveguide con-
figurations. The structure is formed with a cavity coupled with
inductive windows, and with a dielectric post placed asymmet-
rically inside the cavity. The resulting topology is very compact
in size since the width of the cavity is not increased to allow for
the propagation of higher order modes. We show in this paper
that the dimensions of both the waveguide cavity and dielectric
post can control all the coupling parameters needed to synthe-
size useful transfer functions. This novel topology for filters al-
lows to easily obtain high selective elliptic filters saving mass
and volume. Results obtained with the transversal coupling ma-
trix theory described in [7] are compared with simulations ob-
tained with the Ansoft’s finite-element High Frequency Struc-
ture Simulator (HFSS) tool and with an integral-equation tech-
nique, validating the new topology proposed.

II. DESCRIPTION OF THE FILTER TOPOLOGY

The filter under study consists of the classical doublet
topology shown in Fig. 1. This structure is known to have a
response with one transmission zero if no coupling between the
source and the load is considered [8], [10]. The proposed prac-
tical topology for implementing this type of filter is sketched in
Fig. 2. It consists of a cavity delimited by two inductive win-
dows with a square dielectric post joined to the center of one of
the cavity walls. These two elements (cavity and dielectric post)
are the two basic components of the filter, which will allow the
combination of the two resonances 21 and R2 of the doublet
scheme in Fig. 1. The volume of the waveguide resonator is
also reduced by the presence of the dielectric post. In addition,
the width of the waveguide need not be increased to allow
for the propagation of higher order modes. This represents a
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Fig. 1. Typical routing scheme of a doublet. J; to J4 represents the couplings
between the source .S and the load L to the resonators 2, and R.
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further reduction of the volume of the device, as compared to
the original design presented in [6].

Following the theory of the transversal filter topology pre-
sented in [7], the coupling matrix M of the doublet in Fig. 1 is
known to be of the form shown in Table I. In this table, S is the
input port (source) and L is the output port (load). For our pro-
posed topology, the elements of the coupling matrix M can be
controlled by means of the dimensions shown in Fig. 2.

The first resonator of the doublet is formed with the TE g2
mode of the waveguide cavity formed between the two induc-
tive steps. To demonstrate that the TE;p2 mode is actually res-
onating in the structure, in Fig. 3 we present the electric field
distribution inside an empty cavity resonator of length L. =
19.9 mm. We can observe that the electric field has two varia-
tions along the length of the cavity, typical of second-order res-
onances. In Fig. 4, we present a wide frequency sweep of the re-

sponse of this cavity. We can clearly observe the first-order res-

onance at 9.8 GHz and the second-order resonance at 14 GHz.

It is at this frequency that we will operate the final filter. It is
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Fig. 3. Electric field distribution inside the cavity without the dielectric post,
showing the typical field distribution of the TE;,> mode. Dimensions: ¢ =
19.05 mm, L, = 19.9 mm, w,, = 4 mm, h,, = 10.65 mm, f = 14 GHz.
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also important to note that the use of the second-order reso-

nance along the cavity length is essential for the correct op-
eration of the filter. This is because in the doublet topology
shown in Fig. 1, one of the four couplings must always be op-
posite in sign with respect to the sign of the other three cou-
plings [11]. The change in sign of the electric field shown in
Fig. 3 is actually implementing this negative coupling. Consid-
ering the TE192 mode as the first resonator (R;) of the filter,
J1 and .J, are the impedance inverter constants associated to
the couplings between this resonator to the source and load, re-
spectively. From the above discussion, it is simple to see that
the amount of coupling to this resonance is controlled with the
width of the inductive windows (h,, in Fig. 2).

With the length of the cavity selected in the previous example,
the TE;93 mode cannot resonate in the cavity. However, since
the basic mode TE¢9 has a zero field at the center of the cavity,
we can place a dielectric post there without introducing impor-
tant perturbations to this resonance. On the contrary, the field of
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Fig. 5. Scattering parameters of a cavity loaded with a dielectric post. Dimen-

sions according to Fig. 2: ¢« = 19.05 mm, L. = 30 mm, w,, = 4 mm,
h, =10.65mm, Ly = 3.5 mm, hy = 4 mm, e, = 4.
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Fig. 6. Resonant TE ;> mode in the cavity loaded with a dielectric post at
a frequency of 11.5 GHz. Dimensions according to Fig. 2: ¢ = 19.05 mm,
L. =30mm, w, =4 mm,h, = 10.65 mm, L; = 3.5 mm, hy, = 4 mm,
€, = 4.

the TE;y3 mode is maximum at the center of the cavity. There-
fore, a dielectric post can be used to strongly lower its resonant
frequency to the required design frequency of the filter.

To illustrate these concepts, we have analyzed a similar cavity
as before, but including a dielectric post of relative permittivity
e, = 4. The length of the cavity is also increased to L. =
30 mm to de-tune the TE;(, resonance of the cavity. In Fig. 5,
we present the scattering parameters obtained for this structure
in a wide frequency sweep. We can observe a first resonance
of the cavity at 11.5 GHz. This is the TE;(2 resonance, which
is now at lower frequencies due to the larger cavity size used.
This is demonstrated by looking at the field pattern obtained at
11.5 GHz, presented in Fig. 6. We again observe the field pattern
of the TE192 mode without practically any disturbance caused
by the dielectric post.

The important point to discuss now is that a second resonance
appears in Fig. 5 at 14 GHz. This resonance is due to the TE;¢3
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Fig. 7. Resonant TE;q3 mode perturbed by the dielectric post at the frequency
of 14 GHz. Dimensions according to Fig. 2: « = 19.05 mm, L. = 30 mm,
w, =4 mm,h, =10.65mm, L, = 3.5 mm, hy =4 mm, ¢, = 4.

mode, which has a lower resonance frequency due to a strong
interaction with the dielectric post placed in the middle of the
cavity. To demonstrate that this is indeed a perturbed TE o3 res-
onant mode, we further present in Fig. 7 the electric field pat-
tern of the structure at 14 GHz. We can observe the three typical
lobes of a third-order resonance. We also observe that the central
lobe is concentrated inside the dielectric, therefore strongly af-
fecting the resonant frequency of the mode. In the final filter, the
TE93 resonance will act as the second resonance of the filter
(Rz of Fig. 1), and it will be combined with the TE; > mode res-
onance (R; of Fig. 1) to build the final doublet. Finally, note that
the electric field of the TE;93 mode suffers two sign changes
along the cavity length, as shown in Fig. 7. The signs of the
couplings associated to this resonance then do not change from
input to output. This is in accordance with the fact that only one
sign of the four involved in the doublet must change in sign. It is
also important to bear in mind that the presence of this dielectric
post will hardly disturb the first TE;2-mode resonance of the
final filter, as demonstrated in Fig. 6. The disturbance comes in a
slight modification of the resonant frequency of the mode. This
effect can be easily compensated by adjusting back (reducing)
the length of the waveguide cavity L. (see Fig. 2).

Following this concept, it is simple to see that the inductive
windows of the cavity will also affect the coupling to the second
mode of the doublet. However, once this coupling window is
fixed, the coupling to the second mode of the doublet can be fur-
ther adjusted with the height of the dielectric post. This change
will not modify the behavior of the TEq92 mode. However, the
change of this height will modify the pulling effect of the central
lobe of the TE 3, therefore effectively modifying the coupling.
The corresponding impedance inverters associated to these cou-
plings are .J3 and .J, according to the coupling matrix of Table I
(see also Fig. 1).

Finally, the length of the cavity L. will modify the resonant
frequencies of both modes. However, once the resonant fre-
quency of the TE;92 mode is adjusted with this length, the res-
onant frequency of the TE143 mode can be further adjusted by
modifying the length L, of the dielectric post. The differences
in the resonant frequencies of both resonators in asynchronously
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Fig. 8. Coupling matrix and scattering parameters of a bandpass filter with a
transmission zero above the passband. The waveguide width is ¢ = 19.05 mm.
The dimensions according to Fig. 2 are: w,, = 4 mm, h,, = 10.65 mm,
hg =4.1mm, Ly = 5mm, L. = 20.4 mm, ¢, = 4.

tuned filters are included in the self-coupling terms M;; and
M5 of the coupling matrix shown in Table I [7].

With these simple considerations, it is easy to optimize the
dimensions of the filter in order to synthesize the values of any
coupling matrix of the form shown in Table I. As already stated,
we observe that, in this case, there is no need to increase the
width of the waveguide cavity « in order to implement transmis-
sion zeros. This leads to more compact structures as compared
to the original work proposed in [6].

III. RESULTS

In order to demonstrate the practical value of the proposed
topology, we will consider the design of a bandpass filter cen-
tered at the frequency of 14 GHz, and with a transmission zero
above the passband, at the frequency of 14.4 GHz. The filter
has been optimized to exhibit a ripple within the passband of
—20 dB. Following the synthesis technique described in [7], the
coupling matrix corresponding to the structure shown in Table I
takes the values presented in the inset of Fig. 8. The different
geometrical parameters of the structure presented in Fig. 2 can
be adjusted in order to synthesize the different values of this
coupling matrix. Choosing a standard WR75 waveguide (a =
19.05 mm), the final dimensions for the inductive windows are
wy, = 4 mm and h,, = 10.65 mm. The height and length of the
dielectric post are hy = 4.1 mm and L; = 5 mm with a relative
permittivity constant €, = 4. Finally, the optimized length of
the cavity is L. = 20.4 mm. The scattering parameters obtained
for this geometry, when analyzed with Ansoft’s commercial fi-
nite-element software HFSS, are presented in Fig. 8, together
with the results obtained directly from the analysis of the cou-
pling matrix. We can observe very good agreement between the
results predicted by the coupling matrix theory and the results
obtained from the full-wave analysis of the optimized structure.
As a further validation test, we also show in Fig. 8 the results
obtained with an integral-equation technique derived for induc-
tive waveguide devices based on the theory presented in [12].
Again we can observe very good agreement.
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Fig. 9. Coupling matrix and scattering parameters of a bandpass filter with
a transmission zero placed below the passband. The waveguide width is a =
19.05 mm. The dimensions according to Fig. 2 are: w,, = 4 mm, h,, =
10.95mm, hy; =4.5mm, L; = 8.4mm, L, = 17.26 mm, €, = 4.

Another interesting feature of the new topology is that it ex-
hibits the so-called zero shifting property of transversal filters
[13]. Using this property, few adjustments in the resonant fre-
quencies of the resonators can be introduced to implement a
transmission zero below the passband of the filter. To show that
this is indeed the case, we present in Fig. 9 a similar filter as be-
fore, but with the transmission zero placed at the frequency of
13.3 GHz. To obtain this filtering function, only small changes
were applied to the resonant frequencies of the resonators (L.
and Lg). The height hy was also slightly modified to compen-
sate for the couplings to the second resonator. Finally, the input/
output windows (h,,) were slightly adjusted to recover the re-
turn-loss level of —20 dB. The analysis of this new structure
with Ansoft’s HFSS is presented in Fig. 9, showing that the
transmission zero now occurs below the passband. The inset
of this figure shows the new coupling matrix synthesized with
the technique presented in [7]. Results predicted by the direct
analysis of this coupling matrix are also presented in Fig. 9,
showing excellent agreement with the full-wave simulations of
the structure. Again, results obtained with the integral-equation
technique based on the theory described in [12] are also shown
for further validation.

It is worth mentioning that the doublets designed in this
paper can be cascaded together to produce higher order filtering
functions, as originally proposed in [14]. This can be done by
using a nonresonating node as the basic element to join the
doublets [15]. Alternatively, doublets can be cascaded by using
conjoining resonators (rather than nonresonating nodes). To do
this, trisections are first created, and then cross-pivot rotations
are applied to form the cascaded doublets (see [11, Fig.7]).

From the results shown in Figs. 8 and 9, we observe that, in
the new structure proposed, the transmission zeros are placed
close to the passband. This is due to the fact that the coupling
from the ports to the TE;92 mode is stronger than the coupling
to the TEy3 mode. This can also be verified from the field pat-
terns shown in Figs. 6 and 7. The TE;92 mode has most of its
strength close to the ports, while the modified TE;p3 mode is
concentrated in the dielectric post at the center of the cavity.
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Fig. 10. Details of the insertion losses of the filter of Fig. 9 for two different
values of the dielectric loss tangent: tan 6 = 0.0025 and tan § = 0.0125.

Consequently, the coupling from the ports to the TE;92 mode
will always be larger, resulting in transmission zeros close to
the passband. However, the strength of the coupling from the
input/output ports to the resonators is essentially controlled by
the coupling windows (h,, in Fig. 2). This means that large cou-
plings can be synthesized for the design of wide bandpass filters.
In the examples shown in Figs. 8 and 9, the filters exhibit band-
widths of 400 MHz with return losses of —20 dB. Of course,
narrower bandpass filters can also be designed by closing the
input/output windows to reduce the strength of the couplings.

Another interesting aspect of the topology proposed is related
to the insertion losses that can be achieved with this structure.
From the behavior of the resonances of the filter presented in
Figs. 6 and 7, we can observe that the quality factor of the TE ;g2
mode will essentially be the same as in a conventional H -plane
filter. This is because this mode is hardly affected by the dielec-
tric post. On the contrary, the quality factor of the TE;93 mode
will strongly depend on the losses of the dielectric object since
this mode has most of its strength inside the post, as shown in
Fig. 7. To demonstrate this fact, we include in Fig. 10 the details
of the insertion-loss response of the filter presented in Fig. 9,
when the losses in the dielectric post are increased. This figure
shows a slope in the insertion-loss response of the filter, being
maximum around the frequency of 13.7 GHz, where the TEq3
mode has its strongest effect. For a value tan § = 0.0125, the in-
sertion loss of the filter varies inside the passband from —1.3 dB
(at the worst point) to —0.4 dB. When tan § = 0.0025, the in-
sertion loss improves from —0.3 dB (at the worst point) to only
—0.1 dB.

Finally, it is important to notice that the out-of-band response
of the transversal filter proposed in this paper is expected to be
worse than in a conventional H -plane filter. This is because of
the influence of the dielectric post in the higher order modes of
the resonator. Thanks to the dielectric post, we can combine the
TE192 and TE193 modes to make a transversal filter. The TEq¢3
mode is pulled down to lower frequencies due to the presence
of the dielectric post. However, any other higher order mode
having a maximum at the center of the cavity (for instance, the
TE105 mode), will also be pulled down to lower frequencies
by the dielectric post. This will certainly approach the spurious
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Fig. 11. Comparison of the out-of-band performance for the new transversal
filter against a standard H -plane filter of similar characteristics.

bands closer to the useful operational band. To demonstrate this,
we have designed a similar two pole filter in a standard H -plane
technology, and we compare them with the filter shown in Fig. 9.
The results of the comparison are presented in Fig. 11. We ob-
serve that the first spurious band is obtained at the frequency of
18 GHz in the new filter. However, the conventional H-plane
filter has the first spurious band at 22 GHz.

IV. CONCLUSIONS

In this paper, we have proposed a new topology for imple-
menting high-selectivity bandpass filters with one transmission
zero in its insertion-loss response. The structure is formed with
a waveguide cavity and a dielectric resonator attached to one
of the waveguide walls. This paper has shown that this struc-
ture is able to implement a transversal filter topology (doublet)
with reduced size and volume. This topology produces a single
transmission zero, which can be easily placed above or below
the passband using the zero shifting principle. Results obtained
through full-wave analysis of the new structure proposed are in
good agreement with theoretical results, which have been di-
rectly obtained with the coupling matrix theory.
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