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Abstract—In this paper, a neural-network-based method for the
analysis of practical multilayered shielded microwave circuits is
presented. Using this idea, a radial basis function neural network
(RBFNN) is trained to approximate the space-domain multilay-
ered media boxed Green’s functions used in the integral-equation
(IE) method. Once the RBFNN has been trained, the outputs of the
neural network (NN) replace the exact Green’s functions, during
the numerical solution of the IE. The computation of the RBFNN
output values is very fast in comparison with the numerical
methods used to calculate the exact Green’s functions. This paper
describes two novel strategies for efficiently training the RBFNN.
In the first strategy, the input space of the RBFNN is divided into
several spatial and frequency regions. The spatial subdivision is
extended for the first time to both observation and source regions.
In addition, the subdivision of the observation points regions is
applied in a novel manner to the whole cross section of the metallic
box. The second strategy combines the above region subdivision
with an adaptive selection of the neurons variances in each re-
gion. The accuracy and the computational gain achieved with
the NN method proposed makes possible the implementation of
computer-aided-design tools that can be used for the analysis and
design of integrated shielded microwave circuits (e.g., monolithic
microwave integrated circuit devices) on a real-time basis.

Index Terms—Computer-aided design (CAD), multilayered
circuits, multilayered Green’s functions, neural networks (NNs),
printed circuits, radial basis function neural network (RBFNN),
shielded microwave circuits.

I. INTRODUCTION

THE HIGH integration degree reached by modern mi-
crowave systems, especially with the advent of monolithic

microwave integrated circuits (MMICs), makes the accurate
analysis of these complex structures necessary [1]. This kind
of microwave circuit is usually manufactured inside shielded
enclosures, due to the isolation and mechanical support needed
by these components. Nowadays, the industry demands useful
tools for the design of microwave circuits with complex
elements, which can operate at high frequencies, and with
metallic walls surrounding the structures. Not only is accuracy
in the calculation of the electrical behavior needed, but also
fast computational times are desired in order to build useful
computer-aided-design (CAD) packages [2]. The approximate
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analysis techniques or quasi-static approaches can provide esti-
mated results for simple structures in a fast way, but generally
they do not achieve the analysis precision demanded nowadays
for complex circuits. Therefore, full-wave and exact numerical
methods have to be used for the analysis of complex microwave
circuits.

Two of the techniques successfully applied for this purpose
are the finite-element (FE) method and the finite-difference
time-domain (FDTD) method. These two procedures allow for
the exact analysis of practically any structure [3]. The main
disadvantage of this family of methods is the large quantity
of computer resources consumed when the complexity of the
circuit increases. This is often due to the refinement of the
mesh needed in complex structures to reach convergence in the
solution.

Another popular method for the analysis of printed mi-
crowave circuits is the integral-equation (IE) approach, solved
with the method of moments (MoM) [4]. In the IE technique,
it is necessary to calculate the Green’s functions associated
with the multilayered shielded medium. In a shielded boxed
media, the Green’s functions are usually formulated as slow
convergent spectral or spatial infinite series. Therefore, two
possible formulations can be used in the IE solution. The
spectral domain formulation is usually efficient, but, in some
situations, the modal series shows a very slow convergence
behavior, i.e., when the shielded box has large dimensions as
compared to the printed circuit dimensions. Also, the conver-
gence depends on the type of basis functions used, and the
calculation of the required overlapping integrals can only be
performed analytically with simple choices of basis functions
[5].

The spatial domain formulation avoids the aforementioned
problems of the spectral domain formulation. In this case, se-
ries acceleration techniques are employed to sum up the Green’s
functions in the spatial domain [6]. Once the Green’s functions
are obtained, the IE can be solved using any of the well-known
spatial-domain discretization techniques [7]. However, the cal-
culation of the associated series is still slow in order to obtain the
desired electrical behavior in real time. Therefore, even though
the IE combined with the MoM involves fewer unknowns than
the FE or the FDTD, the method is still too slow to develop a
CAD tool that operates in real time. This is now because of the
time spent in the numerical calculation of the spatial-domain
Green’s functions. In this paper, we propose to use neural net-
works (NNs) to reduce the time needed for the computation of
the spatial-domain Green’s functions during the MoM solution
of the IE technique.



NNs can learn from a given data set. After this initial learning
process called training, NNs produce fast outputs in classifica-
tion and regression problems. This ability of learning the rela-
tion and structure of a multidimensional data in a nonlinear way
has been exploited in many electromagnetic problems [8]. The
first models of microwave components and circuits using NNs
are found in [9]–[11]. NNs were also applied to microwave cir-
cuit optimization in [12] and [13]. After NNs proved their ability
in microwave modeling and optimization, they were also used
in the development of neural-based microwave CAD packages
and library model tools [14], [15].

With respect to the analysis and modeling of printed circuits
in layered media, we can find some different uses of NNs. NNs
have been applied to the estimation of the coefficients needed in
the discrete complex image method (DCIM) [16]. The DCIM
originally appeared as an alternative technique to compute the
spatial-domain Green’s functions for a multilayered medium of
infinite transverse dimensions [17]. In [16], the DCIM coeffi-
cients were calculated for a horizontal electric dipole placed at
the top of a dielectric substrate over a specific bandwidth. Re-
lated to this, another technique was presented consisting on the
employment of the NNs to evaluate the spectral domain integrals
[18]–[20]. Consequently, the corresponding authors called this
technique the neurospectral method. The input impedance of a
microstrip antenna, with infinite dimensions in the transverse
plane, was computed using this technique in [19]. Furthermore,
in [20], the neurospectral method was employed for the design
of a rectangular patch antenna, also with an infinite dielectric
substrate.

More recently, NNs have been used in the estimation of the
spatial-domain Green’s functions of a shielded multilayered
structure [21], [22]. In these works, the Green’s functions
were directly approximated by an NN for the case of a source
and observation points placed inside the corresponding box,
and for a specific fixed frequency. The NN method developed
was later extended to the analysis of a practical microwave
printed circuit in a given frequency range, in [23]. In that
work, a strategy consisting on a subdivision of the spatial and
frequency domains of the NN input space was carried out, in
order to reduce the training and testing errors. The whole input
space was divided into source point regions, observation point
regions, and frequency regions. Each one of these regions was
calculated according to the specific behavior of the Green’s
functions (e.g., singularity close to the source and resonant
frequencies of the box). Originally, the subdivision in the
source regions was only performed when a given observation
point was placed in the nearest zone to the source point. For
all other observation points, a single NN, without any source
subdivision, was employed.

With respect to the training of the NNs, a technique employed
in the past was to sample the input space with different points
densities in regions where higher errors were detected [24]. In
this paper we propose a new subdivision scheme which leads
to improved precision in the Green’s functions approximation.
Now the subdivision in source regions is performed for all ob-
servation regions, except for the outermost observation region.
There are two main advantages of the new proposed scheme.
The first is that the enforcement of the boundary conditions for
the potentials at the cavity walls is improved. The second is that
the training set to each one of the new NNs is reduced.

In the above strategy, the selection procedure of the RBFNN
variance remains fixed for all of the regions. A second novel
strategy is developed in this paper to further reduce the gener-
alization and training errors. In this new technique, an adaptive
RBFNN variance algorithm is implemented. The selection of
a suitable variance value, which can vary from observation re-
gion to observation region, allows a better approximation of the
Green’s functions, especially for the observation regions placed
near the source point. Thanks to this novel strategy, more com-
plex circuits with higher precisions can be analyzed. Both al-
gorithms, once the RBFNNs have been trained, produce the
Green’s functions values needed in the IE technique in a very
fast way. The time gain in the computational time makes the
training time negligible, allowing for the analysis and optimiza-
tion of shielded MMIC circuits in a near real-time fashion.

In Section II, the RBFNN model and the two new strategies
are explained. In Section III, the analysis of three band-pass fil-
ters are discussed using the NN methods and the direct solution.
The results show the improvement when the adaptive variance
algorithm is used and the good agreement obtained between the
exact solution and the neural method based solution. Measured
results and simulations obtained with a spectral domain tech-
nique are also shown to validate the general CAD package.

II. PROPOSED METHOD FOR NN MODEL

The radial basis function network (RBFNN) is one kind of
NN composed of three fixed layers. The input layer takes the
data from the input space. The hidden layer transforms the input
space nonlinearly in a hidden space of higher dimensionality.
Finally, the output layer performs a linear mapping. In our
problem, the RBFNN must approximate the Green’s functions
values. This approximation task is a regression problem. The
RBFNN with a single hidden layer of Gaussian neurons are
considered to be universal approximators [25]. Therefore, we
choose the Gaussian function as the nonlinear function of each
neuron. The total transformation made by the RBFNN is shown
in the following equation:

(1)

where is a nonlinear function. The nonlinear function is the
Gaussian function just mentioned, described as follows:

(2)

and the variance values are cast in the following matrix:

...
...

. . .
...

(3)

where is the center of the th radial basis function, is the
input vector, is a constant or bias, is the weight of the th
neuron, is the norm weighting matrix, is the input space



Fig. 1. Distribution of source and observation points of the training and the
testing sets. The observation points of the training set are the crosses; the source
points of the training set are the circles; the source points of the testing set are
the square points, and the observation points of the testing set are the pluses
points. In this distribution, there is not any subdivision in the input space.

dimension, and is the total number of neurons. The operator
denotes the Euclidean norm. Using the norm weighting

matrix, it is possible to define one particular variance value
associated with each one of the input space coordinates, as in-
dicated in (3).

The structure of the RBFNN was introduced for the first time
in [23]. In our problem, each input space point is composed of
the transverse spatial coordinates of a source point ( , ), the
transverse spatial coordinates of the observation point ( , ),
and the frequency. The corresponding output space is composed
of the real and imaginary parts of the relevant mixed-potential
Green’s functions ( , , and ). The selection of a vari-
ance matrix, as shown in (3), instead of a unique variance for
all of the coordinates, is especially important in our problem,
due to the characteristics of the input space. The first four coor-
dinates are spatial coordinates, while the fifth coordinate is the
frequency of operation. In general, a different variance can be
selected for each one of the input coordinates. Each of the spatial
coordinates in normalized form range from zero to one, as can
be seen in Fig. 1. The frequency of operation expressed in giga-
hertz can range typically from 3 to 30 to cover many practical
microwave and millimeter-wave applications. All of the studies
made have shown that a suitable variance for the spatial coor-
dinates must be different from the variance for the frequency
coordinate for the best performance.

The RBFNN design involves two steps: the training stage and
the testing stage. During the training phase, the centers, weights,
and variances are calculated. To compute these parameters, a
training set of input and output data pairs is needed. A typical
distribution of source and observation points of the training and
testing sets is shown in Fig. 1. The source and observation points
of the testing set are placed at intermediate positions with re-
spect to the source and observation points of the training set.
This testing point distribution allows to check the generalization
and interpolation capabilities of the RBFNN. For the training

Fig. 2. Subdivision of the input space in different observation regions.

stage, the Green’s functions are computed in the spatial domain
following the numerical techniques described in [6] and [26].

In the distribution shown in Fig. 1, there is no region sub-
division in the input space. Similar distributions were used in
[22] and [21]. Due to problem symmetries, the source points
are distributed along a spatial net belonging to the first quad-
rant of a rectangular box of dimensions ( , ) ( ,

); see Fig. 1 [21]. The Green’s functions values as-
sociated with the remainder source points placed at the other
quadrants are calculated from the corresponding source points
lying in the first quadrant by straightforward symmetry. Among
the different RBFNN training algorithms, we have chosen the
orthogonal least squares (OLS) procedure [27], [28]. Although
the OLS is not capable of providing the most compact set of cen-
ters, as shown in [29], it has been chosen because it surpasses
other training algorithms in the Green’s functions approxima-
tion problem, as described in [21].

A. First Strategy: Automatic Region Subdivision
With Fixed Variance

The objective of the method proposed is to use the RBFNN
as a substitute of the exact method to compute the Green’s func-
tions. Although the singularity is properly extracted [6], the
Green’s functions exhibit rapid variations near the source in a to-
tally closed environment. The RBFNN, like other NNs, cannot
approximate fast variations in an appropriate way. One useful
strategy to overcome this problem is to apply the divide-and-
conquer principle. Thus, the observation points are grouped in
different areas depending on their proximity to the source point
(see Fig. 2).

The procedure to implement the subdivision of observation
regions is shown in Fig. 3. Initially, the algorithm selects a first
observation region. This first region ranges from the source
point to an initial limit. The mentioned initial limit can be



Fig. 3. Flowchart of the observation points region subdivision algorithm.

computed as a fraction of the distance between source points
in a regular net filling the first quadrant of the box (see Fig. 1).
In a similar way, the maximum limit can be chosen to be equal
to the distance between source points in this net. Also, the
frequency is set to the highest value of the given bandwidth.
The Green’s functions show faster variations at higher frequen-
cies. Consequently, computing the observation regions at this
maximum frequency will assure a correct training for all of
the other frequency points. In addition, some other parameters
must be initialized before the algorithm can start, such as the
variance and the maximum limits for the observation and first
source regions.

It is important to point out that the observation regions close
to the source are smaller in size, while the number of obser-
vation points is similar in all regions. In this way, the density
of observation points is larger for regions close to the source,
therefore increasing the accuracy of the NN. In Fig. 2, we can
see the distribution of the observation points in the first observa-
tion region (i.e., the one placed closest to the source point). The
figure also shows the observation points distribution in an inter-
mediate region. The first region is filled with a set of observation
points that are regularly distributed. All other intermediate re-
gions have the same distribution of observation points, as shown
in Fig. 2.



Finally, the training and testing sets are generated with the
exact Green’s functions routines, based on the algorithms
described in [6] and [26]. Neurons are added until the error
threshold for the training and testing set is reached or until
an overtraining situation is detected. Overtraining situations
appear when the testing error suddenly grows. If overtraining
occurs or the number of neurons surpasses the maximum
number allowed, the number of source points is increased. If
the number of source points cannot be increased (for instance,
due to memory limitations), then the size of the first source
region is decreased. This feedback operation leads to a more
dense net of source and observation points, so that the training
is improved. If the mentioned operations are not successful, the
upper limit of the observation region is decreased (see Fig. 3).
After the selection of the first observation zone is completed,
the selection of the next observation region begins. The upper
limit becomes the maximum limit, and the lower limit becomes
the upper limit of the previous zone. The algorithm continues
computing the sizes of the regions until the final upper limit
of a given region coincides with the maximum limit. In this
case, the subdivision in observation regions stops, and control
is given to the subdivision in the source regions. The source
region subdivision is a new concept introduced in this paper.

The first advantage in performing a subdivision in source re-
gions is that the boundary conditions for the potentials at the
cavity walls are enforced more easily. The points placed near
the walls are separated from the ones placed far from the walls,
as shown in Fig. 4. This separation allows for the enforcement
of the boundary conditions more efficiently. In addition to the
better fulfillment of the boundary conditions, an interesting mo-
tivation to perform a subdivision in source regions is the need
to limit the size of the training and testing sets. If no source re-
gion subdivision is made, a regular net of source points filling
the first quadrant of the box is needed. The problem with this
choice is that the training set would be too large to train the
RBFNN properly, i.e., a net of 15 15 source points with 25
observation points per source would generate 5625 input points
per frequency. The training stage would consume too much in
terms of computer resources, running time, and memory alloca-
tion. This problem is avoided using the new concept of subdivi-
sion in source regions.

To start with the source region algorithm, we have to remark
that the previous observation region selection procedure also
computes the first source region, as can be seen in the flow chart
shown in Fig. 3. The source region subdivision algorithm begins
with the setting of some necessary initial parameters. The fre-
quency is set to the highest value of interest due to the same
reasons mentioned before. Also, the variance is set to the same
fixed value of the previous algorithm. The RBFNN training be-
gins after the generation of the training and testing sets. If an
overtraining situation is detected or the maximum number of
neurons is exceeded, the number of source points is increased.
If the error reaches the preset threshold, a new source region is
created, as shown in Fig. 5. In [23], the source region subdivi-
sion was computed only for the first observation region, namely
for the observation points placed nearest to the corresponding
source point. The training and testing sets for the rest of the ob-
servation points were computed using similar uniform nets, as

Fig. 4. Subdivision in different source regions.

shown in Fig. 1. In this paper, the idea is generalized, and now
the source region division is extended for all of the observation
regions. This subdivision is more complex than the one used
in [23], but leads to an NN which improves the fulfillment of
the boundary conditions at the cavity walls. Also, with the new
algorithm, a better approximation of the Green’s functions is
achieved in the square box, near and far from the metallic walls.

It is important to remark that the division in source regions
is performed in a way so that all regions have similar areas. In
addition, the number of source points in all regions is similar,
thus resulting in a similar density of source points in all regions.
This strategy is different than the one followed for the observa-
tion regions. This is because now the behavior of the Green’s
function is not abruptly close to the walls. The important point
to construct the source regions is to adopt the “L”-shaped areas
shown in Fig. 4. These areas have shown to be appropriate to
more efficiently separate the points close to the walls from the
points placed far from the walls.

Following the same example of a net of 15 15 source points,
we can generate five source regions, with each one containing
45 source points. If the number of observation points in a given
observation region is of 25, then the total size of the training
set will be 1125 per each frequency point. On the contrary, if no
source region division is performed, the total size of the training
set would be 5625 points. Due to memory limitations, it would
be difficult to handle a training set of 5625 points for each fre-
quency.

A related problem is if we find an overlearning situation when
dealing with very small training sets. If this happens, the tech-
nique offers enough flexibility to modify the number of points
in a given source region. For instance, we can take 100 points
in a source region, therefore leading to a training set of 2500
points. This can eliminate the overlearning situation problem,
while still maintaining a reasonable training set size.

Finally, a third division is made at the frequency level of the
input space. The division at the frequency level was introduced
and discussed in [23]. The first motivation of introducing the fre-
quency division is again to reduce the size of the training set. A
second motivation, as recognized in [23], is to properly handle
the resonant frequencies that can occur inside shielded boxes.
In [23], a low-pass filter was analyzed having one resonant fre-
quency inside the bandwidth of interest. The results presented
showed the accuracy obtained and confirmed that resonances



Fig. 5. Flowchart of the source points region subdivision algorithm.

can be properly treated with the frequency division strategy
without loss of accuracy.

B. Second Strategy: Region Subdivision
With Adaptive Variance

In this second strategy, the region subdivision method is
completed with a mechanism that finds, in an adaptive fashion,
a suitable Gaussian variance. In [21] and [22], a study of some
appropriate variance values, associated with the OLS training
algorithm, was presented. Although a range of variance values
exists that permits a correct training, a norm weighting matrix
filled with inappropriate values will increase both the training
and the testing errors. The optimum variance value is related
to the distribution and to the distance between the input space
points. Also, it is linked with the frequency content of the
output data. Neurons with lower variance values are needed
if the output data present high-frequency content. For a fixed
distance between the input data points, there is a minimum
value of variance that guarantees the generalization and inter-

polation abilities of the RBFNN. Smaller values of the variance
would lead to large generalization errors. In this case, the only
solution in order to decrease the error is to increase the number
of training points.

The Green’s functions in a totally shielded box exhibit fast
variations near the source, and, therefore, low values of variance
are needed. On the other hand, far from the singularity, the vari-
ations are smoother, and thus higher values of variance would be
more convenient. In the previous strategy, a fixed initial variance
is selected within a reasonable range of variances as reported in
[22]. However, this value is not the optimum for all source-ob-
servation distances. If the variance is fixed constant throughout
the whole training process, a large number of observation and
source regions would be needed to achieve a given target preci-
sion. Thus, an adaptive mechanism to find an appropriate vari-
ance value is developed in this paper. The adaptive method is
applied inside the observation region algorithm. Once the obser-
vation regions and the first source region have been selected, the
variance remains fixed for the rest of the source regions. Con-



sequently, each observation region will have associated its own
optimum variance value.

It should be noted that the spatial variance is referred to the
first four values of the diagonal norm weighting matrix of (3).
The first four values correspond to the spatial coordinates and
the fifth value to the frequency coordinate. We have found that
a clever choice is to set all spatial variances to the same value:

. Consequently, a different variance
value is selected for the frequency coordinate ( ). We have
to keep in mind that the adaptive variance method developed
operates on the unique value for the spatial variance: .

The initial variance value ( ) is set at the beginning of the
observation region algorithm. This initial value must be selected
within some variance limits [22]. If the training and testing
threshold error is not reached, the variance is decreased at each
step. If the error is still above the threshold, the variance is de-
creased again, until the RBFNN is successfully trained or the
minimum variance is reached. If this last situation is detected, a
new variance increment phase begins.

If an optimum variance value is not obtained following this
search procedure, then either the number of source points is in-
creased or the size of the first source region is decreased. In the
algorithm, both situations are explored sequentially.

As the results in Section III will show, the adaptive vari-
ance method outperforms the fixed variance method. On the one
hand, lower error levels are obtained, and, on the other hand,
a smaller number and larger observation regions are needed to
achieve the same error level.

III. RESULTS

In order to demonstrate the usefulness of the proposed neural
strategies, we have carried out two numerical tests. In the first
one, we have measured the size of the training set versus the
normalized mean square error (NMSE). We compare the sizes
obtained with the new strategy extended to all observation re-
gions developed in this paper, with respect to the direct strategy
implemented in [23].

First, one observation region was selected with upper limit
equal to 0.0208 and lower limit equal to 0.0104 in the shielded
box structure shown in Fig. 6. Without any source subdivision,
the NMSE achieved for the given observation zone is 0.48. The
size of the training set is not allowed to be enlarged due to
memory limitations (a maximum of 4059 in this example); thus,
it is impossible to reach lower NMSE levels. On the contrary,
when the source regions subdivision is applied, the mean of the
size of the training set for each source region drops to 2662, and
the NMSE error falls below the 0.20 level. A lower error is ob-
tained with a smaller training set size.

As a second numerical test, we want to evaluate if the obser-
vation region subdivision is more efficiently carried out when
the adaptive variance strategy is applied. The numerical test is
performed on the same box structure shown in Fig. 6. We have
found that, when the error level (NMSE) is large, essentially the
same number of source points and number of observation re-
gions are needed in both fix and adaptive algorithms. However,
when the NMSE decreases below 0.2, the adaptive algorithm
needs a smaller training set (e.g., from 576 to 484, representing a
26% gain). The adaptive variance method then permits a smaller

Fig. 6. Shielded bandpass printed filter 1. The structure of the filter and the
dimensions of the box are included.

training set, improving the overall efficiency of the training. In
a similar way, it also permits to obtain lower errors for a given
fixed training set size.

Two different bandpass filters have been analyzed using the
NN strategies. A comparison of the scattering parameters cal-
culated using the NN method and the direct Green’s functions
is shown in this section. As stated in the previous sections, all of
the RBFNNs of the corresponding spatial and frequency regions
are trained for a specific box and layered structure (see Fig. 6).

After this initial phase, the exact Green’s functions are re-
placed by the RBFNN outputs, during the numerical solution of
the IE. The corresponding RBFNN will compute in a fast way
the output values, reducing the computational time drastically.
Once the RBFNNs have been trained to substitute the Green’s
functions (for a fixed shielded box and for a given bandwidth),
any printed circuit inside the same box can be analyzed or op-
timized quite efficiently. The training time is a constant initial
quantity. After that, any circuit analysis or optimization task can
be carried out without the need to retrain the structure.

The region subdivision with fixed variance strategy and the
region subdivision with adaptive variance strategy, introduced in
this paper, were applied to the multilayered shielded box shown
in Fig. 6. The frequency bandwidth ranges from 9 to 11 GHz.

In the region subdivision with fixed variance, the value of the
spatial variance was set to a fixed value of , according
to the studies presented in [23]. With this value, this strategy
reaches a minimum NMSE of 0.2. The observation subdivision
algorithm produced three spatial observation regions, as shown
in Table I. Moreover, the source subdivision algorithm gener-
ated six spatial regions (see Table II). The lower and upper limits
in Tables I and III are referred to the limits of the corresponding
observation zones, as shown in Fig. 2. The observation points
that are not included in these observation zones belong to the
outermost observation region.

For this example, the frequency region subdivision algorithm
divides the given bandwidth into only one region that ranges



TABLE I
OBSERVATION REGIONS GENERATED BY THE REGION

SUBDIVISION WITH FIXED VARIANCE

TABLE II
SOURCE REGIONS GENERATED BY THE REGION

SUBDIVISION WITH FIXED VARIANCE

from 9 to 11 GHz. Only three frequency points were needed to
achieved the accuracy demanded (9, 10, or 11 GHz), selecting
a variance for the frequency coordinate of: . The use of
this simple frequency division scheme is possible because of the
absence of resonant frequencies of the box in the bandwidth of
interest. The benefits of the frequency region subdivision were
discussed in more detail in [23]. In that paper, a low-pass filter
was analyzed in a frequency range containing one resonance
of the box. In [23], it is shown how the frequency region sub-
division can correctly handle resonant frequencies of the box
without loss of accuracy.

After generating the observation, source, and frequency re-
gions, the RBFNN training begins. The training procedure has
to be applied to all combinations of source, observation, and
frequency regions. In this particular case, each RBFNN approx-
imates the Green’s functions throughout the whole bandwidth,
due to the fact that only one frequency region was generated.

We have also applied the region subdivision with adaptive
variance strategy to the same layered structure. With an initial
spatial variance of , the lowest NMSE error level
reached was of only 0.10. It can be seen that, with this adaptive
scheme, the error level that can be obtained is lower than that
with the previous strategy. It should be pointed out that, with the
fixed variance strategy, the NMSE error could not be lowered
from the 0.2 level. Therefore, better precision is expected when
the adaptive variance algorithm is used. To reach this error level,
the subdivision algorithm produced six observation regions (see
Table III).

The spatial variance was automatically reduced by the algo-
rithm from the initial value of 0.05 up to a value as low as 0.01
for the case of the first region. The change in the value of the
variance for all other regions is detailed in Table III. This change
in the spatial variance permits a more precise observation re-
gion selection, extending the generalization capabilities of the
RBFNN in the different regions. Consequently, lower NMSE
levels are obtained. After the observation region subdivision, the
source region subdivision produced 12 regions (see Table IV).

The filter shown in Fig. 6 was analyzed using the fixed vari-
ance strategy, the adaptive variance strategy, and the direct so-
lution of the Green’s functions. In Figs. 7 and 8, the module

TABLE III
OBSERVATION REGIONS GENERATED BY THE REGION

SUBDIVISION WITH ADAPTIVE VARIANCE

TABLE IV
SOURCE REGIONS GENERATED BY THE REGION

SUBDIVISION WITH ADAPTIVE VARIANCE

Fig. 7. S module for the filter shown in Fig. 6. Results are shown for the
direct solution, for the NN method with fixed variance solution (NMSE =

0:20), for the NN method with adaptive variance solution (NMSE = 0:10),
and for measurements.

of the and parameters calculated using the three tech-
niques are presented. The results show the increased accuracy
achieved by the adaptive variance strategy with respect to the
fixed variance strategy. Measured results are also shown to con-
firm the validity of the proposed technique.



Fig. 8. S module for the filter shown in Fig. 6. Results are shown for the
direct solution, for the NN method with fixed variance solution (NMSE =

0:20), for the NN method with adaptive variance solution (NMSE = 0:10),
and for measurements.

Fig. 9. Shielded bandpass printed filter 2. The structure of the filter and the
dimensions of the box are included.

It should be pointed out that the precision attained with the
technique originally proposed in [23] is not enough to obtain
meaningful results for the filter shown in Fig. 6. This is due to
the presence of very critical coupling gaps between the printed
lines of the structure. The two main extensions presented in this
paper allow for the accurate analysis of this bandpass filter. First,
the extension of the source region division for more than one ob-
servation region leads to further reduction of the overall RBFNN
error. Second, the adaptive variance algorithm allows for the de-
sign of an RBFNN with improved generalization capabilities.

A second filter placed inside the same metallic box was an-
alyzed using the direct solution and using the two mentioned

Fig. 10. S module for the filter shown in Fig. 9. Results are shown for the
direct solution, for the NN method with fixed variance solution (NMSE =

0:20), for the NN method with adaptive variance solution (NMSE = 0:10),
and for measurements.

Fig. 11. S module for the filter shown in Fig. 9. Results are shown for the
direct solution, for the NN method with fixed variance solution (NMSE =

0:20), for the NN method with adaptive variance solution (NMSE = 0:10),
and for measurements.

neural strategies (see Fig. 9). While the first filter is composed
of only coupled microstrip lines, the second filter connects the
coupled lines sections with an extra length of transmission line,
as shown in Fig. 9.

It should be pointed out that, for the analysis of this second
structure, no training phase need to be applied. Consequently,
the analysis of the second filter can proceed directly with the al-
ready trained RBFNNs, in a very fast way. This is because the
box and the layered structure is the same as in the first example.
In Figs. 10 and 11, the module of the - and -parameters
are shown. Measured results are also shown to validate the gen-
eral neural CAD package.



Fig. 12. Sixth-order bandpass filter designed with the NMSE = 0:1 NN.

Fig. 13. S module for the filter shown in Fig. 12. Results are shown for the
direct solution, for the NN method with adaptive variance solution (NMSE =
0:10), and with a different spectral domain technique.

It is interesting to notice that the RBFNNs with
have enough accuracy for the analysis and design of more com-
plex bandpass filters. To show that this is indeed the case, we
present an additional example with a sixth-order filter shown in
Fig. 12, again in the same box as before. We present in Figs. 13
and 14 the scattering parameters of this more complex struc-
ture. In Figs. 13 and 14, we show the results obtained with
the NN technique and with the direct evaluation of the Green’s
functions. We can observe very good agreement between both
results. In order to validate the whole CAD package, we also
include the results obtained with a different spectral domain
technique [30]. In spite of using two very different numerical
methods, we can observe good agreement in the recovered elec-
trical performance of the filter.

Fig. 14. S module for the filter shown in Fig. 12. Results are shown for the
direct solution, for the NN method with adaptive variance solution (NMSE =
0:10), and with a different spectral domain technique.

TABLE V
OBSERVATION, SOURCE, FREQUENCY REGION SELECTION TIME, AND RBFNN

TRAINING TIME WHEN FIXED VARIANCE STRATEGY IS SELECTED

We have shown with this example that the same RBFNN em-
ployed in the analysis of the first circuit can be used for the anal-
ysis of another printed structure, leading to similar degree of
accuracy. The NN method has proven its ability to calculate the
electrical circuit behavior of different printed circuits, provided
the box and the layered structure remain unchanged.

As already discussed in this paper, the main advantage of the
NN method is the fast calculation of the Green’s functions once
it is properly trained. The training of the RBFNN is performed
for a given shielded structure with certain dimensions and di-
electrics topology. The use of the RBFNN during the numerical
solution of the IE allows for the analysis of complex circuits in
a near real time fashion.

With respect to the computational time, two main stages can
be distinguished in the NN design. First, the generation of the
observation, source, and frequency regions, and, second, the
training of the corresponding RBFNN. In Table V, the regions’
selection time and the training RBFNN time are shown when
the fixed variance strategy is used. A total of 19 RBFNNs, cor-
responding to the regions generated, were trained. The sum of
these selection and training times amounts to the total initial
fixed time needed, before the NN method can be applied inside
the IE for the analysis of practical circuits. In Table VI, the re-
gions’ selection time and the training RBFNN time are shown
when the adaptive variance strategy is used. A total number of
73 RBFNNs were trained this time. Once the RBFNN training
phase has finished, the IE technique is applied in a fast way. In
Table VII, we present the computational time needed for the so-
lution of the IE for the two first filters presented. As can be seen
from Table VII, the NN method is several hundred times faster



TABLE VI
OBSERVATION, SOURCE, FREQUENCY REGION SELECTION TIME, AND RBFNN

TRAINING TIME WHEN ADAPTIVE VARIANCE STRATEGY IS SELECTED

TABLE VII
COMPARISON BETWEEN THE DIRECT IE SOLUTION AND THE NN IE SOLUTION

TO COMPUTE THE S-PARAMETERS IN 51 FREQUENCY POINTS

than the exact solution method. The initial time when the fixed
variance strategy is used is 14 h and 6 min. In the case of the
adaptive variance method, this initial time amounts to 77 h and
4 min. We have to remark that these are initial time values. After
the training, any printed circuit (as the three practical examples
shown in this paper) is analyzed in a few seconds per frequency
point. Moreover, any optimization technique used to improve
the circuit performance can be applied, obtaining the results of
each analysis in a few seconds per frequency point. This shows
clearly the usefulness of the neural technique proposed in this
paper.

Table VII shows the time needed to compute the scattering
parameters for 51 frequency points. The IE technique using the
RBFNN, trained with the fixed variance strategy, takes 10.09 s
per frequency point to calculate the scattering parameters of the
first filter and 8.84 s for the second filter. On the other hand,
the IE technique using the RBFNN, trained with the adaptive
variance strategy, spends 14.02 s per frequency point to com-
pute the scattering parameters of the first filter and 12.45 s for
the second filter. In both cases, the analysis calculated when the
variance is fixed is slightly faster than when the adaptive vari-
ance is used. To explain this, we have to keep in mind that every
time a source-observation pair is presented to an RBFNN, the
output calculation time depends only on the size of the partic-
ular RBFNN. Since the adaptive variance method is adjusted
to obtain lower errors, then every RBFNN contains a slightly
larger number of neurons. The small difference in time between
both solutions is not important in comparison with the error level
achieved when the adaptive variance is used, which cannot be
obtained with the fixed variance strategy. All of the results pre-
sented in the paper were obtained on a Pentium IV computer
with a 3.06-GHz processor and a total RAM memory of 2 GB.

IV. CONCLUSION

Two novel strategies, based on NNs, are used to analyze
printed circuits in shielded microwave structures. The NN em-
ployed is the RBFNN. The RBFNN is trained to approximate
the spatial domain Green’s functions of the relevant potentials
needed in the IE technique. The first strategy divides the whole
input space into an arbitrary number of source, observation, and
frequency regions. This separation allows a better training and
an improvement in the fulfillment of the boundary conditions
for the potentials at the cavity walls. The second strategy

combines the previous region subdivision with an adaptive
algorithm for the selection of the optimum spatial variance.
We have shown that this method leads to lower error levels,
and consequently to a better microwave circuit analysis. Once
all the RBFNNs have been trained, the NNs can replace the
direct Green’s functions solution allowing fast circuit analysis.
The IE technique combined with the NN method is several
hundred times faster than the direct solution. This remarkable
time gain makes the designing and training times negligible.
Consequently, the NN method presented is a useful method that
can be integrated into a CAD tool, for the analysis, design, and
optimization of practical shielded MMIC devices.
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